Самое энергоемкое органическое питательное вещество. Основные питательные вещества Питательные вещества - углеводы

💖 Нравится? Поделись с друзьями ссылкой

Пищевые вещества и их значение

Организм человека состоит из белков (19,6 %), жиров (14,7 %), углеводов (1 %), минеральных веществ (4,9 %), воды (58,8 %). Он постоянно расходует эти вещества на образование энергии, необхо­димой для функционирования внутренних органов, поддержания тепла и осуществления всех жизненных процессов, в том числе физичес­кой и умственной работы. Одновременно происходят восстановление и создание клеток и тканей, из которых построен организм человека, восполнение расхо­дуемой энергии за счет веществ, поступающих с пищей. К таким веществам относят белки, жиры, углеводы, минеральные вещества, витамины, воду и др., их называют пищевыми. Следовательно, пища для организма является источником энергии и пластических (строи­тельных) материалов.

Белки

Это сложные органические соединения из аминокислот, в со­став которых входят углерод (50-55 %), водород (6-7 %), кисло­род (19-24 %), азот (15-19 %), а также могут входить фосфор, сера, железо и другие элементы.

Белки - наиболее важные биологические вещества живых орга­низмов. Они служат основным пластическим материалом, из которо­го строятся клетки, ткани и органы тела человека. Белки составляют основу гормонов, ферментов, антител и других образований, вы­полняющих сложные функции в жизни человека (пищеварение, рост, размножение, иммунитет и др.), способствуют нормальному обмену в организме витаминов и минеральных солей. Белки участвуют в образовании энергии, особенно в период больших энергетических затрат или при недостаточном количестве в питании углеводов и жиров, покрывая 12 % от всей потребности организма в энергии. Энергетическая ценность 1 г белка составляет 4 ккал. При недостатке белков в организме возникают серьезные нару­шения: замедление роста и развития детей, изменения в печени взрос­лых, деятельности желез внутренней секреции, состава крови, ос­лабление умственной деятельности, снижение работоспособности и сопротивляемости к инфекционным заболеваниям. Белок в организме человека образуется беспрерывно из амино­кислот, поступающих в клетки в результате переваривания белка пищи. Для синтеза белка человека необходим белок пищи в опреде­ленном количестве и определенного аминокислотного состава. В на­стоящее время известно более 80 аминокислот, из которых 22 наибо­лее распространены в пищевых продуктах. Аминокислоты по биоло­гической ценности делят на незаменимые и заменимые.

Незаменимых аминокислот восемь - лизин, триптофан, метио­нин, лейцин, изолейцин, валин, треонин, фенилаланин; для детей нужен также гистидин. Эти аминокислоты в организме не синтезиру­ются и должны обязательно поступать с пищей в определенном со­отношении, т.е. сбалансированными. Заменимые аминокислоты (аргинин, цистин, тирозин, аланин, серин и др.) могут синтезироваться в организме человека из других аминокислот.

Биологическая ценность белка зависит от содержания и сбаланси­рованности незаменимых аминокислот. Чем больше в нем незамени­мых аминокислот, тем он ценней. Белок, содержащий все восемь незаменимых аминокислот назы­вают полноценным. Источником полноценных белков являются все животные продукты: молочные, мясо, птица, рыба, яйца.

Суточная норма потребления белка для людей трудоспособного возраста составляет всего 58-117 г в зависимости от пола, возраста и характера труда человека. Белки животного происхождения долж­ны составлять 55 % суточной нормы.

О состоянии белкового обмена в организме судят по азотистому балансу, т.е. по равновесию между количеством азота вводимого с белками пищи и выводимого из организма. У здоровых взрослых людей, правильно питающихся, наблюдает­ся азотистое равновесие. У растущих детей, молодых людей, у беременных и кормящих женщин отмечается положительный азотистый баланс, т.к. белок пищи идет на образование новых клеток и введение азота с белковой пи­щей преобладает над выведением его из организма. При голодании, болезнях, когда белков пищи недостаточно, на­блюдается отрицательный баланс, т.е. азота выводится больше, чем вводится, недостаток белков пищи ведет к распаду белков органов и тканей.

Жиры

Это сложные органические соединения, состоящие из глицерина и жирных кислот, в которых содержатся углерод, водород, кислород. Жиры относят к основным пищевым веществам, они являются обя­зательным компонентом в сбалансированном питании.

Физиологическое значение жира многообразно. Жир входит в со­став клеток и тканей как пластический материал, используется орга­низмом как источник энергии (30 % всей потребности

организма в энергии). Энергетическая ценность 1 г жира составляет 9 ккал. Жиры снабжают организм витаминами А и D, биологически активными веществами (фосфолипиды, токоферолы, стерины), придают пище сочность, вкус, повышают ее питательность, вызывая у человека чувство насыщения.

Остаток поступившего жира после покрытия потребности орга­низма откладывается в подкожной клетчатке в виде подкожно-жирового слоя и в соединительной ткани, окружающей внутренние органы. Как подкожный, так и внутренний жир являются основ­ным резервом энергии (запасной жир) и используется организмом при усиленной физической работе. Подкожно-жировой слой пре­дохраняет организм от охлаждения, а внутренний жир защищает внутренние органы от ударов, сотрясений и смещений. При недо­статке в питании жиров наблюдается ряд нарушений со стороны центральной нервной системы, ослабевают защитные силы орга­низма, снижается синтез белка, повышается проницаемость капиляров, замедляется рост и т.д.

Жир, свойственный человеку, образуется из глицерина и жирных кислот, поступивших в лимфу и кровь из кишечника в результате переваривания жиров пищи. Для синтеза этого жира необходимы пищевые жиры, содержащие разнообразные жирные кислоты, кото­рых в настоящее время известно 60. Жирные кислоты делят на пре­дельные или насыщенные (т.е. до предела насыщенные водородом) и непредельные или ненасыщенные.

Насыщенные жирные кислоты (стеариновая, пальмитиновая, кап­роновая, масляная и др.) обладают невысокими биологическими свой­ствами, легко синтезируются в организме, отрицательно влияют на жировой обмен, функцию печени, способствуют развитию атероск­лероза, так как повышают содержание холестерина в крови. Эти жир­ные кислоты в большом количестве содержатся в животных жирах (бараньем, говяжьем) и в некоторых растительных маслах (кокосо­вом), обусловливая их высокую температуру плавления (40-50°С) и сравнительно низкую усвояемость (86-88%).

Ненасыщенные жирные кислоты (олеиновая, линолевая, линоленовая, арахидоновая и др.) представляют собой биологически активные соединения, способные к окислению и присоединению водорода и других веществ. Наиболее активны из них: линолевая, линоленовая и арахидоновая, называемые полиненасыщенными жирными кислотами. По своим биологическим свойствам их относят к жизненно важным веществам и называют витамином F. Они принимают активное учас­тие в жировом и холестериновом обмене, повышают эластичность и снижают проницаемость кровеносных сосудов, предупреждают обра­зование тромбов. Полиненасыщенные жирные кислоты в организме человека не синтезируются и должны вводиться с пищевыми жира­ми. Содержатся они в свином жире, подсолнечном и кукурузном масле, жире рыб. Эти жиры имеют низкую температуру плавления и высокую усвояемость (98 %).

Биологическая ценность жира зависит также от содержания в нем различных жирорастворимых витаминов А и D (жир рыбы, сливоч­ное масло), витамина Е (растительные масла) и жироподобных ве­ществ: фосфатидов и стеринов.

Фосфатиды являются наиболее биологически активными веще­ствами. К ним относят лецитин, кефалин и др. Они влияют на про­ницаемость клеточных мембран, на обмен веществ, на секрецию гор­монов, процесс свертывания крови. Фосфатиды содержатся в мясе, желтке яйца, печени, в пищевых жирах, сметане.

Стерины являются составной частью жиров. В растительных жирах они представлены в виде бета-стерола, эргостерола, влияющих на профилактику атеросклероза.

В животных жирах стерины содержатся в виде холестерина, кото­рый обеспечивает нормальное состояние клеток, участвует в образо­вании половых клеток, желчных кислот, витамина D 3 и т.д.

Холестерин, кроме того, образуется в организме человека. При нормальном холестериновом обмене количество поступающего с пи­щей и синтезируемого в организме холестерина равно количеству холестерина распадающегося и выводимого из организма. В пожилом возрасте, а также при перенапряжении нервной системы, избыточ­ном весе, при малоподвижном образе жизни холестериновый обмен нарушается. В этом случае поступающий с пищей холестерин повы­шает его содержание в крови и приводит к изменению кровеносных сосудов и развитию атеросклероза.

Суточная норма потребления жира для трудоспособного населе­нии составляет всего 60-154 г в зависимости от возраста, пола, характера груда и климатических условий местности; из них жиры животного происхождения должны составлять 70 %, а растительно­го - 30 %.

Углеводы

Это органические соединения, состоящие из углерода, водорода и кислорода, синтезирующиеся в растениях из углекислоты и воды под действием солнечной энергии.

Углеводы, обладая способностью окисляться, служат основным ис­точником энергии, используемой в процессе мышечной деятельности человека. Энергетическая ценность 1 г углеводов составляет 4 ккал. Они покрывают 58 % всей потребности организма в энергии. Кроме того, углеводы входят в состав клеток и тканей, содержатся в крови и в виде гликогена (животного крахмала) в печени. В организме углево­дов мало (до 1 % массы тела человека). Поэтому для покрытия энерге­тических затрат они должны поступать с пищей постоянно.

В случае недостатка в питании углеводов при больших физичес­ких нагрузках происходит образование энергии из запасного жира, а затем и белка организма. При избытке углеводов в питании жировой запас пополняется за счет превращения углеводов в жир, что приво­дит к увеличению массы человека. Источником снабжения организма углеводами являются расти­тельные продукты, в которых они представлены в виде моносахари­дов, дисахаридов и полисахаридов.

