Артерии сосуды стенки которых. Виды кровеносных сосудов, особенности их строения и функции

💖 Нравится? Поделись с друзьями ссылкой

О характере газообмена в легких можно судить, если сравнить состав воздуха, который мы вдыхаем и выдыхаем. Мы вдыхаем атмосферный воздух, содержащий около 21% кислорода, 0,03% углекислого газа, остальное — азот и небольшое количество инертных газов и водяного пара.

Газообмен

В составе выдыхаемого воздуха кислорода около 16%, углекислого газа — около 4%. Итак, в легких богатый на кислород атмосферный воздух, поступивший во время вдоха, заменяется на воздух, в котором содержание кислорода в 1,3 раза меньше, а содержание углекислого газа больше аж в 133 раза. Организм человека в состоянии покоя ежеминутно получает 250-300 мл кислорода и выделяет 250-300 мл углекислого газа. Каков механизм газообмена?

советует похожие рефераты:

Газообмен в легких

Кислород и углекислый газ свободно диффундируют через мембраны клеток стенок альвеол и капилляров. Суть этого физического процесса заключается в том, что молекулы любого вещества, соответственно, и газа, перемещаются с участка, где их концентрация выше, к участку, где их концентрация меньше. Это перемещение продолжается, пока концентрация вещества в обоих участках не станет одинаковой.

Вспомним: в капилляры легких поступает венозная кровь, обогащенная углекислым газом, попавшим в нее из межклеточной жидкости, и бедная кислородом. Концентрация кислорода в альвеолярном воздухе выше, чем в венозной крови, поэтому кислород перемещается сквозь стенки альвеол и капилляров в кровь. В крови молекулы кислорода соединяются с гемоглобином эритроцитов, образуя оксигемоглобин.

Концентрация углекислого газа в альвеолах ниже, чем в венозной крови. Поэтому он диффундирует из капилляров в альвеолы, а оттуда во время выдоха удаляется наружу.

При газообмене в легких венозная кровь превращается в артериальную: содержание кислорода в ней меняется с 140-160 мл / л до 200 мг / л, а содержание углекислого газа — с 580 мл / л до 560-540 мл / л.

Легкие является органом выделения — через них удаляются летучие вредные вещества. К альвеолям из венозной крови поступают молекулы некоторых вредных веществ, попавших в организм человека (алкоголь, эфир), или образовавшиеся в нем (например ацетон). Из альвеол они проникают в выдыхаемого.

Газообмен в тканях

В тканевой жидкости содержание кислорода ниже, чем в артериальной крови, поэтому кислород из капилляров поступает в тканевую жидкость. Из нее он диффундирует в клетки, где сразу вступает в реакции энергетического обмена, поэтому в клетках свободного кислорода почти нет.

В реакциях энергетического обмена образуется углекислый газ. Его концентрация в клетках становится выше, чем в тканевой жидкости, и газ диффундирует в нее, а затем — к капиллярам. У них одна часть молекул углекислого газа растворяется в плазме крови, а другая попадает в эритроцит.

По сосудам большого круга кровообращения венозная кровь, бедная кислородом и обогащенная углекислым газом, системой полых вен поступает к правому предсердию и правому желудочку. Оттуда она попадает в легкие, где снова происходит газообмен.

Газообмен в легких. Вдыхаемый человеком воздух и выдыхаемый сильно различаются по составу. В атмосферном воздухе содержание кислорода доходит до 21%, углекислого газа - 0,03-0,04%. В выдыхаемом воздухе количество кислорода снижается до 16%, зато углекислого газа становится больше - 4-4.5%. Что же происходит с воздухом в легких?

Вы помните, что альвеолы легких образуют огромную поверхность. Все альвеолы окутаны кровеносными капиллярами, в которые по малому кругу кровообращения поступает венозная кровь из сердца. Стенки альвеол и капилляров очень тонкие. Кровь, которая попадает в легкие, бедна кислородом и насыщена углекислым газом. Воздух в легочных альвеолах, наоборот, богат кислородом, а углекислого газа в нем значительно меньше. Поэтому в соответствии с законами осмоса и диффузии кислород из легочных альвеол устремляется в кровь, где соединяется с гемоглобином эритроцитов. Кровь приобретает алую окраску. Углекислый газ из крови, где он содержится в избытке, проникает в легочные альвеолы. Из венозной крови в легочные альвеолы выделяется также вода, которая в виде пара при выдохе удаляется из легких.

Газообмен в тканях. В органах нашего тела постоянно происходят окислительные процессы, на которые расходуется кислород. Поэтому концентрация кислорода в артериальной крови, которая поступает в ткани по сосудам большого круга кровообращения, больше, чем в тканевой жидкости. В результате кислород свободно переходит из крови в тканевую жидкость и в ткани. Углекислый газ, который образуется в ходе многочисленных химических превращений, наоборот, переходит из тканей в тканевую жидкость, а из нее в кровь. Таким образом кровь насыщается углекислым газом.

Дыхательные движения. Газообмен в организме возможен только при условии постоянной смены воздуха в легких. Поэтому дыхание происходит постоянно. Вдохнув первый раз во время рождения, человек дышит всю жизнь. Дыхательный цикл складывается из вдоха и выдоха, которые ритмично следуют один за другим. В легких нет мышц, которые могли бы попеременно сжимать и расширять их. Легкие растягиваются пассивно, следуя за движениями стенок грудной полости. Дыхательные движения совершаются с помощью дыхательных мышц. В выдохе и вдохе участвуют две группы мышц. Основные дыхательные мышцы - это межреберные мышцы и диафрагма.

При сокращении наружных межреберных мышц ребра поднимаются, а диафрагма, сокращаясь, становится плоской. Поэтому обьем грудной полости увеличивается. Легкие, следуя за стенками грудной полости, расширяются, давление в них уменьшается и становится ниже атмосферного. Поэтому воздух по воздухоносным путям устремляется в легкие - происходит вдох.

