Генные болезни человека. Нарушение обмена аминокислот и других соединительных тканей

💖 Нравится? Поделись с друзьями ссылкой

Различают наследственные и приобретенные нарушения обмена аминокислот. Наибольшая скорость обмена аминокислот наблюдается в нервной ткани. По этой причине в психоневрологической практике различные наследственные аминоацидопатии считаются одной из причин слабоумия. Гидролиз белков в желудке происходит при превращении в кислой среде пепсиногена в пепсин. Пепсин расщепляет связи между ароматическими аминокислотами, соседствующими с карбоксильными аминокислотами. Пепсин инактивируется в щелочной среде. Этот этап переваривания белков отсутствует у больных после гастрэктомии, у больных, длительно принимающих ингибиторы Na-K-АТФазы, например омепразол. Расщепление пептидов пепсином прекращается после поступления химуса в тонкую кишку.

В тонкой кишке полипептиды подвергаются дальнейшему расщеплению протеазами, которые содержатся в соке поджелудочной железы и на поверхности ворсинок энтероцитов. Основное расщепление пептидов осуществляют панкреатические ферменты: трипсин, химотрипсин, эластаза, карбоксипептидазы А и В. Трипсин расщепляет полипептидные цепочки в местах соединения основных аминокислот (лизина, аргинина), в то время как химотрипсин разрушает связи ароматических аминокислот (фенилаланина, тирозина, триптофана). Эластаза расщепляет связи алифатических пептидов. При протеолизе, осуществляемом панкреатическими ферментами, происходит отщепление олигопептидов и некоторых свободных аминокислот. Микроворсинки энтероцитов имеют на своей поверхности эндопептидазы и экзопептидазы, расщепляющие олигопептиды до аминокислот и ди-, трипептидов. Всасывание ди- и трипептидов осуществляется с помощью активного транспорта. Эти продукты затем расщепляются до аминокислот внутриклеточными пептидазами энтероцитов. Аминокислоты абсорбируются по принципу механизма котранспорта с натрием на апикальном участке мембраны. Существуют как минимум пять

симпортов Na/аминокислота, которые различаются по типам переносимых аминокислот: нейтральный транспорт (переносящий нейтральные аминокислоты), основной (переносящий аргинин, лизин, гистидин), дикарбоксильный (транспортирующий глутамат, аспартат), гидрофобный (транспортирующий фенилаланин, метионин) и иминотранспорт (переносящий пролин, гидроксипролин).

Описаны наследственные нарушения функции отдельных переносчиков аминокислот, приводящие к дефициту этих аминокислот. Другой причиной дефицита аминокислот в организме являются различные нарушения в работе ферментов.

Энзимопатии общее название болезней или патологических состояний, развивающихся вследствие отсутствия или снижения активности тех или иных ферментов. Выделяют наследственные энзимопатии, в основе которых лежит генетически обусловленная недостаточность одного или нескольких ферментов, и приобретенные энзимопатии, развивающиеся как следствие различных болезней, чаще хронических. Описаны следующие варианты нарушений активности ферментов:
полная блокада (выключение) синтеза фермента;
— снижение активности фермента;
— нарушение систем или биохимических реакций, от которых зависит активность фермента.

Особенностью течения наследственных энзимопатий является наличие так называемого скрытого периода, когда болезнь клинически не проявляется, но может быть заподозрена или установлена на основании биохимических исследований крови, мочи, кала. Первые клинические симптомы наследственных энзимопатий обычно обнаруживаются в раннем детском возрасте, но в ряде случаев болезнь может длительное время протекать бессимптомно и клинически проявляется у детей старшего возраста или у взрослых. Многочисленные патологические состояния, обусловленные дефицитом одного или нескольких ферментов, характеризуются большим разнообразием течения, прогноз их различен.

Рассмотрим нарушение обмена аминокислот на примере тирозина и метионина.

Тирозин — α-амино-β-(n-оксифенил)-пропионовая кислота, является заменимой ароматической одноосновной аминокислотой. Тирозин входит в состав молекул белков, в том числе ферментов, служит биосинтетическим предшественником катехоламинов (диоксифенилаланина, дофамина, адреналина, норадреналина, меланинов, тирамина), а также многих белково-пептидных гормонов, в частности гормонов щитовидной железы (тироксина и трийодтиронина), являясь йодированным компонентом специфического белка щитовидной железы тиреоглобулина. Недостаточность тирозина в организме ведет к нарушению синтеза белков, катехоламинов и др. Нарушение обмена тирозина обнаруживают при заболеваниях печени и почек, алкоголизме, меланоме, а также при наследственной патологии (тирозиноз, алкаптонурия, альбинизм).