Моносахариды - самые простые углеводы, сладкие на вкус, растворимые в воде. К ним относят глюкозу, фруктозу и галактозу. Они быстро всасываются из кишечника в кровь и используются организмом как источник энергии, для образования гликогена в печени, для питания тканей мозга, мышц и поддержания необхо­димого уровня сахара в крови.

Дисахариды (сахароза, лактоза и мальтоза) - это углеводы, сладкие на вкус, растворимые в воде, расщепляются в организме человека на две молекулы моносахаридов с образованием из сахаро­зы - глюкозы и фруктозы, из лактозы - глюкозы и галактозы, из мальтозы - двух молекул глюкозы.

Моно- и дисахариды легко усваиваются организмом и быстро покрывают энергетические затраты человека при усиленных физи­ческих нагрузках. Избыточное потребление простых углеводов может привести к повышению содержания сахара в крови, следовательно, к отрицательному действию на функцию поджелудочной железы, к развитию атеросклероза и ожирению.

Полисахариды - это сложные углеводы, состоящие из мно­гих молекул глюкозы, не растворимые в воде, обладают несладким вкусом. К ним относят крахмал, гликоген, клетчатку.

Крахмал в организме человека под действием ферментов пищева­рительных соков расщепляется до глюкозы, постепенно удовлетворяя потребность организма в энергии на длительный период. Благодаря крахмалу многие продукты, содержащие его (хлеб, крупы, макарон­ные изделия, картофель), вызывают у человека чувство насыщения.

Гликоген поступает в организм человека в малых дозах, так как он содержится в небольших количествах в пище животного проис­хождения (печени, мясе).

Клетчатка в организме человека не переваривается из-за отсут­ствия в пищеварительных соках фермента целлюлозы, но, проходя по органам пищеварения, стимулирует перистальтику кишечника, выводит из организма холестерин, создает условия для развития по­лезных бактерий, способствуя тем самым лучшему пищеварению и усвоению пищи. Содержится клетчатка во всех растительных продук­тах (от 0,5 до 3 %).

Пектиновые (углеводоподобные) вещества, попадая в организм человека с овощами, фруктами, стимулируют процесс пищеварения и способствуют выведению из организма вредных веществ. К ним относят протопектин - находится в клеточных мембранах свежих овощей, плодов, придавая им жесткость; пектин - желеобразующее вещество клеточного сока овощей и плодов; пектиновая и пектовая кислоты, придающие кислый вкус плодам и овощам. Пектиновых веществ много в яблоках, сливе, крыжовнике, клюкве.

Суточная норма потребления углеводов для трудоспособного на­селения составляет всего 257-586 г в зависимости от возраста, пола и характера труда.

Витамины

Это низкомолекулярные органические вещества различной хими­ческой природы, выполняющие роль биологических регуляторов жиз­ненных процессов в организме человека.

Витамины участвуют в нормализации обмена веществ, в образо­вании ферментов, гормонов, стимулируют рост, развитие, выздо­ровление организма.

Они имеют большое значение в формировании костной ткани (вит. D), кожного покрова (вит. А), соединительной ткани (вит. С), в раз­витии плода (вит Е), в процессе кроветворения (вит. В |2 , В 9) и т.д.

Впервые витамины были обнаружены в пищевых продуктах в 1880 г. русским ученым Н.И. Луниным. В настоящее время открыто более 30 видов витаминов, каждый из которых имеет химическое название и многие из них - буквенное обозначение латинского алфавита (С - аскорбиновая кислота, В, - тиамин и т.д.). Некоторые витамины в организме не синтезируются и не откла­дываются в запас, поэтому должны обязательно вводиться с пищей (С, В, Р). Часть витаминов может синтезироваться в

организме (В 2 , в 6 , в 9 , РР, К).

Отсутствие витаминов в питании вызывает заболевание под об­щим названием авитаминозы. При недостаточном потреблении вита­минов с пищей возникают гиповитаминозы, которые проявляются в виде раздражительности, бессонницы, слабости, снижения трудо­способности и сопротивляемости к инфекционным заболеваниям. Избыточное потребление витаминов А и D приводит к отравлению организма, называемому гипервитаминозом.

В зависимости от растворимости все витамины делят на: 1) водо­растворимые С, Р, В 1 , В 2 , В 6 , В 9 , РР и др; 2) жирорастворимые - A, D, Е, К; 3) витаминоподобные вещества - U, F, В 4 (холин), В 15 (пангамовая кислота) и др.

Витамин С (аскорбиновая к и с л о та) играет большую роль в окислительно-восстановительных процессах организма, влия­ет на обмен веществ. Недостаток этого витамина снижает сопротив­ляемость организма к различным заболеваниям. Отсутствие его при­водит к заболеванию цингой. Норма потребления в сутки витамина С 70-100 мг. Он содержится во всех растительных продуктах, особенно его много в шиповнике, черной смородине, красном перце, зелени петрушки, укропе.

Витамин Р (биофлавоноид) укрепляет капилляры и сни­жает проницаемость кровеносных сосудоЕ. Он содержится в тех же продуктах, что и витамин С. Суточная норма потребления 35-50 мг.

Витамин В, (тиамин) регулирует деятельность нервной системы, участвует в обмене веществ, особенно углеводном. В случае недостатка этого витамина отмечается расстройство нервной систе­мы. Потребность в витамине В, составляет 1,1-2,1 мг в сутки. Содержится витамин в пище животного и растительного происхождения, особенно в про­дуктах из зерна, в дрожжах, печени, свинине.

Витамин В 2 (рибофлавин) участвует в обмене веществ, влияет на рост, зрение. При недостатке витамина снижается функция желудочной секреции, зрение, ухудшается состояние кожи. Суточная норма потребления 1,3-2,4 мг. Содержится витамин в дрожжах, хле­бе, гречневой крупе, молоке, мясе, рыбе, овощах, фруктах.

Витамин РР (никотиновая к и с л о т а) входит в состав некоторых ферментов, участвует в обмене веществ. Недостаток этого витамина вызывает утомляемость, слабость, раздражительность. При его отсутствии возникает болезнь пеллагра («шершавая кожа»). Норма потребления в сутки 14-28 мг. Содержится витамин РР во многих продуктах растительного и животного происхождения, может синте­зироваться в организме человека из аминокислоты - триптофан.

Витамин В 6 (пиридоксин) участвует в обмене веществ. При недостатке этого витамина в пище отмечаются расстройства не­рвной системы, изменения состояния кожи, сосудов. Норма потреб­ления витамина В 6 составляет 1,8-2 мг в сутки. Он содержится во многих пищевых продуктах. При сбалансированном питании орга­низм получает достаточное количество этого витамина.

Витамин В 9 (фолиевая к и с л о т а) принимает участие в кроветворении и обмене веществ в организме человека. При недо­статке этого витамина развивается малокровие. Норма его потребле­ния 0,2 мг в сутки. Он содержится в листьях салата, шпината, пет­рушки, зеленом луке.

Витамин В 12 (к о б а л а м и н) имеет большое значение в кро­ветворении, обмене веществ. При недостатке этого витамина у лю­дей развивается злокачественное малокровие. Норма его потребле­ния 0,003 мг в сутки. Он содержится только в пище животного происхождения: мясе, печени, молоке, яйцах.

Витамин В 15 (пангамовая кислота) оказывает действие на работу сердечно-сосудистой системы и окислительные процессы в организме. Суточная потребность в витамине 2 мг. Он содержится в дрожжах, печени, рисовых отрубях.

Xолин участвует в обмене белков и жиров в организме. Отсут­ствие холина способствует поражению почек и печени. Норма по­требления его 500 - 1000 мг в сутки. Он содержится в печени, мясе, яйцах, молоке, зерне.

Витамин А (ретинол) способствует росту, развитию ске­лета, влияет на зрение, кожу и слизистую оболочку, повышает со­противляемость организма к инфекционным заболеваниям. При не­достатке его замедляется рост, слабеет зрение, выпадают волосы. Он содержится в продуктах животного происхождения: рыбьем жире, печени, яйцах, молоке, мясе. В растительных продуктах желто-оран- жевого цвета (морковь, помидоры, тыква) есть провитамин А - каротин, который в организме человека превращается в витамин А в присутствии жира пищи.

Витамин D (кальциферол) принимает участие в образо­вании костной ткани, стимулирует

рост. При недостатке этого вита­мина у детей развивается рахит, а у взрослых изменяется костная ткань. Витамин D синтезируется из провитамина, имеющегося в коже, под воздействием ультрафиолетовых лучей. Он содержится в рыбе, говяжьей печени, сливочном масле, молоке, яйцах. Суточная норма потребления витамина 0,0025 мг.

Витамин Е (токоферол) участвует в работе желез внут­ренней секреции, влияет на процессы размножения и нервную сис­тему. Норма потребления 8-10 мг в сутки. Много его в растительных маслах и злаках. Витмамин Е предохраняет растительные жиры от окисления.

Витамин К (филлохинон) действует на свертываемость крови. Суточная потребность его 0,2-0,3 мг. Содержится в зеленых листьях салата, шпината, крапивы. Этот витамин синтезируется в кишечнике человека.

Витамин F (линолевая, линоленовая, арихидоновая жирные кислоты) участвует в жировом и холестериновом обмене. Норма потребления 5-8 г в сутки. Содержится в свином сале, раститель­ном масле.

Витамин U действует на функцию пищеварительных желез, способствует заживлению язв желудка. Содержится в соке свежей капусты.

Сохранение витаминов при кулинарной обработке. Впроцессе хране­ния и кулинарной обработки пищевых продуктов некоторые вита­мины разрушаются, особенно витамин С. Отрицательными фактора­ми, снижающими С-витаминную активность овощей и плодов, яв­ляются: солнечный свет, кислород воздуха, высокая температура, щелочная среда, повышенная влажность воздуха и вода, в которой витамин хорошо растворяется. Ускоряют процесс его разрушения фер­менты, содержащиеся в пищевых продуктах.