При выдохе внутренние межреберные мышцы опускают ребра, диафрагма расслабляется и становится выпуклой. Ребра под действием собственного веса и сокращения внутренних межреберных мышц, а также мышц живота, которые прикрепляются к ребрам, опускаются. Грудная полость возвращается в исходное состояние, легкие уменьшаются в обьеме, давление в них увеличивается, становится чуть выше атмосферного. Поэтому избыток воздуха выходит из легких - происходит выдох.

Так осуществляются спокойный вдох и выдох. В глубоком вдохе принимают участие мышцы шеи, стенок грудной полости и живота.

Дыхательные движения совершаются с определенной частотой: у подростков - 12-18 в минуту, у взрослых - 16-20.

Жизненная емкость легких. Важным показателем развития органов дыхания является жизненная емкость легких. Это наибольший объем воздуха, который может выдохнуть человек после глубокого вдоха. Ее измеряют с помощью специального прибора - спирометра. У взрослого человека жизненная емкость в среднем составляет 3500 мл.

У спортсменов этот показатель обычно на 1000-1500 мл больше, а у пловцов может достигать 6200 мл. При большой жизненной емкости легкие лучше вентилируются, организм получает больше кислорода.

У тучных людей жизненная емкость легких на 10-11% меньше, поэтому у них обмен газов в легких понижен.

Регуляция дыхания. Деятельностью дыхательной системы управляет дыхательный центр. Он расположен в продолговатом мозге. Идущие отсюда импульсы координируют мышечные сокращения при вдохе и выдохе. От этого центра по нервным волокнам через спинной мозг поступают импульсы, которые вызывают в определенном порядке сокращение мышц, ответственных за вдох и выдох.

Возбуждение самого центра зависит от возбуждений, идущих от различных рецепторов, и от химического состава крови. Так, прыжок в холодную воду или обливание холодной водой вызывает глубокий вдох и задержку дыхания. Резко пахучие вещества также могут вызвать задержку дыхания. Это связано с тем, что запах раздражает обонятельные рецепторы в стенках носовой полости. Возбуждение передается в дыхательный центр, и его деятельность затормаживается. Все эти процессы осуществляются реф-лекторно.

Слабое раздражение слизистой оболочки полости носа вызывает чихание, а гортани, трахеи, бронхов- кашель. Это защитная реакция организма. При чихании, кашле инородные частицы, попавшие в дыхательные пути, удаляются из организма.

В дыхательном центре находятся клетки, чувствительные к малейшему изменению содержания углекислого газа в межклеточном веществе. Избыток углекислого газа возбуждает дыхательный центр, это, в свою очередь, вызывает учащение дыхания. Лишний углекислый газ быстро удаляется, и, когда его концентрация возвращается к норме, частота дыхания снижается.

Как вы видите, регуляция дыхания происходит рефлекторно, но под контролем коры полушарий большого мозга. Это легко доказать; ведь каждый из нас может по собственному желанию изменить частоту дыхательных движений.

Краткая история курения

Один из самых распространенных пороков человека - курение табака - имеет 500-летнюю историю. В Европу листья и семена табака были привезены из Америки моряками экспедиции Христофора Колумба. Сначала табак был объявлен всеисцеляющей лечебной травой. Вот как описывались его чудодейственные свойства в одной испанской книге: «Табак вызывает сон, избавляет от усталости, успокаивает боль, вылечивает головную боль...»

Поэтому нет ничего удивительного в том, что уже в XVI в. табак прочно завладел аристократическими салонами. Особенно популярным стало курение в XVII и XVIII вв. Мужчины, женщины и молодые люди начали курить, нюхать и жевать табак.

Рекомендуемый вначале как лекарственное средство, табак, однако, очень скоро приобрел плохую славу. Борьбу с табакокурением начала испанская королева Изабелла. Ее примеру последовал французский король Людовик XIV, а русский царь Михаил Федорович Романов приказал отрезать нос каждому, кто курит. Однако уже ничто не могло остановить распространение этой «дымящейся отравы». Курение табака превратилось в новую статью дохода для многих торговцев. Приблизительно в середине XVIII в. в Бразилии начали делать папиросы, а в начале XIX в. - производить сигареты.

Так за сравнительно короткое время были созданы все условия для быстрого распространения курения табака. Этот порок постепенно охватил все слои населения. В настоящее время курение - самый распространенный вид наркомании во всем мире.

Состав табачного дыма и его действие на организм

Для тканей легких очень опасно курение. Ведь смола, образующаяся при сгорании табака и бумаги, не может выводиться из легких и в течение многих лет оседает на стенках воздухоносных путей, буквально убивая клетки их слизистой оболочки. Легкие курильщика теряют свой естественный розовый цвет, становятся черными. Такие легкие чаще подвержены различным заболеваниям, в том числе и онкологическим. В настоящее время наука располагает тысячами доказательств, подтверждающих тот факт, что табак содержит губительные для организма человека вещества. Их около 400! Вредные вещества, содержащиеся в табачном дыме, могут быть объединены в четыре группы: ядовитые алкалоиды, раздражающие вещества, ядовитые газы, канцерогенные вещества.

Одним из самых известных веществ является никотин, получивший свое название по имени французского посланника в Лиссабоне Ж. Нико, который во второй половине XVI в. преподнес Марии Медичи эту «всеисцеляющую» травку для лечения мигрени. Никотин содержится в листьях различных растений: табака, индийской конопли, польского хвоща, некоторых плаунов и др. Одной капли чистого никотина (0,05 г) достаточно, чтобы умертвить человека. Никотин из крови матери легко проникает через плаценту в кровеносную систему плода.

В табачных листьях, кроме никотина, содержится еще 11 алкалоидов, важнейшие из которых: норникотин, никотирин, никотеин, никотимин. Все они сходны с никотином по строению и свойствам и поэтому имеют похожие названия.