Альбинизм — врожденная аномалия обмена тирозина. При этом нарушается выработка фермента тирозиназы, вследствие чего происходит блок превращения диоксифенилаланина (ДОФА) в меланин. У альбиносов образование и обмен адреналина не нарушаются, поэтому трудно предположить, что обмен тирозина тормозится на более ранних стадиях превращения (до стадии образования ДОФА).

Вместе с тем наблюдают и такое патологическое состояние, при котором усиленно образуется меланин. Так, в процессе развития злокачественной опухоли — меланомы — значительная часть тирозина и фенилаланина используется клетками для синтеза меланина. Возникает дефицит этих аминокислот, что вызывает нарушение белкового обмена.

Алкаптонурия — заболевание, обусловленное аутосомно-рецессивным дефектом синтеза гомогентизиновой кислоты. При нормальных условиях фермент n-оксифенилпируватоксигеназа (вместе с витамином С) превращает n-оксифенилпируват, образованный из тирозина, в гомогентизиновую кислоту. В почках гомогентизиновая кислота превращается в 4-метилацетоуксусную кислоту. Если по каким-то причинам этот процесс тормозится, то накопление гомогентизиновой кислоты приводит к образованию хиноновых полифенолов (охронозных ферментов), которые выводятся почками и обусловливают темную окраску мочи. Гомогентизиновая кислота ингибирует фермент лизилгидроксилазу, из-за чего происходит нарушение синтеза коллагена, а охронозный фермент алкаптон не полностью выводится с мочой и откладывается в хрящевой и других видах соединительной ткани, вызывая их хрупкость. Такие изменения часто приводят к кальцификации и дегенеративному артриту позвоночника, суставов конечностей, пигментации склер и хрящей ушных раковин и др. Заболевание можно выявить в раннем детском возрасте (моча быстро темнеет на воздухе).

Тирозиноз Медеса — заболевание, при котором нарушена активность n-оксифенилпируватоксигеназы или печеночной тирозинаминотрансферазы. В отличие от алкаптонурии при этой патологии в печени вообще не образуется гомогентизиновая кислота. Развиваются печеночная недостаточность и нефропатия, тяжелые формы миастении.

Наследственная тирозинемия — заболевание, которое связано с недостаточностью или отсутствием ферментов парагидроксифенилпируватоксидазы (синтезируется в печени и почках) и тирозинтрансаминазы (вырабатывается только в печени). Данные ферменты играют важную роль в катаболизме фенилаланина путем образования тирозина. Заболевание наследуется по аутосомно-рецессивному типу.

По течению выделяют острую и хроническую формы болезни. Больные с острой формой заболевания умирают в первые месяцы жизни. Хроническая форма медленно прогрессирует с развитием тяжелого поражения печени и почек. В печени развиваются стеатоз, диффузный фиброз. У детей старшего возраста формируется цирроз печени с пролиферацией желчных протоков.

Для клинической картины данного заболевания характерно отставание в умственном и физическом развитии, анорексия, рвота, поносы, желтуха, увеличение размеров печени и селезенки, асцит, отеки вплоть до анасарки, кровоточивость, развитие рахита.

При хроматографическом исследовании аминокислот сыворотки крови выявляют гипертирозинемию, в ряде случаев — повышение содержания метионина.

Частым осложнением данного заболевания является гигантоклеточная трансформация гепатоцитов. Более чем у 1/3 больных с хронической тирозинемией развивается гепатоцеллюлярная карцинома.

Лечение состоит в назначении диеты, бедной фенилаланином и метионином. Показано назначение больших доз витамина D (10 000-15 000 ЕД/сут).

Метионин (α-амино-γ-метилтиомас-ляная кислота) — незаменимая для человека кислота, входящая в состав многих белков. Метионин необходим для осуществления реакций трансметилирования, участвующих в биосинтезе креатина, холина, адреналина и других биологически активных веществ, а также в обезвреживании различных токсических метаболитов. Метионин всасывается в тонкой кишке и поступает в печень, где подвергается основным превращениям. Основной путь обмена метионина проходит через образование цистеина. Недостаток метионина сопровождается серьезными нарушениями обмена веществ, в первую очередь обмена липидов, и является причиной тяжелых поражений печени, в частности ее жировой инфильтрации. Нарушения обмена метионина в организме человека связаны в основном с наследственными энзимопатиями, которые характеризуются полным отсутствием или недостаточностью ферментов, участвующих в его превращениях.