Витамин С сильно разрушается в процессе приготовления овощных пюре, котлет, запеканок, тушеных блюд и незначительно - при жарке овощей в жире. Вторичный подогрев овощных блюд и сопри­косновение их с окисляющимися частями технологического оборудо­вания приводят к полному разрушению этого витамина. Витамины группы В при кулинарной обработке продуктов в ос­новном сохраняются. Но следует помнить, что щелочная среда разру­шает эти витамины, в связи с чем нельзя добавлять питьевую соду при варке бобовых.

Для улучшения усвояемости каротина необходимо все овощи оран­жево-красного цвета (морковь, томаты) употреблять с жиром (сме­тана, растительное масло, молочный соус), а в супы и другие блюда вводить их в пассерованном виде.

Витаминизация пищи.

Внастоящее время на предприятиях обще­ственного питания довольно широко используется метод искусствен­ного витаминизирования готовой пищи..

Готовые первые и третьи блюда обогащают аскорбиновой кисло­той перед раздачей пищи. Аскорбиновую кислоту вводят в блюда в виде порошка или таб­леток, предварительно растворенных в небольшом количестве пищи. Обогащение пищи витаминами С, В, РР организуют в столовых для работников некоторых химических предприятий с целью профилак­тики заболеваний, связанных с вредностями производства. Водный раствор этих витаминов объемом 4 мл на одну порцию вводят ежед­невно в готовую пищу.

Пищевая промышленность выпускает витаминизированную про­дукцию: молоко и кефир, обогащенные витамином С; маргарин и детскую муку, обогащенные витаминами А и D, сливочное масло, обогащенное каротином; хлеб, высших сортов муку, обогащенные витаминами В р В 2 , РР и др.

Минеральные вещества

Минеральные, или неорганические, вещества относят к числу не­заменимых, они участвуют в жизненно важных процессах, протека­ющих в организме человека: построении костей, поддержании кис­лотно-щелочного равновесия, состава крови, нормализации водно­солевого обмена, деятельности нервной системы.

В зависимости от содержания в организме минеральные вещества делят на:

    Макроэлементы, находящиеся в значительном количестве (99% от общего количества минеральных веществ, содержащихся в организме): кальций, фосфор, магний, железо, калий, натрий, хлор, сера.

    Микроэлементы, входящие в состав тела человека в малых до­зах: йод, фтор, медь, кобальт, марганец;

    Ультрамикроэлементы, содержащиеся в организме в ничтожных количествах: золото, ртуть, радий и др.

Кальций участвует в построении костей, зубов, необходим для нормальной деятельности нервной

системы, сердца, влияет на рост. Солями кальция богаты молочные продукты, яйца, капуста, свекла. Суточная потребность организма в кальции 0,8 г.

Фосфор участвует в обмене белков и жиров, в формировании костной ткани, влияет на центральную нервную систему. Содержит­ся в молочных продуктах, яйцах, мясе, рыбе, хлебе, бобовых. По­требность в фосфоре составляет 1,2 г в сутки.

Магний влияет на нервную, мышечную и сердечную деятель­ность, обладает сосудорасширяющим свойством. Содержится в хлебе, крупах, бобовых, орехах, какао-порошке. Суточная норма потребле­ния магния 0,4 г.

Железо нормализует состав крови (входя в гемоглобин) и яв­ляется активным участником окислительных процессов в организме. Содержится в печени, почках, яйцах, овсяной и гречневой крупах, ржаном хлебе, яблоках. Суточная потребность в железе 0,018 г.

Калий участвует в водном обмене организма человека, усили­вая выведение жидкости и улучшая работу сердца. Содержится в су­хих фруктах (кураге, урюке, черносливе, изюме), горохе, фасоли, картофеле, мясе, рыбе. В сутки человеку необходимо до 3 г калия.

Натрий вместе с калием регулирует водный обмен, задержи­вая влагу в организме, поддерживает нормальное осмотическое дав­ление в тканях. В пищевых продуктах натрия мало, поэтому его вводят с поваренной солью (NaCl). Суточная потребность 4-6 г натрия или 10-15 г поваренной соли.

Хлор участвует в регуляции осмотического давления в тканях и в образовании соляной кислоты (НС1) в желудке. Поступает хлор споваренной солью. Суточная потребность 5-7г.

Сера входит в состав некоторых аминокислот, витамина В, гор­мона инсулина. Содержится в горохе, овсяной крупе, сыре, яйцах, мясе, рыбе. Суточная потребность 1 г. "

Йод участвует в построении и работе щитовидной железы. Боль­ше всего йода сконцентрировано в морской воде, морской капусте и морской рыбе. Суточная потребность 0,15 мг.

Фтор принимает участие в формировании зубов и костного ске­лета, содержится в питьевой воде. Суточная потребность 0,7-1,2 мг.

Медь и кобальт участвуют в кроветворении. Содержатся в небольших количествах в пище животного и растительного проис­хождения.

Общая суточная потребность организма взрослого человека в ми­неральных веществах составляет 20-25 г, при этом важна сбаланси­рованность отдельных элементов. Так, соотношение кальция, фос­фора и магния в питании должно составлять 1:1,3:0,5, что определя­ет уровень усвоения этих минеральных веществ в организме.

Для поддержания в организме кислотно-щелочного равновесия необходимо правильно сочетать в питании продукты, содержащие минеральные вещества щелочного действия (Са, Mg, К, Na), кото­рыми богаты молоко, овощи, фрукты, картофель, и кислотного действия (Р, S, Сl которые содержатся в мясе, рыбе, яйцах, хле­бе, крупе.

Вода

Вода играет важную роль в жизнедеятельности организма челове­ка. Она является самой значительной по количеству составной час­тью всех клеток (2/3 массы тела человека). Вода - это среда, в которой существуют клетки и поддерживается связь между ними, это основа всех жидкостей в организме (крови, лимфы, пищеварительных соков). При участии воды происходят обмен веществ, терморегуляция и дру­гие биологические процессы. Ежедневно человек выделяет воду с потом (500 г), выдыхаемым воздухом (350 г), мочой (1500 г) и калом (150 г), выводя из организма вредные продукты обмена. Для восстановления потерянной воды ее необходимо вводить в организм. В зависимости от возраста, физической нагрузки и клима­тических условий суточная потребность человека в воде составляет 2-2,5 л, в том числе поступает с питьем 1 л, с пищей 1,2 л, образу­ется в процессе обмена веществ 0,3 л. В жаркое время года, при работе в горячих цехах, при напряженной физической нагрузке наблюда­ются большие потери воды в организме с потом, поэтому потребле­ние ее увеличивают до 5-6 л в сутки. В этих случаях питьевую воду подсаливают, так как вместе с потом теряется много солей натрия. Избыточное потребление воды является дополнительной нагрузкой для сердечно-сосудистой системы и почек и наносит ущерб здоровью. В случае нарушения функции кишечника (поносы) вода не всасыва­ется в кровь, а выводится из организма человека, что приводит к сильному его обезвоживанию и представляет угрозу для жизни. Без воды человек может прожить не боле 6 суток.

Организмы состоят из клеток. Клетки разных организмов обладают сходным химическим составом. В таблице 1 представлены основные химические элементы, обнаруженные в клетках живых организмов.

Таблица 1. Содержание химических элементов в клетке

По содержанию в клетке можно выделить три группы элементов. В первую группу входят кислород, углерод, водород и азот. На их долю приходится почти 98% всего состава клетки. Во вторую группу входят калий, натрий, кальций, сера, фосфор, магний, железо, хлор. Их содержание в клетке составляет десятые и сотые доли процента. Элементы этих двух групп относят к макроэлементам (от греч. макрос - большой).

Остальные элементы, представ ленные в клетке сотыми и тысячными долями процента, входят в третью группу. Это микроэлементы (от греч. микро - малый).

Каких-либо элементов, присущих только живой природе, в клетке не обнаружено. Все перечисленные химические элементы входят и в состав неживой природы. Это указывает на единство живой и неживой природы.

Недостаток какого-либо элемента может привести к заболеванию, и даже гибели организма, так как каждый элемент играет определенную роль. Макроэлементы первой группы составляют основу биополимеров - белков, углеводов, нуклеиновых кислот, а также липидов, без которых жизнь невозможна. Сера входит в состав некоторых белков, фосфор - в состав нуклеиновых кислот, железо - в состав гемоглобина, а магний - в состав хлорофилла. Кальций играет важную роль в обмене веществ.

Часть химических элементов, содержащихся в клетке, входит в со став неорганических веществ - минеральных солей и воды.

Минеральные соли находятся в клетке, как правило, в виде катионов (К + , Na + , Ca 2+ , Mg 2+) и анионов (HPO 2-/4 , H 2 PO -/4 , СI - , НСО 3), соотношение которых определяет важную для жизнедеятельности клеток кислотность среды.

(У многих клеток среда слабощелочная и ее рН почти не изменяется, так как в ней постоянно поддерживается определенное соотношение катионов и анионов.)

Из неорганических веществ в живой природе огромную роль играет вода .

Без воды жизнь невозможна. Она составляет значительную массу большинства клеток. Много воды содержится в клетках мозга и эмбрионов человека: воды более 80%; в клетках жировой ткани - всего 40.% К старости содержание воды в клетках снижается. Человек, потерявший 20% воды, погибает.

Уникальные свойства воды определяют ее роль в организме. Она участвует в теплорегуляции, которая обусловлена высокой теплоемкостью воды - потреблением большого количества энергии при нагревании. Чем же определяется высокая теплоемкость воды?