Печальная статистика раковых заболеваний курильщиков достаточно красноречива. Канцерогенным действием обладают различные ароматические углеводороды, которые содержатся в табачном дыму (например, бензопирен), некоторые содержащиеся в дыму фенолы, а также нитрозамин, гидразин, винилхлорид и др. Из неорганических веществ - это в первую очередь соединения мышьяка и кадмия, радиоактивный полоний, олово и висмут-210.

Из табачного дыма выделен десяток веществ, оказывающих раздражающее действие на слизистую оболочку. Наиболее важным из них является ненасыщенный альдегид пропеналь. Он обладает высокой химической и биологической активностью, вызывая у курильщиков кашель.

В газовой фракции табачного дыма содержится большое число неорганических соединений, обладающих высокой химической и биологической активностью, таких как оксид углерода, сероводород, цианид водорода и др.

  • Когда больной гриппом или другим недугом чихает, микроскопические капельки слюыы и слизи, содержащие бактерии и вирусы, летят на расстояние до 10 м, причем некоторое время эти капельки способны «висеть» в воздухе, заражая окружающих.

Проверьте свои знания

  1. Расскажите, какие процессы происходят в легочных альвеолах.
  2. Каков механизм газообмена в тканях?
  3. Каким образом совершаются дыхательные движения?

Подумайте

  1. Чем отличается легочный газообмен от тканевого?
  2. Что выгоднее для ныряльщика - сделать перед погружением несколько вдохов и выдохов или набрать в легкие как можно больше воздуха?

В альвеолах легких происходит газообмен: кровь насыщается кислородом и выделяет углекислый газ. В тканях происходит обратный процесс. Вентиляция легких происходит благодаря вдоху и выдоху, которые осуществляются при сокращении и расслаблении диафрагмы и межреберных мышц. Деятельностью дыхательной системы руководит нервная система. Изменение концентрации углекислого газа в крови влияет на частоту дыхательных движений.

Кровеносные сосуды представляют собой эластичные упругие трубки, по которым движется кровь. Общая протяжённость всех сосудов человека имеет в длину более 100 тысяч километров, этого достаточно на 2,5 витка вокруг земного экватора. Во время сна и бодрствования, работы и отдыха - каждое мгновение жизни по сосудам силой ритмично сокращающегося сердца движется кровь.

Кровеносная система человека

Циркуляторная система тела человека разделяется на лимфатическую и кровеносную . Главная функция сосудистой (васкулярной) системы - доставка крови ко всем частям организма. Постоянное кровообращение необходимо для газообмена в лёгких, защиты от вредоносных бактерий и вирусов, а также метаболизма. Благодаря кровообращению осуществляются теплообменные процессы, а также гуморальная регуляция внутренних органов. Крупные и мелкие сосуды соединяют все части организма в единый слаженный механизм.

Сосуды присутствуют во всех тканях человеческого организма за одним исключением. Их не бывает в прозрачной ткани радужной оболочки глаза.

Сосуды для транспортировки крови

Циркуляция крови осуществляется по системе сосудов, которые подразделяются на 2 типа: артерии и вены человека. Схему расположения которых можно представить в виде двух взаимосвязанных кругов.

Артерии - это довольно толстые сосуды, имеющие трёхслойное строение. Сверху покрыты фиброзной оболочкой, посередине слой мышечной ткани, а изнутри выстланы чешуйками эпителия. По ним насыщенная кислородом кровь под большим давлением распределяется по всему телу. Главная и толстая артерия в теле называется аорта. По мере отдаления от сердца артерии становятся более тонкими и переходят в артериолы, которые в зависимости от необходимости могут сокращаться или находиться в расслабленном состоянии. Артериальная кровь ярко-красного цвета.

Вены по своему строению сходны с артериями, они тоже имеют трёхслойное строение, но у этих сосудов более тонкие стенки и больший внутренний просвет. По ним кровь возвращается обратно в сердце, для чего венозные сосуды снабжены системой клапанов, пропускающих только в одном направлении. Давление в венах всегда ниже, чем в артериях, и жидкость имеет тёмный оттенок - в этом их особенность.

Капилляры представляют собой разветвлённую сеть мелких сосудов, охватывающую все уголки организма. Строение капилляров очень тонкое, они проницаемы, благодаря чему между кровью и клетками происходит обмен веществ.

Устройство и принцип работы

Жизнедеятельность организма обеспечивает постоянная слаженная работа всех элементов кровеносной системы человека. Строение и функции сердца, кровяных телец, вен и артерий, а также капилляров человека обеспечивают его здоровье и нормальное функционирование всего организма.

Кровь относится к жидкой соединительной ткани. Она состоит из плазмы, в которой перемещаются три вида клеток, а также питательные и минеральные вещества.

Кровь при помощи сердца движется по двум взаимосвязанным кругам кровообращения:

  1. большому (телесному), который несёт по всему телу кровь, обогащённую кислородом;
  2. малому (лёгочному), он проходит через лёгкие, которые обогащают кровь кислородом.

Сердце - главный двигатель кровеносной системы, который работает всю человеческую жизнь. За год этот орган совершает около 36,5 миллиона сокращений и пропускает через себя больше 2 миллионов литров.

Сердце представляет собой мышечный орган, состоящий из четырёх камер:

Правая сторона сердца получает кровь с меньшим содержанием кислорода, которая идёт по венам, выталкивается правым желудочком в лёгочную артерию и направляется в лёгкие для насыщения их кислородом. Из системы капилляров лёгких она попадает в левое предсердие и выталкивается левым желудочком в аорту и дальше по всему телу.

Артериальная кровь заполняет собой систему мелких капилляров, где отдаёт клеткам кислород, питательные вещества и насыщается углекислым газом, после чего становится венозной и отправляется в правое предсердие, откуда вновь направляется в лёгкие. Таким образом, анатомия сети кровеносных сосудов представляет собой замкнутую систему.