Гомоцистинурия — наследственное заболевание, обусловленное нарушением обмена метионина и связанное с отсутствием L-серин-дегидратазы в печени. У этих больных в тканях накапливается избыток метионина и гомоцистеина, уменьшается концентрация цистатионина и цистина в крови и моче. Повышенное содержание в крови и тканях метаболитов метионина оказывает токсическое влияние на нервную систему. Клиническая картина заболевания характеризуется задержкой психомоторного развития; дети поздно начинают сидеть, ходить, говорить. Больные легковозбудимы, раздражительны. Интеллектуальное развитие, как правило, снижено. Возможны судороги, гиперкинезы. Изменения скелета у многих сходны с изменениями при синдроме Марфана (высокий рост, арахнодактилия, кифосколиоз, деформации грудной клетки). Сходство дополняется общим для этих двух заболеваний поражением глаз. Частым проявлением гомоцистинурии является эмболия сосудов легких, почечных артерий, тромбоз артерий или вен. Значительны изменения двигательной сферы: мышечная гипотония, разболтанность суставов. Изредка отмечаются пирамидные расстройства (спастические явления, повышение сухожильных рефлексов с расширением рефлексогенной зоны). Часты разно-образные вегетативно-трофические симптомы: гипергидроз, сухость кожи, акроцианоз и др.

При недостаточности фермента, активирующего метионин, клинические проявления сходны с тирозинемией. У больных наблюдается увеличение печени и селезенки с развитием мелкоузлового цирроза.

Введение…………………………………………………………………………..3

1.Наследственные болезни обмена аминокислот………………………………4

2. Наследственные нарушения обмена аминокислот…………………………..5

3. Фенилкетонурия………………………………………………………………..6

4. Клинические симптомы у больных фенилкетонурией………………………8

5. Гомоцистинурия………………………………………………………………11

6. Гистидинемия…………………………………………………………………15

7. Наследственные нарушения обмена триптофана…………………………...17

8. Галактоземия…………………………………………………………………..19

9. Недостаточность лактазы…………………………………………………….22

10. Врожденные нарушения обмена гликогена………………………………..24

Заключение……………………………………………………………………….33

Список литературы………………………………………………………………34

Введение

В последние десятилетия научный прогресс в области клинической и молекулярной генетики, биохимии позволил выявить обширную группу “новых” болезней детского возраста, связанных с нарушением обмена веществ. Патологии обмена веществ у взрослых и детей могут быть обусловлены наследственными дефектами обмена нуклеиновых кислот, врожденной недостаточностью ферментов, отвечающих за синтез и распад аминокислот, нарушениями обмена органических кислот, дефицитом жирных кислот и др. Клинический диагноз врожденных нарушений обмена веществ может представлять определенные трудности. Одна из трудностей ранней диагностики заключается в том, что в период новорожденности у этих детей нет специфических расстройств, а поздние проявления фенотипически схожи с заболеваниями ненаследственного генеза. Вторая особенность состоит в том, что для наследственных заболеваний обмена веществ характерен клинический полиморфизм, обусловленный генетической гетерогенностью. Это объясняется наличием множественных изоаллельных мутаций и возможностью возникновения мутаций в разных генах.
Клинические проявления наследственных болезней обмена веществ во многом определяются поражением нервной системы (особенно при нарушениях обмена аминокислот, липидов и кислых гликозамино-гликанов), что в свою очередь, усиливает имеющиеся нарушения и усугубляет тяжесть клинических проявлений заболевания. Для диагностики наследственных болезней важен анализ неврологических симптомов, особенно на ранних стадиях развития, и разграничение их от фенокопий - заболеваний ненаследственной природы со сходной клинической картиной.

Наследственные болезни обмена аминокислот

Роль аминокислот для организма человека чрезвычайно велика. Аминокислоты являются основными структурными элементами белков, необходимы для синтеза иммуноглобулинов, гормонов, служат источником энергии. Каждый фермент или белок имеет специфические свойства и функции, которые определяют и регулируют сложные обменные процессы и развитие организма.

Часть аминокислот не может синтезироваться в организме человека. Это незаменимые аминокислоты: триптофан, фенилаланин, метионин, лизин, лейцин, изолейцин, валин и треонин. В детском возрасте к их числу относится гистидин, т.к. организм ребенка не может синтезировать эту аминокислоту в необходимых для нормального роста количествах. Клетки растущих тканей содержат аминокислоты в высоких концентрациях, что является свидетельством высокой интенсивности процессов транспорта аминокислот через клеточные мембраны.