В молекуле воды атом кислорода ковалентно связан с двумя атомами водорода. Молекула воды полярна, так как атом кислорода имеет частично отрицательный заряд, а каждый из двух атомов водорода имеет

Частично положительный заряд. Между атомом кислорода одной молекулы воды и атомом водорода другой молекулы образуется водородная связь. Водородные связи обеспечивают соединение большого числа молекул воды. При нагревании воды значительная часть энергии расходуется на разрыв водородных связей, что и определяет ее высокую теплоемкость.

Вода - хороший растворитель . Благодаря полярности ее молекулы взаимодействуют с положительно и отрицательно заряженными ионами, способствуя тем самым растворению вещества. По отношению к воде все вещества клетки делятся на гидрофильные и гидрофобные.

Гидрофильными (от греч. гидро - вода и филео - люблю) называют вещества, которые растворяются в воде. К ним относят ионные соединения (например, соли) и некоторые неионные соединения (например, сахара).

Гидрофобными (от греч. гидро - вода и фобос - страх) называют вещества, нерастворимые в воде. К ним относят, например, липиды.

Вода играет большую роль в химических реакциях, протекающих в клетке в водных растворах. Она растворяет ненужные организму продукты обмена веществ и тем самым способствует выводу их из организма. Большое содержание воды в клетке придает ей упругость . Вода способствует перемещению различных веществ внутри клетки или из клетки в клетку.

Тела живой и неживой природы состоят из одинаковых химических элементов. В состав живых организмов входят неорганические вещества - вода и минеральные соли. Жизненно важные многочисленные функции воды в клетке обусловлены особенностями ее молекул: их полярностью, способностью образовывать водородные связи.

НЕОРГАНИЧЕСКИЕ КОМПОНЕНТЫ КЛЕТКИ

В клетках живых организмов встречается около 90 элементов, причем примерно 25 из обнаружены практически во всех клетках. По содержанию в клетке химические элементы подразделяются на три большие группы: макроэлементы(99%), микроэлементы(1%), ультрамикроэлементы(менее 0,001%).

К макроэлементам относятся кислород, углерод, водород, фосфор, калий, сера, хлор, кальций, магний, натрий, железо.
К микроэлеметам относятся марганец, медь, цинк, йод, фтор.
К ультрамикроэлементам относятся серебро, золото, бром, селен.

ЭЛЕМЕНТЫ СОДЕРЖАНИЕ В ОРГАНИЗМЕ (%) БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ
Макроэлементы:
O.C.H.N 62-3 Входят в состав всех органических веществ клетки, воды
Фосфор Р 1,0 Входят в состав нуклеиновых кислот, АТФ (образует макроэргические связи), ферментов, костной ткани и эмали зубов
Кальций Са +2 2,5 У растений входит в состав оболочки клетки, у животных - в состав костей и зубов, активизирует свертываемость крови
Микроэлементы: 1-0,01
Сера S 0,25 Входит в состав белков, витаминов и ферментов
Калий К + 0,25 Обуславливает проведение нервных импульсов; активатор ферментов белкового синтеза, процессов фотосинтеза, роста растений
Хлор CI - 0,2 Является компонентом желудочного сока в виде соляной кислоты, активизирует ферменты
Натрий Na + 0,1 Обеспечивает проведение нервных импульсов, поддерживает осмотическое давление в клетке, стимулирует синтез гормонов
Магний Мg +2 0,07 Входит в состав молекулы хлорофилла, содержится в костях и зубах, активизирует синтез ДНК, энергетический обмен
Йод I - 0,1 Входит в состав гормона щитовидной железы - тироксина, влияет на обмен веществ
Железо Fе+3 0,01 Входит в состав гемоглобина, миоглобина, хрусталика и роговицы глаза, активатор ферментов, участвует в синтезе хлорофилла. Обеспечивает транспорт кислорода к тканям и органам
Ультрамикроэлементы: менее 0,01, следовые количества
Медь Си +2 Участвует в процессах кроветворения, фотосинтеза, катализирует внутриклеточные окислительные процессы
Марганец Мn Повышает урожайность растений, активизирует процесс фотосинтеза, влияет на процессы кроветворения
Бор В Влияет на ростовые процессы растений
Фтор F Входит в состав эмали зубов, при недостатке развивается кариес, при избытке - флюороз
Вещества:
Н 2 0 60-98 Составляет внутреннюю среду организма, участвует в процессах гидролиза, структурирует клетку. Универсальный растворитель, катализатор, участник химических реакций

ОРГАНИЧЕСКИЕ КОМПОНЕНТЫ КЛЕТКИ

ВЕЩЕСТВА СТРОЕНИЕ И СВОЙСТВА ФУНКЦИИ
Липиды
Сложные эфиры высших жирных кислот и глицерина. В состав фосфолипидов входит дополнительно остаток Н 3 РО4.Обладают гидрофобными или гидрофильно-гидрофобными свойствами, высокой энергоемкостью Строительная - образует билипидный слой всех мембранных.
Энергетическая .
Терморегуляторная .
Защитная .
Гормональная (кортикостероиды, половые гормоны).
Компоненты витаминов D,E. Источник воды в организме.Запасное питательное вещество
Углеводы
Моносахариды:
глюкоза,
фруктоза,
рибоза,
дезоксирибоза
Хорошо растворимы в воде Энергетическая
Дисахариды:
сахароза,
мальтоза (солодовый сахар)
Растворимы в воде Компоненты ДНК, РНК, АТФ
Полисахариды:
крахмал,
гликоген,
целлюлоза
Плохо растворимы или нерастворимы в воде Запасное питательное вещество. Строительная - оболочка растительной клетки
Белки Полимеры. Мономеры - 20 аминокислот. Ферменты - биокатализаторы.
I структура - последовательность аминокислот в полипептидной цепи. Связь - пептидная - СО- NH- Строительная - входят в состав мембранных структур, рибосом.
II структура - a -спираль, связь - водородная Двигательная (сократительные белки мышц).
III структура - пространственная конфигурация a -спирали (глобула). Связи - ионные, ковалентные, гидрофобные, водородные Транспортная (гемоглобин). Защитная (антитела).Регуляторная (гормоны, инсулин)
IV структура характерна не для всех белков. Соединение нескольких полипептидных цепей в единую суперструктуруВ воде плохо растворимы. Действие высоких температур, концентрированных кислот и щелочей, солей тяжелых металлов вызывает денатурацию
Нуклеиновые кислоты: Биополимеры. Состоят из нуклеотидов
ДНК - дезокси-рибонуклеино-вая кислота. Состав нуклеотида: дезоксирибоза, азотистые основания - аденин, гуанин, цитозин, тимин, остаток Н 3 РО 4 . Комплементарность азотистых оснований А = Т, Г = Ц. Двойная спираль. Способна к самоудвоению Образуют хромосомы. Хранение и передача наследственной информации, генетического кода. Биосинтез РНК, белков. Кодирует первичную структуру белка. Содержится в ядре, митохондриях, пластидах
РНК - рибонуклеиновая кислота. Состав нуклеотида: рибоза, азотистые основания - аденин, гуанин, цитозин, урацил, остаток Н 3 РО 4 Комплементарность азотистых оснований А = У, Г = Ц. Одна цепь
Информационная РНК Передача информации о первичной структуре белка, участвует в биосинтезе белка
Рибосомальная РНК Строит тело рибосомы
Транспортная РНК Кодирует и переносит аминокислоты к месту синтеза белка - рибосомам
Вирусная РНК и ДНК Генетический аппарат вирусов

Ферменты.

Важнейшая функция белков - каталитическая. Белковые молекулы, увеличивающие на несколько порядков скорость химических реакции в клетке, называют ферментами . Ни один биохимический процесс в организме не происходит без участия ферментов.

В настоящее время обнаружено свыше 2000 ферментов. Их эффективность во много раз выше, чем эффективность неорганических катализаторов, используемых в производстве. Так, 1 мг железа в составе фермента каталазы заменяет 10 т неорганического железа. Каталаза увеличивает скорость разложения пероксида водорода (Н 2 О 2) в 10 11 раз. Фермент, катализирующий реакцию образования угольной кислоты (СО 2 +Н 2 О = Н 2 СО 3), ускоряет реакцию в 10 7 раз.

Важным свойством ферментов является специфичность их действия, каждый фермент катализирует только одну или небольшую группу сходных реакций.

Вещество, на которое воздействует фермент, называют субстратом . Структуры молекулы фермента и субстрата должны точно соответствовать друг другу. Этим объясняется специфичность действия ферментов. При соединении субстрата с ферментом пространственная структура фермента изменяется.

Последовательность взаимодействия фермента и субстрата можно изобразить схематично:

Субстрат+Фермент - Фермент-субстратный комплекс - Фермент+Продукт.

Из схемы видно, что субстрат соединяется с ферментом с образованием фермент-субстратного комплекса. При этом субстрат превращается в новое вещество - продукт. На конечном этапе фермент освобождается от продукта и вновь вступает во взаимодействие с очередной молекулой субстрата.

Ферменты функционируют лишь при определенной температуре, концентрации веществ, кислотности среды. Изменение условий приводит к изменению третичной и четвертичной структуры белковой молекулы, а, следовательно, и к подавлению активности фермента. Как это происходит? Каталитической активностью обладает лишь определенный участок молекулы фермента, называемый активным центром . Активный центр содержит от 3 до 12 аминокислотных остатков и формируется в результате изгиба полипептидной цепи.

Под влиянием разных факторов изменяется структура молекулы фермента. При этом нарушается пространственная конфигурация активного центра, и фермент теряет свою активность.

Ферменты - это белки, играющие роль биологических катализаторов. Благодаря ферментам на несколько порядков возрастает скорость химических реакций в клетках. Важное свойство ферментов - специфичность действия в определенных условиях.

Нуклеиновые кислоты.

Нуклеиновые кислоты были от крыты во второй половине XIX в. швейцарским биохимиком Ф. Мишером, который выделил из ядер клеток вещество с высоким содержанием азота и фосфора и назвал его "нуклеином" (от лат. нуклеус - ядро).