Атеросклероз - опасная патология

Существует очень много заболеваний и патологических изменений в строении кровеносной системы человека, например, сужение просвета сосудов . Вследствие нарушений белково-жирового обмена нередко развивается такое серьёзное заболевание, как атеросклероз - сужение в виде бляшек, вызванное отложением холестерина на стенках артериальных сосудов.

Прогрессирующий атеросклероз способен значительно уменьшить внутренний диаметр артерий вплоть до полной закупорки и может привести к ишемической болезни сердца. В тяжёлых случаях неизбежно хирургическое вмешательство - закупоренные сосуды приходится шунтировать. С годами риск заболеть значительно растёт.

Артерии -- кровеносные сосуды, по которым кровь течет от сердца к органам и частям тела. Артерии имеют толстые стенки, состоящие из трех слоев. Наружный слой представлен соединительнотканной оболочкой и называется адвентицией. Средний слой, или медиа, состоит из гладкой мышечной ткани и содержит соединительнотканные эластические волокна. Внутренний слой, или интима, образован эндотелием, под которым находятся подэндотелиальный слой и внутренняя эластическая мембрана. Эластические элементы артериальной стенки образуют единый каркас, работающий как пружина и обусловливающий эластичность артерий. В зависимости от кровоснабжаемых органов и тканей артерии делятся на париетальные (пристеночные), кровоснабжающие стенки тела, и висцеральные (внутренностные), кровоснабжающие внутренние органы. До вступления артерии в орган она называется экстраорганной, войдя в орган -- внутриорганной, или интраорганной.

В зависимости от развития различных слоев стенки выделяют артерии мышечного, эластического или смешанного типа. Артерии мышечного типа имеют хорошо развитую среднюю оболочку, волокна которой располагаются спирально по типу пружины. К таким сосудам относятся мелкие артерии. Артерии смешанного типа в стенках имеют примерно равное количество эластических и мышечных волокон. Это сонная, подключичная и другие артерии среднего диаметра. Артерии эластического типа имеют наружную тонкую и внутреннюю более мощную оболочки. Они представлены аортой и легочным стволом, в которые кровь поступает под большим давлением. Боковые ветви одного ствола или ветви различных стволов могут соединяться друг с другом. Такое соединение артерий до их распадения на капилляры получило название анастомоза, или соустья. Артерии, образующие анастомозы, называются анастомозирующими (их большинство). Артерии, не имеющие анастомозов, называются концевыми (например, в селезенке). Концевые артерии легче закупориваются тромбом и предрасположены к развитию инфаркта.

После рождения ребенка окружность, диаметр, толщина стенок и длина артерий увеличиваются, изменяется также уровень отхождения артериальных ветвей от магистральных сосудов. Разница между диаметром магистральных артерий и их ветвей вначале небольшая, но с возрастом увеличивается. Диаметр магистральных артерий растет быстрее, чем их ветвей. С возрастом увеличивается также окружность артерий, длина их возрастает пропорционально росту тела и конечностей. Уровни отхождения ветвей от магистральных артерий у новорожденных располагаются проксимальнее, а углы, под которыми отходят эти сосуды, у детей больше, чем у взрослых. Меняется также радиус кривизны дуг, образуемых сосудами. Пропорционально росту тела и конечностей и увеличению длины артерий меняется топография этих сосудов. По мере увеличения возраста меняется тип ветвления артерий: в основном с рассыпного на магистральный. Формирование, рост, тканевая дифференцировка сосудов внутриорганного кровеносного русла в различных органах человека протекает в процессе онтогенеза неравномерно. Стенка артериального отдела внутриорганных сосудов, в отличие от венозного, к моменту рождения уже имеет три оболочки. После рождения увеличивается длина и диаметр внутриорганных сосудов, число анастомозов, число сосудов на единицу объема органа. Особенно интенсивно это происходит до года и от 8 до 12 лет.

Наиболее мелкие разветвления артерий называются артериолами. Они отличаются от артерий наличием лишь одного слоя мышечных клеток, благодаря которому осуществляют регулирующую функцию. Артериола продолжается в прекапилляр, в котором мышечные клетки разрознены и не составляют сплошного слоя. Прекапилляр не сопровождается венулой. От него отходят многочисленные капилляры.

В местах перехода одного вида сосудов в другие концентрируются гладкомышечные клетки, образующие сфинктеры, которые регулируют кровоток на микроциркуляторном уровне.

Капилляры -- мельчайшие кровеносные сосуды с просветом от 2 до 20 мкм. Длина каждого капилляра не превышает 0,3 мм. Их количество очень велико: так, на 1 мм2 ткани приходится несколько сотен капилляров. Общий просвет капилляров всего тела в 500 раз больше просвета аорты. В покоящемся состоянии органа большая часть капилляров не функционирует и ток крови в них прекращается. Стенка капилляра состоит из одного слоя эндотелиальных клеток. Поверхность клеток, обращенная в просвет капилляра, неровная, на ней образуются складки. Это способствует фагоцитозу и пиноцитозу. Различают питающие и специфические капилляры. Питающие капилляры обеспечивают орган питательными веществами, кислородом и выносят из тканей продукты обмена. Специфические капилляры способствуют выполнению органом его функции (газообмен в легких, выделение в почках). Сливаясь, капилляры переходят в посткапилляры, которые по строению аналогичны прекапилляру. Посткапилляры сливаются в венулы с просветом 4050 мкм.

Вены -- кровеносные сосуды, которые несут кровь из органов и тканей к сердцу. Они, так же как и артерии, имеют стенки, состоящие из трех слоев, но содержат меньше эластических и мышечных волокон, поэтому менее упруги и легко спадаются. Вены имеют клапаны, которые открываются по току крови, что способствует движению крови в одном направлении. Клапаны представляют собой полулунные складки внутренней оболочки и обычно располагаются попарно у слияния двух вен. В венах нижней конечности кровь движется против действия силы тяжести, мышечная оболочка развита лучше и клапаны встречаются чаще. Они отсутствуют в полых венах (отсюда и их название), венах почти всех внутренних органов, мозга, головы, шеи и в мелких венах.