Для обеспечения нормального роста и развития важно не только количество поступающих аминокислот, но и их соотношение. При избытке или недостатке аминокислот развиваются явления аминокислотного дисбаланса. Например, избыток лейцина в пище тормозит рост организма, метионина- вызывает токсическое поражение нервной системы, цистина- способствует развитию жировой инфильтрации печени.

Таким образом, нарушения метаболизма аминокислот приводят к нарушению нормального функционирования организма человека.

Наследственные нарушения обмена аминокислот

1. Наследственные нарушения обмена аминокислот, сопровождающиеся увеличением их концентрации в крови и моче: фенилкетонурия, гистидинемия, триптофанурия, болезнь "кленового сиропа", орнитинемия, цитруллинемия и др. Наследование, в основном, по аутосомно-рецессивному типу. В основе развития заболеваний лежит нарушение синтеза или структуры тех или иных ферментов.

2. Наследственные нарушения обмена аминокислот, сопровождающиеся увеличением их выделения с мочой без изменения уровня в крови: гомоцистинурия, гипофосфатазия и др. При данных энзимопатиях нарушено обратное всасывание в почках, что приводит к увеличению их содержания в моче.

3. Наследственные нарушения систем транспорта аминокислот: цистинурия, триптофанурия, болезнь Гартнепа и др. К этой группе относятся энзимопатии, развитие которых обусловлено снижением реабсорбции аминокислот в почках и кишечнике.

4. Вторичные гипераминоцидурии: синдром Фанкони, фруктоземия, галактоземия, болезнь Вильсона-Коновалова и др. При данных состояниях возникает вторичная генерализованная гипераминоацидурия в результате вторичных тубулярных нарушений.

Фенилкетонурия (ФКУ)

Впервые описана в 1934 г. Folling под названием "фенилпировиноградная имбецильность". Тип наследования - аутосомнорецессивный. Частота заболевания составляет 1:10000- 1:20000 новорожденных. Пренатальный диагноз возможен при использовании генетических зондов и биопсии ворсин хориона.
К развитию классической клинической картины при ФКУ приводит недостаточность фенилаланингидроксилазы и недостаточность редуктазы дигидроптерина- 2-го фермента, обеспечивающего гидроксилирование фенилаланина. Их недостаток приводит к накоплению фенилаланина (ФА) в жидких средах организма (схема 1). Как известно, ФА относится к незаменимым аминокислотам. Поступающий с продуктами питания и не используемый для синтеза белка, он распадается по тирозиновому пути. При ФКУ наблюдается ограничение превращения ФА в тирозин и, соответственно, ускорение его превращения в фенилпировиноградную кислоту и другие кетоновые кислоты.

Схема 1. Варианты нарушений метаболизма фенилаланина.

Существование различных клинико-биохимических вариантов ФКУ объясняется тем, что фенилаланингидроксилаза является частью мультиферментной системы.

Различают следующие формы ФКУ:

1.Классическая
2.Скрытая.
3.Атипичная.

Развитие атипичных и скрытых форм ФКУ связывают с недостаточностью фенилаланинтрансаминазы, тирозинтрансаминазы и оксидазы парагидроксифенилпировиноградной кислоты. Атипичная ФКУ обычно не сопровождается поражением нервной системы в результате позднего развития ферментативного дефекта.

У женщин с фенилкетонурией возможно рождение детей с микроцефалией, задержкой умственного развития, нарушениями развития мочевыделительной системы, поэтому необходимо назначение диетотерапии во время беременности.

ГЛАВА 306. ВРОЖДЕННЫЕ НАРУШЕНИЯ ОБМЕНА АМИНОКИСЛОТ

Леон Е. Розенберг (Leon Е. Rosenberg)

Все полипептиды и белки представляют собой полимеры 20 различных амино­кислот. Восемь из них, называемые незаменимыми, не синтезируются в организме человека, поэтому их необходимо вводить с пищевыми продуктами. Остальные образуются эндогенно. Несмотря на то что большая часть содержащихся в организме аминокислот связана в белках, все же внутри клетки содержатся не­большие пулы свободных аминокислот, которые находятся в равновесии с их внеклеточными резервуарами в плазме, спинномозговой жидкости и просветах кишечника и почечных канальцев. С физиологической точки зрения, аминокисло­ты - это нечто большее, чем просто «строительные блоки». Одни из них (глицин, у-аминомасляная кислота) выполняют функцию нейромедиаторов, другие (фенил­аланин, тирозин, триптофан, глицин) служат предшественниками гормонов, ко­ферментов, пигментов, пуринов и пиримидинов. Каждая аминокислота распадается своим собственным путем, в результате чего ее азотистые и углеродные компоненты используются для синтеза других аминокислот, углеводов и липидов.