В нуклеиновых кислотах хранится наследственная информация о строении и функционировании каждой клетки и всех живых существ на Земле. Существует два типа нуклеиновых кислот - ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). Нуклеиновые кислоты, как и белки, обладают видовой специфичностью, то есть организмам каждого вида присущ свой тип ДНК. Чтобы выяснить причины видовой специфичности, рассмотрим строение нуклеиновых кислот.

Молекулы нуклеиновых кислот представляют собой очень длинные цепи, состоящие из многих сотен и даже миллионов нуклеотидов. Любая нуклеиновая кислота содержит всего четыре типа нуклеотидов. Функции молекул нуклеиновых кислот зависят от их строения, входящих в их состав нуклеотидов, их числа в цепи и последовательности соединения в молекуле.

Каждый нуклеотид состоит из трех компонентов: азотистого основания, углевода и фосфорной кислоты. В состав каждого нуклеотида ДНК входит один из четырех типов азотистых оснований (аденин - А, тимин - Т, гуанин - Г или цитозин - Ц), а также угле вод дезоксирибоза и остаток фосфорной кислоты.

Таким образом, нуклеотиды ДНК различаются лишь типом азотистого основания.

Молекула ДНК состоит из огромного множества нуклеотидов, соединенных в цепочку в определенной последовательности. Каждый вид молекулы ДНК имеет свойственное ей число и последовательность нуклеотидов.

Молекулы ДНК очень длинные. Например, для буквенной записи последовательности нуклеотидов в молекулах ДНК из одной клетки человека (46 хромосом) потребовалась бы книга объемом около 820000 страниц. Чередование четырех типов нуклеотидов может образовать бесконечное множество вариантов молекул ДНК. Указанные особенности строения молекул ДНК позволяют им хранить огромный объем информации обо всех признаках организмов.

В 1953 г. американским биологом Дж. Уотсоном и английским физиком Ф. Криком была создана модель строения молекулы ДНК. Ученые установили, что каждая молекула ДНК состоит из двух цепей, связанных между собой и спирально закрученных. Она имеет вид двойной спирали. В каждой цепи четыре типа нуклеотидов чередуются в определенной последовательности.

Нуклеотидный состав ДНК различается у разных видов бактерий, грибов, растений, животных. Но он не меняется с возрастом, мало зависит от изменений окружающей среды. Нуклеотиды парные, то есть число адениновых нуклеотидов в любой молекуле ДНК равно числу тимидиновых нуклеотидов (А-Т), а число цитозиновых нуклеотидов равно числу гуаниновых нуклеотидов (Ц-Г). Это связано с тем, что соединение двух цепей между собой в молекуле ДНК подчиняется определенному правилу, а именно: аденин одной цепи всегда связан двумя водородными связями только с Тимином другой цепи, а гуанин - тремя водородными связями с цитозином, то есть нуклеотидные цепи одной молекулы ДНК комплементарны, дополняют друг друга.

Молекулы нуклеиновых кислот - ДНК и РНК состоят из нуклеотидов. В состав нуклеотидов ДНК входит азотистое основание (А, Т, Г, Ц), углевод дезоксирибоза и остаток молекулы фосфорной кислоты. Молекула ДНК представляет собой двойную спираль, состоящую из двух цепей, соединенных водородными связями по принципу комплементарности. Функция ДНК - хранение наследственной информации.

В клетках всех организмов имеются молекулы АТФ - аденозинтрифосфорной кислоты. АТФ - универсальное вещество клетки, молекула которого имеет богатые энергией связи. Молекула АТФ - это один своеобразный нуклеотид, который, как и другие нуклеотиды, состоит из трех компонентов: азотистого основания - аденина, углевода - рибозы, но вместо одного содержит три остатка молекул фосфорной кислоты (рис. 12). Связи, обозначенные на рисунке значком, - богаты энергией и называются макроэргическими . Каждая молекула АТФ содержит две макроэргические связи.

При разрыве макроэргической связи и отщеплении с помощью ферментов одной молекулы фосфорной кислоты освобождается 40 кДж/моль энергии, а АТФ при этом превращается в АДФ - аденозиндифосфорную кислоту. При отщеплении еще одной молекулы фосфорной кислоты освобождается еще 40 кДж/моль; образуется АМФ - аденозинмонофосфорная кислота. Эти реакции обратимы, то есть АМФ может пре вращаться в АДФ, АДФ - в АТФ.

Молекулы АТФ не только расщепляются, но и синтезируются, по этому их содержание в клетке относительно постоянно. Значение АТФ в жизни клетки огромно. Эти молекулы играют ведущую роль в энергетическом обмене, необходимом для обеспечения жизнедеятельности клетки и организма в целом.

Рис. 12. Схема строения АТФ.
аденин -

Молекула РНК, как правило, одиночная цепь, состоящая из четырех типов нуклеотидов - А, У, Г, Ц. Известны три основных вида РНК: иРНК, рРНК, тРНК. Содержание молекул РНК в клетке непостоянно, они участвуют в биосинтезе белка. АТФ - универсальное энергетическое вещество клетки, в котором имеются богатые энергией связи. АТФ играет центральную роль в обмене энергии в клетке. РНК и АТФ содержатся как в ядре, так и в цитоплазме клетки.

Задачи и тесты по теме "Тема 4. "Химический состав клетки"."

  • полимер, мономер;
  • углевод, моносахарид, дисахарид, полисахарид;
  • липид, жирная кислота, глицерин;
  • аминокислота, пептидная связь, белок;
  • катализатор, фермент, активный центр;
  • нуклеиновая кислота, нуклеотид.
  • Перечислить 5-6 причин, которые делают воду столь важным компонентом живых систем.
  • Назвать четыре главных класса органических соединений содержащихся в живых организмах; охарактеризовать роль каждого из них.
  • Объяснить, почему контролируемые ферментами реакции зависят от температур, рН и присутствием коферментов.
  • Рассказать о роли АТФ в энергетическом хозяйстве клетки.
  • Назвать исходные вещества, основные этапы и конечные продукты реакций, вызываемых светом и реакции фиксации углерода.
  • Дать краткое описание общей схемы клеточного дыхания, из которого было бы ясно, какое место занимают реакции гликолиза, цикла Г.Кребса (цикла лимонной кислоты) и цепь переноса электронов.
  • Сравнить дыхание и брожение.
  • Описать строение молекулы ДНК и объяснить почему число остатков аденина равно числу остатков тимина, а число остатков гуанина равно числу остатков цитозина.
  • Составить краткую схему синтеза РНК на ДНК (транскрипция) у прокариот.
  • Описать свойства генетического кода и объяснить, почему он должен быть триплетным.
  • Исходя из данной цепи ДНК и таблицы кодонов определить комплементарную последовательность матричной РНК, указать кодоны транспортной РНК и аминокислотную последовательность, которая образуется в результате трансляции.
  • Перечислить этапы белкового синтеза на уровне рибосом.
  • Алгоритм решения задач.

    Тип 1. Самокопирование ДНК.

    Одна из цепочек ДНК имеет такую последовательность нуклеотидов:
    АГТАЦЦГАТАЦТЦГАТТТАЦГ...
    Какую последовательность нуклеотидов имеет вторая цепочка той же молекулы?

    Чтобы написать последовательность нуклеотидов второй цепочки молекулы ДНК, когда известна последовательность первой цепочки, достаточно заменить тимин на аденин, аденин на тимин, гуанин- на цитозин и цитозин на гуанин. Произведя такую замену, получаем последовательность:
    ТАЦТГГЦТАТГАГЦТАААТГ...

    Тип 2. Кодирование белков.

    Цепочка аминокислот белка рибонуклеазы имеет следующее начало: лизин-глутамин-треонин-аланин-аланин-аланин-лизин...
    С какой последовательности нуклеотидов начинается ген, соответствующий этому белку?

    Для этого следует воспользоваться таблицей генетического кода. Для каждой аминокислоты находим ее кодовое обозначение в виде соответствующей тройки нуклеотидов и выписываем его. Располагая эти тройки друг за другом в таком же порядке, в каком идут соответствующие им аминокислоты, получаем формулу строения участка информационной РНК. Как правило таких троек несколько, выбор делается по Вашему решению (но, берется только одна из троек). Решений соответственно может быть несколько.
    АААЦАААЦУГЦГГЦУГЦГААГ

    С какой последовательности аминокислот начинается белок, если он закодирован такой последовательностью нуклеотидов:
    АЦГЦЦЦАТГГЦЦГГТ...

    По принципу комплементарности находим строение участка информационной РНК, образующейся на данном отрезке молекулы ДНК:
    УГЦГГГУАЦЦГГЦЦА...

    Затем обращаемся к таблице генетического кода и для каждой тройки нуклеотидов, начиная с первой, находим и выписываем соответствующую ей аминокислоту:
    Цистеин-глицин-тирозин-аргинин-пролин-...

    Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000

    • Тема 4. "Химический состав клетки." §2-§7 стр. 7-21
    • Тема 5. "Фотосинтез." §16-17 стр. 44-48
    • Тема 6. "Клеточное дыхание." §12-13 стр. 34-38
    • Тема 7. "Генетическая информация." §14-15 стр. 39-44

    В конце 19 столетия сформировалась отрасль биологии, названная биохимией. Она изучает химический состав живой клетки. Главная задача науки - познание особенностей обмена веществ и энергии, регулирующих жизнедеятельность растительных и животных клеток.

    Понятие о химическом составе клетки

    В результате тщательных исследований учёными была изучена химическая организация клеток и установлено, что живые существа имеют в своем составе более 85 химических элементов. Причём некоторые из них обязательны практически для всех организмов, а другие специфичны и встречаются у конкретных биологических видов. А третья группа химических элементов присутствует в клетках микроорганизмов, растений и животных в достаточно малых количествах. Химические элементы в состав клеток входят чаще всего в виде катионов и анионов, из которых образуются минеральные соли и вода, а также синтезируются углеродсодержащие органические соединения: углеводы, белки, липиды.