Артерии и вены обычно идут вместе, причем крупные артерии снабжаются одной веной, а средние и мелкие -- двумя венамиспутницами, многократно анастомозирующими между собой. В результате общая емкость вен в 10--20 раз превышает объем артерий. Поверхностные вены, идущие в подкожной клетчатке, не сопровождают артерии. Вены вместе с главными артериями и нервными стволами образуют сосудистонервные пучки. По функции кровеносные сосуды делятся на присердечные, магистральные и органные. Присердечные начинают и заканчивают оба круга кровообращения. Это аорта, легочный ствол, полые и легочные вены. Магистральные сосуды служат для распределения крови по организму. Это крупные экстраорганные артерии и вены. Органные сосуды обеспечивают обменные реакции между кровью и органами.

К моменту рождения сосуды развиты хорошо, причем артерии больше, чем вены. Строение сосудов наиболее интенсивно изменяется в возрасте от 1 годадо 3 лет. В это время усиленно развивается средняя оболочка, окончательно форма и размеры кровеносных сосудов складываются к 1418 годам. Начиная с 4045 лет внутренняя оболочка утолщается, в ней откладываются жироподобные вещества, появляются атеросклеротические бляшки. В это время стенки артерий склерозируются, просвет сосудов уменьшается.

Общая характеристика органов дыхания. Дыхание плода. Легочная вентиляция у детей разного возраста. Возрастные изменения глубины, частоты дыхания, жизненной емкости легких, регуляция дыхания.

Органы дыхания обеспечивают поступление в организм кислорода, необходимого для процессов окисления, и выделение углекислого газа, являющегося конечным продуктом обменных процессов. Потребность в кислороде для человека важнее, чем потребность в пище или воде. Без кислорода человек погибает в течение 57 мин, в то время как без воды он может прожить до 710 дней, а без пищи -- до 60 дней. Прекращение дыхания ведет к гибели прежде всего нервных, а затем и других клеток. В дыхании выделяют три основных процесса: обмен газов между окружающей средой и легкими (внешнее дыхание), обмен газов в легких между альвеолярным воздухом и кровью, обмен газов между кровью и межтканевой жидкостью (тканевое дыхание).

Фазы вдоха и выдоха составляют дыхательный цикл. Изменение объема грудной полости совершается за счет сокращений инспираторных и экспираторных мышц. Основной инспираторной мышцей является диафрагма. Во время спокойного вдоха купол диафрагмы опускается на 1,5 см. К инспираторным мышцам относятся также наружные косые межреберные и межхрящевые, при сокращении которых ребра поднимаются, грудина смещается вперед, боковые части ребер отходят в стороны. При очень глубоком дыхании в акте вдоха участвует ряд вспомогательных мышц: грудиноключичнососцевидные, лестничные, большая и малая грудные, передняя зубчатая, а также мышцы, разгибающие позвоночник и фиксирующие плечевой пояс (трапециевидная, ромбовидная, поднимающая лопатку).

При активном выдохе сокращаются мышцы брюшной стенки (косые, поперечная и прямая), в результате уменьшается объем брюшной полости и повышается давление в ней, оно передается на диафрагму и поднимает ее. Вследствие сокращения внутренних косых и межреберных мышц опускаются и сближаются ребра. К вспомогательным экспираторным мышцам относятся мышцы, сгибающие позвоночник.

Дыхательные пути образуются носовой полостью, носо и ротоглоткой, гортанью, трахеей, бронхами различных калибров, включая бронхиолы.

Кровеносные сосуды у позвоночных образуют густую замкнутую сеть. Стенка сосуда состоит из трех слоев:

  1. Внутренний слой очень тонкий, он образован одним рядом эндотелиальных клеток, которые придают гладкость внутренней поверхности сосудов.
  2. Средний слой самый толстый, в нем много мышечных, эластических и коллагеновых волокон. Этот слой обеспечивает прочность сосудов.
  3. Наружный слой соединительно-тканный, он отделяет сосуды от окружающих тканей.

Соответственно кругам кровобращения кровеносные сосуды можно разделить на:

  • Артерии большого круга кровообращения [показать]
    • Самый крупный артериальный сосуд в теле человека - аорта, которая выходит из левого желудочка и дает начало всем артериям, образующим большой круг кровообращения. Аорта делится на восходящую аорту, дугу аорты и нисходящую аорту. Дуга аорты в свою очередь разделяется на грудную аорту и брюшную аорту.
    • Артерии шеи и головы

      Общая сонная артерия (правая и левая), которая на уровне верхнего края щитовидного хряща делится на наружную сонную артерию и внутреннюю сонную артерию.

      • Наружная сонная артерия дает ряд ветвей, которые по своим топографическим особенностям делятся на четыре группы - переднюю, заднюю, медиальную и группу концевых ветвей, кровоснабжающих щитовидную железу, мышцы подъязычной кости, грудино-ключично-сосцевидную мышцу, мышцы слизистой гортани, надгортанника, язык, небо, миндалины, лицо, губы, ухо (наружное и внутреннее), нос, затылок, твердую мозговую оболочку.
      • Внутрення сонная артерия по своему ходу явлется продолжением обей сонной артерии. В ней различают шейную и внутричерепную (головную) части. В шейной части внутренняя сонная артерия ветвей обычно не дает.В полости черепа от внутренней сонной артерии отходят ветви к большому мозгу и глазничная артерия, кровоснабжающие головной мозг и глаз.