    Органогенные элементы

    В биохимии к ним относятся карбон, гидроген, оксиген и нитроген. Их совокупность составляет в клетке от 88 до 97% от других химических элементов, находящихся в ней. Особенно важен карбон. Все органические вещества в составе клетки состоят из молекул, содержащих в своём составе атомы углерода. Они способны соединяться между собой, образуя цепи (разветвлённые и неразветвленные), а также циклы. Эта способность углеродных атомов лежит в основе поразительного разнообразия органических веществ, входящих в состав цитоплазмы и клеточных органоидов.

    Например, внутреннее содержимое клетки состоит из растворимых олигосахаридов, гидрофильных белков, липидов, различных видов рибонуклеиновой кислоты: транспортной РНК, рибосомальной РНК и информационной РНК, а также свободных мономеров - нуклеотидов. Подобный химический состав имеет и Оно также содержит молекулы дезоксирибонуклеиновой кислоты, входящие в состав хромосом. Все вышеперечисленные соединения имеют в своём составе атомы нитрогена, карбона, оксигена, гидрогена. Это является доказательством их особенно важного значения, так как химическая организация клеток зависит от содержания органогенных элементов, входящих в состав клеточных структур: гиалоплазмы и органелл.

    Макроэлементы и их значения

    Химические элементы, которые также очень часто встречаются в клетках различных видов организмов, в биохимии называются макроэлементами. Их содержание в клетке составляет 1,2% - 1,9%. К макроэлементам клетки относятся: фосфор, калий, хлор, сера, магний, кальций, железо и натрий. Все они выполняют важные функции и входят в состав различных клеточных органелл. Так, ион двухвалентного железа присутствует в белке крови - гемоглобине, который транспортирует кислород (в этом случае он называется оксигемоглобин), углекислый газ (карбогемоглобин) или угарный газ (карбоксигемоглобин).

    Ионы натрия обеспечивают важнейший вид межклеточного транспорта: так называемый натрий-калиевый насос. Они также входят в состав межтканевой жидкости и плазмы крови. Ионы магния присутствуют в молекулах хлорофилла (фотопигмент высших растений) и участвуют в процессе фотосинтеза, так как образуют реакционные центры, улавливающие фотоны световой энергии.

    Ионы кальция обеспечивают проведение нервных импульсов по волокнам, а также являются главным компонентом остеоцитов - костных клеток. Соединения кальция широко распространены в мире беспозвоночных животных, у которых раковины состоят из карбоната кальция.

    Ионы хлора принимают участие в перезарядке клеточных мембран и обеспечивают возникновение электрических импульсов, лежащих в основе нервного возбуждения.

    Атомы серы входят в состав нативных белков и обуславливают их третичную структуру, «сшивая» полипептидную цепь, вследствие чего формируется глобулярная белковая молекула.

    Ионы калия участвуют в транспорте веществ через клеточные мембраны. Атомы фосфора входят в состав такого важного энергоёмкого вещества, как аденозинтрифосфорная кислота, а также являются важным компонентом молекул дезоксирибонуклеиновой и рибонуклеиновых кислот, являющихся главными веществами клеточной наследственности.

    Функции микроэлементов в клеточном метаболизме

    Около 50 химических элементов, составляющих менее 0,1% в клетках, называются микроэлементами. К ним относят цинк, молибден, йод, медь, кобальт, фтор. При незначительном содержании они выполняют очень важные функции, так как входят в состав многих биологически активных веществ.

    Например, атомы цинка находятся в молекулах инсулина (гормона поджелудочной железы, регулирующего уровень глюкозы в крови), йод является составной частью гормонов щитовидной железы - тироксина и трийодтиронина, контролирующих уровень обмена веществ в организме. Медь, наряду с ионами железа, участвует в кроветворении (образовании эритроцитов, тромбоцитов и лейкоцитов в красном костном мозге позвоночных животных). Ионы меди входят в состав пигмента гемоцианина, присутствующего в крови беспозвоночных животных, например моллюсков. Поэтому цвет гемолимфы у них голубой.

    Ещё меньше содержание в клетке таких химических элементов, как свинец, золото, бром, серебро. Они называются ультромикроэлементами и входят в состав растительных и животных клеток. Например, в зерновках кукурузы химическим анализом были выявлены ионы золота. Атомы брома в большом количестве входят в состав клеток слоевища бурых и красных водорослей, например саргассума, ламинарии, фукуса.

    Все ранее приведённые примеры и факты объясняют, как взаимосвязаны химический состав, функции и строение клетки. Таблица, приведённая ниже, показывает содержание различных химических элементов в клетках живых организмов.

    Общая характеристика органических веществ

    Химические свойства клеток различных групп организмов определённым образом зависят от атомов карбона, доля которых составляет более 50% клеточной массы. Практически все сухое вещество клетки представлено углеводами, белками, нуклеиновыми кислотами и липидами, которые имеют сложное строение и большую молекулярную массу. Такие молекулы называются макромолекулами (полимерами) и состоят из более простых элементов - мономеров. Белковые вещества играют чрезвычайно важную роль и выполняют множество функций, которые и будут рассмотрены ниже.

    Роль белков в клетке

    Соединений, входящих в живую клетку, подтверждает высокое содержание в ней таких органических веществ, как белки. Этому факту есть логическое объяснение: белки выполняют разнообразные функции и участвуют во всех проявлениях клеточной жизнедеятельности.

    Например, заключается в образовании антител - иммуноглобулинов, вырабатываемых лимфоцитами. Такие защитные белки, как тромбин, фибрин и тромбобластин, обеспечивают свёртываемость крови и предотвращают её потерю при травмах и ранениях. В состав клетки входят сложные белки клеточных мембран, имеющие способность распознавать чужеродные соединения - антигены. Они изменяют свою конфигурацию и сообщают клетке о потенциальной опасности (сигнальная функция).

    Некоторые белки выполняют регуляторную функцию и являются гормонами, например окситоцин, вырабатываемый гипоталамусом, резервируется гипофизом. Поступая из него в кровь, окситоцин воздействует на мышечные стенки матки, вызывая её сокращение. Белок вазопрессин также выполняет регуляторную функцию, контролируя кровяное давление.

    В мышечных клетках находятся актин и миозин, способные сокращаться, что обуславливает двигательную функцию мышечной ткани. Для белков характерна и например, альбумин используется зародышем в качестве питательного вещества для своего развития. Белки крови различных организмов, например гемоглобин и гемоцианин, переносят молекулы кислорода - выполняют транспортную функцию. Если более энергоёмкие вещества, такие как углеводы и липиды, полностью использованы, клетка приступает к расщеплению белков. Один грамм этого вещества даёт 17, 2 кДж энергии. Одной из важнейших функций белков является каталитическая (белки-ферменты ускоряют химические реакции, протекающие в компартментах цитоплазмы). На основании вышесказанного мы убедились в том, что белки выполняют множество очень важных функций и обязательно входят в состав животной клетки.

    Биосинтез белка

    Рассмотрим процесс синтеза белка в клетке, который происходит в цитоплазме с помощью таких органелл, как рибосомы. Благодаря деятельности специальных ферментов, при участии ионов кальция рибосомы объединяются в полисомы. Основные функции рибосом в клетке - синтез белковых молекул, начинающийся процессом транскрипции. В результате него синтезируются молекулы иРНК, к которым и присоединяются полисомы. Затем начинается второй процесс - трансляция. Транспортные РНК соединяются с двадцатью различными видами аминокислот и приносят их к полисомам, а так как функции рибосом в клетке — это синтез полипептидов, то эти органеллы образуют комплексы с тРНК, а молекулы аминокислот связываются между собой пептидными связями, образуя макромолекулу белка.

    Роль воды в процессах метаболизма

    Цитологические исследования подтвердили тот факт, что клетка, строение и состав которой мы изучаем, в среднем на 70% состоит из воды, а у многих животных, ведущих водный способ жизни (например, кишечнополостных) её содержание достигает 97—98%. С учётом этого химическая организация клеток включает в себя гидрофильные (способные к растворению) и Являясь универсальным полярным растворителем, вода играет исключительную роль и напрямую влияет не только на функции, но и на само строение клетки. Таблица, представленная ниже, показывает содержание воды в клетках различных типов живых организмов.

    Функция углеводов в клетке

    Как мы выяснили ранее, к важным органическим веществам - полимерам - относятся также углеводы. К ним относятся полисахариды, олигосахариды и моносахариды. Углеводы входят в состав более сложных комплексов - гликолипидов и гликопротеидов, из которых построены клеточные мембраны и надмембранные структуры, например гликокаликс.

    Кроме углерода, в состав углеводов входят атомы оксигена и гидрогена, а некоторые полисахариды содержат ещё азот, серу и фосфор. В клетках растений углеводов много: клубни картофеля содержат до 90% крахмала, в семенах и плодах содержание углеводов до 70%, а в животных клетках они встречаются в виде таких соединений, как гликоген, хитин и трегалоза.

    Простые сахара (моносахариды) имеют общую формулу CnH2nOn и делятся на тетрозы, триозы, пентозы и гексозы. Две последние наиболее распространены в клетках живых организмов, например, рибоза и дезоксирибоза входят в состав нуклеиновых кислот, а глюкоза и фруктоза принимают участие в реакциях ассимиляции и диссимиляции. Олигосахариды часто встречаются в растительных клетках: сахароза запасается в клетках сахарной свёклы и сахарного тростника, мальтоза содержится в проросших зерновках ржи и ячменя.