      Подключичная артерия - парная, начинаются в переднем средостении: правая - от плече-головного ствола, левая - непосредственно от дуги аорты (поэтому левая артерия длиннее правой). В подключичной артерии топографически различают три отдела, каждый из которых дает свои ветви:

      • Ветви первого отдела - позвоночная артерия, внутренняя грудная артерия, щито-шейный ствол, - каждый из которых дает свои веточки, кровоснабжающие головной мозг, мозжечок мышцы шеи, щитовидную железу и пр.
      • Ветви второго отдела - здесь от подключичной артерии отходит только одна ветвь - реберно-шейный ствол, который дает начало артериям, кровоснабжающим глубокие мышцы затылка, спинной мозг, мышцы спины, межреберные промежутки
      • Ветви третьего отдела - здесь также отходит одна ветвь - поперечная артерия шеи, кровоснабжающая часть мышц спины
    • Артерии верхней конечности, предплечья и кисти
    • Артерии туловища
    • Артерии таза
    • Артерии нижней конечности
  • Вены большого круга кровообращения [показать]
    • Система верхней полой вены
      • Вены туловища
      • Вены головы и шеи
      • Вены верхней конечности
    • Система нижней полой вены
      • Вены туловища
    • Вены таза
      • Вены нижних конечностей
  • Сосуды малого круга кровообращения [показать]

    К сосудам малого, легочного, круга кровообращения относятся:

    • легочной ствол
    • легочные вены в количестве двух пар, правой и левой

    Легочной ствол делится на две ветви: правую легочную артерию и левую легочную артерию, каждая их которых направляется в ворота соответствующего легкого, принося к нему венозную кровь из правого желудочка.

    Правая артерия несколько длиннее и шире левой. Войдя в корень легкого она делится на три основные ветви, каждая из которых вступает в ворота соответствующей доли правого легкого.

    Левая артерия в корне легкого делиться на две основные ветви, вступающие в ворота соответствующей доли левого легкого.

    От легочного ствола к дуге аорты идет фиброзно-мышечный тяж (артериальная связка). В периоде внутриутробного развития эта связка представляет собой артериальный проток, по которому большая часть крови из легочного ствола плода переходит в аорту. После рождения этот проток облитерируется и превращается в указанную связку.

    Легочные вены , правые и левые, - выносят артериальную кровь из легких. Они выходят из ворот легких, обычно по две из каждого легкого (хотя число легочных вен может достигать 3-5 и даже более), правые вены длиннее левых, и впадают в левое предсердие.

Соответственно особенностям строения и функциям кровеносные сосуды можно разделить на:

Группы сосудов по особенностям строения стенки

Артерии

Кровеносные сосуды, идущие от сердца к органам и несущие к ним кровь, называются артериями (аеr - воздух, tereo - содержу; на трупах артерии пусты, отчего в старину считали их воздухоносными трубками). По артериям кровь от сердца течет под большим давлением, поэтому артерии имеют толстые упругие стенки.

По строению стенок артерии делятся на две группы:

  • Артерии эластического типа - ближайшие к сердцу артерии (аорта и ее крупные ветви) выполняют главным образом функцию проведения крови. В них на первый план выступает противодействие растяжению массой крови, которая выбрасывается сердечным толчком. Поэтому в стенке их относительно больше развиты структуры механического характера, т.е. эластические волокна и мембраны. Эластические элементы артериальной стенки образуют единый эластический каркас, работающий, как пружина, и обусловливающий эластичность артерий.

    Эластические волокна придают артериям упругие свойства, которые обусловливают непрерывный ток крови по всей сосудистой системе. Левый желудочек во время сокращения выталкивает под высоким давлением больше крови, чем ее оттекает из аорты в артерии. При этом стенки аорты растягиваются, и она вмещает всю кровь, выброшенную желудочком. Когда желудочек расслабляется, давление в аорте падает, а ее стенки благодаря упругим свойствам немного спадаются. Избыток крови, содержавшийся в растянутой аорте, проталкивается из аорты в артерии, хотя из сердца в это время кровь не поступает. Так, периодическое выталкивание крови желудочком благодаря упругости артерий превращается в непрерывное движение крови по сосудам.

    Упругость артерий обеспечивает еще одно физиологическое явление. Известно, что в любой упругой системе механический толчок вызывает колебания, распространяющиеся по всей системе. В кровеносной системе таким толчком служит удар крови, выбрасываемой сердцем, о стенки аорты. Возникающие при этом колебания распространяются по стенкам аорты и артерий со скоростью 5-10 м/с, которая значительно превышает скорость движения крови в сосудах. На участках тела, где крупные артерии подходят близко к коже, - на запястьи висках, шее - пальцами можно ощутить колебания стенок артерий. Это артериальный пульс.

  • Артерии мышечного типа - средние и мелкие артерии, в которых инерция сердечного толчка ослабевает и требуется собственное сокращение сосудистой стенки для дальнейшего продвижения крови, которое обеспечивается относительно большим развитием в сосудистой стенке гладкой мышечной ткани. Гладкомышечные волокна, сокращаясь и расслабляясь, суживают и расширяют артерии и таким образом регулируют ток крови в них.

Отдельные артерии снабжают кровью целые органы или их части. По отношению к органу различают артерии, идущие вне органа, до вступления в него - экстраорганные артерии - и их продолжения, разветвляющиеся внутри него - внутриорганные или интраорганные артерии. Боковые ветви одного и того же ствола или ветви различных стволов могут соединяться друг с другом. Такое соединение сосудов до распадения их на капилляры носит название анастомоза или соустья. Артерии, образующие анастомозы, называются анастомозирующими (их большинство). Артерии, не имеющие анастомозов с соседними стволами до перехода их в капилляры (см. ниже), называются конечными артериями (например, в селезенке). Конечные, или концевые, артерии легче закупориваются кровяной пробкой (тромбом) и предрасполагают к образованию инфаркта (местного омертвения органа).

Последние разветвления артерий становятся тонкими и мелкими и потому выделяются под названием артериол. Они непосредственно переходят в капилляры, причем благодаря наличию в них сократительных элементов выполняют регулирующую функцию.