    Дисахариды имеют сладковатый вкус и хорошо растворяются в воде. Полисахариды, являясь биополимерами, представлены в основном крахмалом, целлюлозой, гликогеном и ламинарином. К структурным формам полисахаридов относится хитин. Основная функция углеводов в клетке — энергетическая. В результате гидролиза и реакций энергетического обмена полисахариды расщепляются до глюкозы, а она затем окисляется до углекислого газа и воды. В результате один грамм глюкозы освобождает 17,6 кДж энергии, а запасы крахмала и гликогена, по сути, являются резервуаром клеточной энергии.

    Гликоген откладывается в основном в мышечной ткани и клетках печени, растительный крахмал - в клубнях, луковицах, корнеплодах, семенах, а у членистоногих, например пауков, насекомых и ракообразных, главную роль в энергообеспечении играет олигосахарид трегалоза.

    Есть ещё одна функция углеводов в клетке - строительная (структурная). Она заключается в том, что эти вещества являются опорными структурами клеток. Например, целлюлоза входит в состав клеточных стенок растений, хитин образует внешний скелет многих беспозвоночных и встречается в клетках грибов, олисахариды вместе с молекулами липидов и белков образуют гликокаликс - надмембранный комплекс. Он обеспечивает адгезию - слипание животных клеток между собой, приводящее к образованию тканей.

    Липиды: строение и функции

    Эти органические вещества, являющиеся гидрофобными (нерастворимыми в воде) можно извлечь, то есть экстрагировать из клеток с помощью неполярных растворителей, таких как ацетон или хлороформ. Функции липидов в клетке зависят от того, к какой из трёх групп они относятся: к жирам, воскам или стероидам. Жиры наиболее широко распространены во всех типах клеток.

    Животные накапливают их в подкожной жировой клетчатке, нервная ткань содержит жир в виде нервов. Он также накапливается в почках, печени, у насекомых - в жировом теле. Жидкие жиры - масла - встречаются в семенах многих растений: кедра, арахиса, подсолнечника, маслины. Содержание липидов в клетках колеблется от 5 до 90% (в жировой ткани).

    Стероиды и воски отличаются от жиров тем, что они не имеют в составе молекул остатков жирных кислот. Так, стероиды - это гормоны коркового слоя надпочечников, влияющие на половое созревание организма и являющиеся компонентами тестостерона. Они также входят в состав витаминов (например, витамина Д).

    Основные функции липидов в клетке - это энергетическая, строительная и защитная. Первая обусловлена тем, что 1 грамм жира при расщеплении даёт 38,9 кДж энергии - намного больше чем другие органические вещества - белки и углеводы. Кроме того, при окислении 1г жира выделяется почти 1,1 гр. воды. Именно поэтому некоторые животные имея запас жира в своем теле, могут долгое время находиться без воды. Например, суслики могут быть в спячке более двух месяцев, не нуждаясь в воде, а верблюд не пьёт воду при переходах через пустыню в течение 10-12 суток.

    Строительная функция липидов заключается в том, что они являются неотъемлемой частью клеточных мембран, а также входят в состав нервов. Защитная функция липидов состоит в том, что слой жира под кожей вокруг почек и других внутренних органов защищает их от механических травм. Специфическая теплоизоляционная функция присуща животным, длительное время находящимся в воде: китам, тюленям, морским котикам. Толстый подкожный жировой слой, например, у синего кита составляет 0,5 м, он защищает животное от переохлаждения.

    Значение кислорода в клеточном метаболизме

    Аэробные организмы, к которым относится подавляющее большинство животных, растения и человек, используют атмосферный кислород для реакций энергетического обмена, приводящих к расщеплению органических веществ и выделению определённого количества энергии, аккумулируемого в виде молекул аденозинтрифосфорной кислоты.

    Так, при полном окислении одного моля глюкозы, происходящего на кристах митохондрий, выделяется 2800 кДж энергии, из которых 1596 кДж (55%) запасается в виде молекул АТФ, содержащих макроэргические связи. Таким образом, основная функция кислорода в клетке - осуществление в основе которого лежит группа ферментативных реакций так называемой происходящих в клеточных органеллах - митохондриях. У прокариотических организмов - фототрофных бактерий и цианобактерий - окисление питательных веществ происходит под действием кислорода, диффундирующего в клетки на внутренние выросты плазматических мембран.

    Нами была изучена химическая организация клеток, а также рассмотрены процессы биосинтеза белка и функция кислорода в клеточном энергетическом обмене.

    Пища человека содеражит основные питательные вещества: белки, жиры, углеводы; витамины, микроэлементы, макроэлементы. Поскольку, вся наша жизнь - это обмен веществ в природе, то для нормального существования взрослый человек должен трижды на день питаться, пополняя свой "запас" питательных веществ.

    В организме живого человека непрерывно идут процессы окисления (соединения с кислородом) разнообразных питательных веществ. Реакции окисленя сопровождаются образованием и выделением тепла, необходимого для поддержания жизненных процессов организма. Тепловая энергия обеспечивает деятельность мышечной системы. Поэтому, чем тяжелее физический труд, тем больше пищи требует организм.

    Энергетическую ценность пищи принято выражать в калориях. Калория - количество тепла, необходимое для нагревания 1 литра воды, имеющей температуру 15°C на один градус. Калорийность пищи составляет то количество энергии, которое образуется в организме в результате усвоения пищи.

    1 грамм белка при окислении в организме выделяет количество тепла, равное 4 ккал; 1 грамм углеводов = 4 ккал; 1 грамм жиров = 9 ккал.

    Белки

    Белки поддерживают основные проявления жизни: обмен веществ, сокращение мышц, раздражимость нервов, способность к росту, разможению, мышлению. Белки содержатся во всех тканях и жидкостях организма, являясь их основной частью. В состав белков входят разнообразные аминокислоты, которые определяют биологическое значение того или иного белка.

    Заменимые аминокислоты образуются в организме человека. Незаменимые аминокислоты поступают в организм человека только с пищей. Поэтому, для физиологически полноценной жизнедеятельности организма обязательно наличие в пище всех незаменимых аминокислот. Недостаток в пище даже одной незаменимой аминокислоты ведет к снижению биологической ценности белков и может явиться причиной белковой недостаточности, несмотря на достаточное количества содержания белка в рационе. Основной поставщик незаменимых аминокислот: мясо, молоко, рыба, яйца, творог.

    Организму человека также необходимы белки растительного происхождения, которые содержатся в хлебе, крупах, овощах - в их состав входят заменимые аминокислоты. Продукты, содержащие животные и растительные белки обеспечивают организм веществами, которые необходимы для его развития и жизнедеятельности.

    Организм взрослого человека должен получать примерно 1 грамм белка на 1 кг общего веса. Отсюда следует, что "среднестатистический" взрослый человек массой 70 кг должен получать не менее 70 г белка в сутки (55% белка должно быть животного происхождения). При тяжелых физических нагрузках растут потребности организма в белке.

    Белки в питании нельзя заменить никакими другими веществами.

    Жиры

    Жиры превосходят энергию всех других веществ, участвуют в восстановительных процессах, являясь структурной частью клеток и их мембранных систем, служат растворителями витаминов А, Е, Д, способствуют их усвоению. Также жиры способствуют выработке иммунитета и помогают организму сохранить тепло.

    Недостаток жира приводит к нарушению деятельности центральной нервной системы, изменению кожи, почек, органов зрения.

    В составе жиров находятся полиненасыщенные жирные кислоты, лецитин, витамины А, Е. Средняя потребность взрослого человека в жире составляет 80-100 г в сутки, в том числе растительного - 25..30 г.

    За счет жира в пище обеспечивается треть суточной энергетической ценности рациона; на 1000 ккал приходится 37 г жира.

    Жиры в достаточном количестве содержатся в мозгах, сердце, яйцах, печени, сливочном масле, сыре, мясе, сале, птице, рыбе, молоке. Особо ценны растительные жиры, не содержащие холестерина.

    Углеводы

    Углеводы - основной источник энергии. На долю углеводов приходится 50-70% калорийности дневного рациона. Потребность в углеводах зависит от энергозатрат организма.

    Суточная потребность в углеводах для взрослого человека, занимающегося умственным или легким физическим трудом составляет 300-500 г/сутки. У людей, занимающихся тяжелым физическим трудом, потребность в углеводах значительно выше. У тучных людей энергоемкость пищевого рациона можно снижать за счет количества углеводов без ущерба для здоровья.

    Богаты углеводами хлеб, крупы, макароны, картофель, сахар (чистый углевод). Избыток углеводов в организме нарушает правильное соотношение основных частей пищи, нарушая тем самым обмен веществ.

    Витамины

    Витамины не являются поставщиками энергии. Однако, они необходимы в небольших количествах для поддержания нормальной жизнедеятельности организма, регулируя, направляя и ускоряя процессы обмена веществ. Подавляющее большинство витаминов не вырабатываются в организме, а поступают извне с пищей.

    При недостатке витаминов в пище развиваются гипоавитаминозы (чаще зимой и весной) - повышается утомляемость, наблюдается слабость, апатия, снижается работоспособность, падает сопротивляемость организма.

    Действия витаминов в организме взаимосвязаны - недостаток одного из витаминов влечет нарушение обмена других веществ.

    Все витамины делятся на две группы: водорастворимые витамины и жирорастворимые витамины .

    Жирорастворимые витамины - витамины А, Д, Е, К.

    Витамин А - влияет на рост организма, устойчивость его к инфекциям, необходим для поддержания нормального зрения, состояния кожи и слизистых оболочек. Витамином А богаты рыбий жир, сливки, сливочное масло, яичный желток, печень, морковь, салат, шпинат, помидоры, зеленый горошек, абрикосы, апельсины.

    Витамин Д - способствует образованию костной ткани, стимулирует рост организма. Недостаток витамина Д в организме ведет к нарушению нормального усвоения кальция и фосфора, становясь причиной развития рахита. Витамином Д богаты рыбий жир, яичный желток, печень, икра рыб. В молоке и сливочном масле витамина Д немного.

    Витамин К - участвует в тканевом дыхании, свертываемости крови. Витамин К синтезируется в организме бактериями кишечника. Причиной недостатка витамина К являются заболевания органов пищеварения или прием антибактериальных препаратов. Витамином К богаты помидоры, зеленые части растений, шпинат, капуста, крапива.

    Витамин Е (токоферол) влияет на деятельность эндокринных желез, на обмен белков, углеводов, обеспечивает внутриклеточный обмен. Витамин Е благоприятно влияет на течение беременности и развитие плода. Витамином Е богаты кукуруза, морковь, капуста, зеленый горох, яйца, мясо, рыба, оливковое масло.

    Водорастворимые витамины - витамин С, витамины группы В.

    Витамин С (аскорбиновая кислота) - активно участвует в окислительно-восстановительных процессах, влияет на углеводныф и белковый обмен, повышает сопротивляемость организма к инфекциям. Богаты витамином С плоды шиповника, черной смородины, черноплодной рябины, облепихи, крыжовника, цитрусовые, капуста, картофель, лиственные овощи.

    В группу витамитов В входит 15 самостоятельных витаминов, растворимых в воде, которые принимают участие в процессах обмена веществ в организме, процессе кроветворения, играют важную роль в углеводном, жировом, водном обмене. Витамины группы В являются стимуляторами роста. Богаты витаминами группы В пивные дрожжи, гречневая крупа, овсяная крупа, ржаной хлеб, молоко, мясо, печень, яичный желток, зеленые части растений.

    Микроэлеметны и макроэлементы

    Минеральные вещества входят в состав клеток и тканей организма, участвуют в разнообразных процессах обмена веществ. Макроэлементы нужны организму в относительно больших количествах: кальций, калий, магний, фосфор, хлор, соли натрия. Микроэлементы нужны в очень малых количествах: железо, цинк, марганец, хром, йод, фтор.

    Йод содержится в морепродуктах, цинком богаты злаки, жрожжи, бобовые, печень; медь и кобальт содержатся в говяжьей печени, почках, желтке куриного яйца, меде. В ягодах и фруктах много калия, железа, меди, фосфора.

    ВНИМАНИЕ! Информация, представленная на данном сайте, носит справочный характер. Мы не несем ответственности за возможные негативные последствия самолечения!

    Питательные вещества - углеводы, белки, витамины, жиры, микроэлементы, макроэлементы - содержатся в продуктах питания. Все эти питательные вещества необходимы человеку для возможности осуществления всех процессов жизнедеятельности. Содержание питательных веществ в рационе является важнейшим фактором для составления меню диет .

    В организме живого человека никогда не останавливаются процессы окисления всяческих питательных веществ . Реакции окисления происходят с образованием и выделением тепла, которое нужно человеку для поддержания процессов жизнедеятельности. Тепловая энергия позволяет работать мышечной системе, что приводит нас к выводу, что чем тяжелее физический труд, тем больше еды требуется для организма.

    Энергетическая ценность продуктов определяется калориями. Калорийность продуктов определяет количество энергии, получаемое организмом в процессе усвоения пищи.

    1 грамм белка в процессе окисления дает количество тепла в 4 ккал; 1 грамм углеводов = 4 ккал; 1 грамм жиров = 9 ккал.

    Питательные вещества - белки.

    Белок как питательное вещество необходим организму для поддержания метаболизма, сокращения мышц, раздражимости нервов, способности к росту, размножению, мышлению. Белок содержится во всех тканях и жидкостях организма и является важнейшим элементов. Белок состоит из аминокислот, определяющих биологическое значение того или иного белка.

    Заменимые аминокислоты образуются в теле человека. Незаменимые аминокислоты человек получает извне с пищей, что говорит о необходимости контролирования количества аминокислот в пище. Недостаток в пище даже одной незаменимой аминокислоты ведет к снижению биологической ценности белков и может стать причиной белковой недостаточности, несмотря на достаточное количество содержания белка в рационе. Основным источником незаменимых аминокислот являются рыба, мясо, молоко, творог, яйца.

    Кроме того, организм нуждается в растительных белках, содержащиеся в хлебе, крупах, овощах - они дают заменимые аминокислоты.

    В организм взрослого человека каждый день должно поступать приблизительно 1 г белка на 1 килограмм веса тела. То есть обычному человеку, весом 70 кг в день нужно минимум 70 г белка, при этом 55% всего белка должно быть животного происхождения. Если вы занимаетесь физическими упражнениями, то количество белка должно быть увеличено до 2 грамм на килограмм в сутки.

    Белки в правильном рационе незаменимы никакими другими элементами.

    Питательные вещества - жиры.

    Жиры, как питательные вечества, являются одним из основных источников энергии для организма, участвуют в восстановительных процессах, так как являются структурной частью клеток и их мембранных систем, растворяют и помогают в усвоении витаминов А, Е, Д. Кроме того, жиры помогают в формировании иммунитета и сохранения тепла в теле.

    Недостаточное количество жира в организме вызывает нарушения в деятельности ЦНС, изменения кожи, почек, зрения.

    Жир состоит из полиненасыщенных жирных кислот, лецитина, витаминов А, Е. обычному человеку в день нужно око 80-100 грамм жира, из которого растительного происхождения должно быть не меньше 25-30 грамм.

    Жир из еды дает организму 1/3 суточной энергетической ценности рациона; на 1000 ккал приходится 37 г жира.

    Необходимое количество жира в: сердце, птице, рыбе, яйцах, печени, масле сливочном, сыре, мясе, сале, мозгах, молоке. Жиры растительного происхождения, в которых меньше холестерина, более важны для организма.

    Питательные вещества - углеводы.

    Углеводы , питательное вещество , являются главным источником энергии, который приносит 50-70% калорий из всего рациона. Необходимое количество углеводов для человека определяется исходя из его активности и энергозатрат.

    В день обычному человеку, который занимается умственным или легким физическим трудом необходимо примерно 300-500 грамм углеводов. С увеличением физических нагрузок увеличивается и суточная норма углеводов и калорий. Полным людям энергоемкость дневного меню можно уменьшать за счет количества углеводов без ущерба для здоровья.

    Много углеводов содержится в хлебе, крупах, макаронах, картофеле, сахаре (чистый углевод). Излишек углеводов в организме нарушает правильное соотношение основных частей пищи, нарушая этим метаболизм.

    Питательные вещества - витамины.

    Витамины , как питательные вещества , не дают энергии организму, но все же являются важнейшими питательными веществами необходимыми для организма. Витамины нужны для поддержания жизнедеятельности организма, регулируя, направляя и ускоряя процессы обмена веществ. Почти все витамины организм получает из пищи и лишь некоторые организм может производить сам.

    В зимнее и весеннее время в организме может возникать гипоавитаминоз из-за недостатка витаминов в пище - увеличивается утомляемость, слабость, апатия, уменьшается работоспособность, сопротивляемость организма.

    Все витамины, по действию их на организм, взаимосвязаны - недостаток 1 из витаминов дает нарушение обмена других веществ.

    Все витамины разделяются на 2 группы: водорастворимые витамины и жирорастворимые витамины .

    Жирорастворимые витамины - витамины А, Д, Е, К.

    Витамин А - нужен для роста организма, улучшения устойчивости его к инфекциям, поддержания хорошего зрения, состояния кожи и слизистых оболочек. Витамин А поступает из рыбьего жира, сливок, сливочного масла, яичного желтка, печени, моркови, салата, шпината, помидоров, зеленого горошка, абрикос, апельсинов.

    Витамин Д - нужен для формирования костной ткани, роста организма. Недостаток витамина Д приводит к ухудшению усвоения Ca и P, что приводит к рахиту. Витамин Д можно получить из рыбьего жира, яичного желтка, печени, рыбьей икры. Витамин Д еще есть в молоке и сливочном масле, но совсем чуть-чуть.

    Витамин К - нужен для тканевого дыхания, нормальной свертываемости крови. Витамин К синтезируется в организме бактериями кишечника. Недостаток витамина К появляется из-за заболеваний органов пищеварения либо приема антибактериальных препаратов. Витамин К можно получить из помидоров, зеленых частей растений, шпината, капусты, крапивы.

    Витамин Е (токоферол ) нужен для деятельности эндокринных желез, обмена белков, углеводов, обеспечения внутриклеточного обмена. Витамин Е благоприятно влияет на течение беременности и развитие плода. Витамин Е получаем из кукурузы, моркови, капусты, зеленого гороха, яиц, мяса, рыбы, оливкового масла.

    Водорастворимые витамины - витамин С, витамины группы В.

    Витамин С (аскорбиновая кислота ) - нужен для окислительно-восстановительных процессов организма, углеводного и белкового обмена, увеличения сопротивляемости организма к инфекциям. Богаты витамином С плоды шиповника, черной смородины, черноплодной рябины, облепихи, крыжовника, цитрусовые, капуста, картофель, лиственные овощи.

    Группа витаминов В включает в себя 15 растворимых в воде витаминов, принимающих участие в процессах обмена веществ в организме, процессе кроветворения, играют важную роль в углеводном, жировом, водном обмене. Витамины группы В стимулируют рост. Получить витамины группы В можно из пивных дрожжей, гречки, овсянки, ржаного хлеба, молока, мяса, печени, яичного желтка, зеленых частей растений.

    Питательные вещества - микроэлементы и макроэлементы.

    Питательные минеральные вещества входят в состав клеток и тканей организма, участвуют в различных процессах обмена веществ. Макроэлементы необходимы человеку в относительно больших количествах: Ca, K, Mg, P, Cl, соли Na. Микроэлементы необходимы в небольших количествах: Fe, Zn, марганец, Cr, I, F.

    Йод можно получить из морепродуктов; цинк из злаков, дрожжей, бобовых, печени; медь и кобальт получаем из говяжьей печени, почек, желтка куриного яйца, меда. В ягодах и фруктах много калия, железа, меди, фосфора.



    Рассказать друзьям