Артериола отличается от артерии тем, что стенка ее имеет лишь один слой гладкой мускулатуры, благодаря которому она осуществляет регулирующую функцию. Артериола продолжается непосредственно в прекапилляр, в котором мышечные клетки разрозненны и не составляют сплошного слоя. Прекапилляр отличается от артериолы еще и тем, что он не сопровождается венулой, как это наблюдается в отношении артериолы. От прекапилляра отходят многочисленные капилляры.

Капилляры - самые мелкие кровеносные сосуды, расположенные во всех тканях между артериями и венами; их диаметр - 5-10 мкм. Основная функция капилляров - обеспечение обмена газами и питательным веществом между кровью и тканями. В связи с этим стенка капилляров образована только одним слоем плоских эндотелиальных клеток, проницаемым для растворенных в жидкости веществ и газов. Через нее кислород и питательные вещества легко проникают из крови к тканям, а углекислый газ и продукты жизнедеятельности в обратном направлении.

В каждый данный момент функционирует только часть капилляров (открытые капилляры), а другая остается в резерве (закрытые капилляры). На площади 1 мм 2 поперечного сечения скелетной мышцы в покое насчитывается 100-300 открытых капилляров. В работающей мышце, где потребность в кислороде и питательных веществах возрастает, количество открытых капилляров достигает 2 тыс. на 1 мм 2 .

Широко анастомозируя между собой, капилляры образуют сети (капиллярные сети), которые включают 5 звеньев:

  1. артериолы как наиболее дистальные звенья артериальной системы;
  2. прекапилляры, являющиеся промежуточным звеном между артериолами и истинными капиллярами;
  3. капилляры;
  4. посткапилляры
  5. венулы, являющиеся корнями вен и переходящие в вены

Все эти звенья снабжены механизмами, обеспечивающими проницаемость сосудистой стенки и регуляцию кровотока на микроскопическом уровне. Микроциркуляция крови регулируется работой мускулатуры артерий и артериол, а также особых мышечных сфинктеров, которые находятся в пре- и посткапиллярах. Одни сосуды микроциркуляторного русла (артериолы) выполняют преимущественно распределительную функцию, а остальные (прекапилляры, капилляры, посткапилляры и венулы) - преимущественно трофическую (обменную).

Вены

В отличие от артерий вены (лат. vena, греч. phlebs; отсюда флебит - воспаление вен) не разносят, а собирают кровь из органов и несут ее в противоположном по отношению к артериям направлении: от органов к сердцу. Стенки вен устроены по тому же плану, что и стенки артерий, однако давление крови в венах очень низкое, поэтому стенки вен тонкие, в них меньше эластической и мышечной ткани, благодаря чему пустые вены спадаются. Вены широко анастомозируют между собой, образуя венозные сплетения. Сливаясь друг с другом, мелкие вены образуют крупные венозные стволы - вены, впадающие в сердце.

Движение крови по венам осуществляется благодаря присасывающему действию сердца и грудной полости, в которой во время вдоха создается отрицательное давление благодаря разности давления в полостях, сокращению поперечнополосатой и гладкой мускулатуры органов и другим факторам. Имеет значение и сокращение мышечной оболочки вен, которая в венах нижней половины тела, где условия для венозного оттока труднее, развита сильнее, нежели в венах верхней части тела.

Обратному току венозной крови препятствуют особые приспособления вен - клапаны, составляющие особенности венозной стенки. Венозные клапаны состоят из складки эндотелия, содержащей слой соединительной ткани. Они обращены свободным краем в сторону сердца и поэтому не препятствуют току крови в этом направлении, но удерживают ее от возвращения обратно.

Артерии и вены обычно идут вместе, причем мелкие и средние артерии сопровождаются двумя венами, а крупные - одной. Из этого правила, кроме некоторых глубоких вен, составляют исключение главным образом поверхностные вены, идущие в подкожной клетчатке и почти никогда не сопровождающие артерий.

Стенки кровеносных сосудов имеют собственные обслуживающие их тонкие артерии и вены, vasa vasorum. Они отходят или от того же ствола, стенку которого снабжают кровью, или от соседнего и проходят в соединительнотканном слое, окружающем кровеносные сосуды и более или менее тесно связанном с адвентицией их; этот слой носит название сосудистого влагалища, vagina vasorum.

В стенке артерий и вен заложены многочисленные нервные окончания (рецепторы и эффекторы), связанные с центральной нервной системой, благодаря чему по механизму рефлексов осуществляется нервная регуляция кровообращения. Кровеносные сосуды представляют обширные рефлексогенные зоны, играющие большую роль в нейрогуморальной регуляции обмена веществ.

Функциональные группы сосудов

Все сосуды в зависимости от выполняемой ими функции можно подразделить на шесть групп:

  1. амортизирующие сосуды (сосуды эластического типа)
  2. резистивные сосуды
  3. сосуды-сфинктеры
  4. обменные сосуды
  5. емкостные сосуды
  6. шунтирующие сосуды

Амортизирующие сосуды. К этим сосудам относятся артерии эластического типа с относительно большим содержанием эластических волокон, такие, как аорта, легочная артерия и прилегающие к ним участки больших артерий. Выраженные эластические свойства таких сосудов, в частности аорты, обусловливают амортизирующий эффект, или так называемый Windkessel-эффект (Windkessel по-немецки означает "компрессионная камера"). Этот эффект заключается в амортизации (сглаживании) периодических систолических волн кровотока.

Windkessel-эффект для выравнивания движения жидкости можно пояснить следующим опытом: из бака пускают воду прерывистой струей одновременно по двум трубкам - резиновой и стеклянной, которые заканчиваются тонкими капиллярами. При этом из стеклянной трубки вода вытекает толчками, тогда как из резиновой она течет равномерно и в большем количестве, чем из стеклянной. Способность эластической трубки выравнивать и увеличивать ток жидкости зависит от того, что в тот момент, когда ее стенки растягиваются порцией жидкости, возникает энергия эластического напряжения трубки, т. е. происходит переход части кинетической энергии давления жидкости в потенциальную энергию эластического напряжения.

В сердечно-сосудистой системе часть кинетической энергии, развиваемой сердцем во время систолы, затрачивается на растяжение аорты и отходящих от нее крупных артерий. Последние образуют эластическую, или компрессионную, камеру, в которую поступает значительный объем крови, растягивающий ее; при этом кинетическая энергия, развитая сердцем, переходит в энергию эластического напряжения артериальных стенок. Когда же систола заканчивается, то это созданное сердцем эластическое напряжение сосудистых стенок поддерживает кровоток во время диастолы.

В более дистально расположенных артериях больше гладкомышечных волокон, поэтому их относят к артериям мышечного типа. Артерии одного типа плавно переходят в сосуды другого типа. Очевидно, в крупных артериях гладкие мышцы влияют главным образом на эластические свойства сосуда, фактически не изменяя его просвет и, следовательно, гидродинамическое сопротивление.

Резистивные сосуды. К резистивным сосудам относят концевые артерии, артериолы и в меньшей степени капилляры и венулы. Именно концевые артерии и артериолы, т. е. прекапиллярные сосуды, имеющие относительно малый просвет и толстые стенки с развитой гладкой мускулатурой, оказывают наибольшее сопротивление кровотоку. Изменения степени сокращения мышечных волокон этих сосудов приводят к отчетливым изменениям их диаметра и, следовательно, общей площади поперечного сечения (особенно когда речь идет о многочисленных артериолах). Если учесть, что гидродинамическое сопротивление в значительной степени зависит от площади поперечного сечения, то неудивительно, что именно сокращения гладких мышц прекапиллярных сосудов служат основным механизмом регуляции объемной скорости кровотока в различных сосудистых областях, а также распределения сердечного выброса (системного дебита крови) по разным органам.

Сопротивление посткапиллярного русла зависит от состояния венул и вен. Соотношение между прекапиллярным и посткапиллярным сопротивлением имеет большое значение для гидростатического давления в капиллярах и, следовательно, для фильтрации и реабсорбции.

Сосуды-сфинктеры. От сужения или расширения сфинктеров - последних отделов прекапиллярных артериол - зависит число функционирующих капилляров, т. е. площадь обменной поверхности капилляров (см. рис.).

Обменные сосуды. К этим сосудам относятся капилляры. Именно в них происходят такие важнейшие процессы, как диффузия и фильтрация. Капилляры не способны к сокращениям; диаметр их изменяется пассивно вслед за колебаниями давления в пре- и посткапиллярных резистивных сосудах и сосудах-сфинктерах. Диффузия и фильтрация происходят также в венулах, которые следует поэтому относить к обменным сосудам.

Емкостные сосуды. Емкостные сосуды - это главным образом вены. Благодаря своей высокой растяжимости вены способны вмещать или выбрасывать большие объемы крови без существенного влияния на другие параметры кровотока. В связи с этим они могут играть роль резервуаров крови.

Некоторые вены при низком внутрисосудистом давлении уплощены (т. е. имеют овальный просвет) и поэтому могут вмещать некоторый дополнительный объем, не растягиваясь, а лишь приобретая более цилиндрическую форму.

Некоторые вены отличаются особенно высокой емкостью как резервуары крови, что связано с их анатомическим строением. К таким венам относятся прежде всего 1) вены печени; 2) крупные вены чревной области; 3) вены подсосочкового сплетения кожи. Вместе эти вены могут удерживать более 1000 мл крови, которая выбрасывается при необходимости. Кратковременное депонирование и выброс достаточно больших количеств крови могут осуществляться также легочными венами, соединенными с системным кровообращением параллельно. При этом изменяется венозный возврат к правому сердцу и/или выброс левого сердца [показать]

Внутригрудные сосуды как депо крови

В связи с большой растяжимостью легочных сосудов объем циркулирующей в них крови может временно увеличиваться или уменьшаться, причем эти колебания могут достигать 50% среднего общего объема, равного 440 мл (артерии-130 мл, вены - 200 мл, капилляры - 110 мл). Трансмуральное давление в сосудах легких и их растяжимость при этом меняются незначительно.

Объем крови в малом круге кровообращения вместе с конечнодиастолическим объемом левого желудочка сердца составляет так называемый центральный резерв крови (600-650 мл) - быстромобилизуемое депо.

Так, если необходимо в течение короткого времени увеличить выброс левого желудочка, то из этого депо может поступать около 300 мл крови. В результате равновесие между выбросами левого и правого желудочков будет поддерживаться до тех пор, пока не включится другой механизм поддержания этого равновесия - увеличение венозного возврата.

У человека в отличие от животных нет истинного депо, в котором кровь могла бы задерживаться в специальных образованиях и по мере необходимости выбрасываться (примером такого депо может служить селезенка собаки).

В замкнутой сосудистой системе изменения емкости какого-либо отдела обязательно сопровождаются перераспределением объема крови. Поэтому изменения емкости вен, наступающие при сокращениях гладких мышц, влияют на распределение крови во всей кровеносной системе и тем самым прямо или косвенно на общую функцию кровообращения.

Шунтирующие сосуды - это артериовенозные анастомозы, присутствующие в некоторых тканях. Когда эти сосуды открыты, кровоток через капилляры либо уменьшается, либо полностью прекращается (см. рис. выше).

Соответственно функции и строению различных отделов и особенностям иннервации все кровеносные сосуды в последнее время стали делить на 3 группы:

  1. присердечные сосуды, начинающие и заканчивающие оба круга кровообращения, - аорта и легочный ствол (т. е. артерии эластичного типа), полые и легочные вены;
  2. магистральные сосуды, служащие для распределения крови по организму. Это - крупные и средние экстраорганные артерии мышечного типа и экстраорганные вены;
  3. органные сосуды, обеспечивающие обменные реакции между кровью и паренхимой органов. Это - внутриорганные артерии и вены, а также капилляры


Рассказать друзьям