Современные представления о врожденных метаболических болезнях в значи­тельной мере основываются на результатах изучения нарушений обмена амино­кислот. В настоящее время известно более 70 врожденных аминоацидопатий; число рассматриваемых в настоящей и следующей главах нарушений катаболизма аминокислот (примерно 60) намного превосходит количество нарушений их транспорта (примерно 10), обсуждаемых в гл. 308. Каждое из этих нарушений встречается редко; их частота колеблется от 1:10000 для фенилкетонурии до 1:200 000 для алкаптонурии. Однако их суммарная частота составляет, вероятно, 1:500-1:1000 живых новорожденных.

Скрытые признаки врожденных нарушений катаболизма аминокислот приве­дены в табл. 306-1. Как правило, эти нарушения называют по веществу, накапли­вающемуся в наибольших концентрациях в крови (-емии) или моче (-урии). При многих состояниях определяется избыток аминокислоты-предшественника, при других накапливаются продукты ее распада. Естественно, что характер нару­шения зависит от места ферментативного блока, обратимости реакций, проте­кающих выше поврежденного звена, и существования альтернативных путей «утеч­ки» метаболитов. Для некоторых аминокислот, таких как серосодержащие или с разветвленной цепью, известны нарушения почти каждого этапа катаболизма, для других же в наших знаниях остается еще много пробелов. Аминоацидопатиям свойственна биохимическая и генетическая гетерогенность. Так, различают четыре формы гиперфенилаланинемии, три варианта гомоцистинурии и пять типов метил-малоновой ацидемии. Все эти варианты представляют не только химический, но и клинический интерес.

Проявления аминоацидопатий широко варьируют (см. табл. 306-1). При неко­торых из них, например при саркозин- или гиперпролинемии, клинические по­следствия, по-видимому, вообще отсутствуют. На противоположном краю ряда находятся состояния (полная недостаточность орнитинтранскарбамилазы или дегидрогеназы кетокислот с разветвленной цепью), которые без лечения приводят к смерти новорожденных. Более чем в половине случаев при нарушениях страдает функция центральной нервной системы, что проявляется отставанием в развитии, судорогами, расстройствами чувствительности или поведенческими сдвигами. При многих аномалиях мочевинного цикла после приема белковой пищи появляются рвота, неврологические нарушения и гипераммониемия. Метаболический кетоаци­доз, часто сопровождающийся гипераммониемией, обычно выявляют при наруше­ниях обмена аминокислот с разветвленной цепью. Отдельные нарушения приводят к локальным повреждениям тканей и органов, например печени, почек (недоста­точность), кожи или глаз.

Клинические проявления многих состояний можно предотвратить или осла­бить при ранней диагностике и своевременном начале адекватного лечения (огра­ничение белка и аминокислот в диете или добавки витаминов). Именно поэтому среди больших контингентов новорожденных проводится скрининг на аминоаци­допатий с использованием разнообразных химических и микробиологических методов анализа крови или мочи. Предположительный диагноз можно подтвердить прямым ферментным методом с использованием экстрактов лейкоцитов, эритро­цитов, культуры фибробластов или ткани печени, а также исследованиями по ДНК-ДНК-гибридизации. Последний подход был применен для диагностики и характеристики фенилкетонурии, недостаточности орнитинтранскарбамилазы, цит­руллинемии и пропионовой ацидемии. По мере достижения успехов в клониро­вании других генов анализ, основанный на использовании ДНК, должен будет применяться все чаще. Некоторые нарушения (цистиноз, разветвленно-цепочечная кетоацидурия, пропионовая ацидемия, метилмалоновая ацидемия, фенилкетонурия, недостаточность орнитинтранскарбамилазы, цитруллинемия и аргининсукциновая

Таблица 306-1. Врожденные нарушения катаболизма аминокислот

Амино­кислота Состояние Аномальный фермент Клинические проявления"
задержка психиче­ского раз­вития нейропсихические расстрой­ства непере­носи­мость белка метаболи­ческий кетоаци­доз интокси­кация аммо­нием другие способ наследо­вания 2
Ароматические - гетероциклические
Фенилала­нин Классическая фенилкетонурия Гидроксилаза фенилаланина + + - - - Гипопигмента-ция кожи и волос, экзема АР
Доброкачест­венная гиперфенилаланинемия То же АР
Транзиторная гиперфенилала-нинемия » » - (АР)
Вариант фенил­кетонурии Дигидроптеридинредуктаза + + - - - (АР)
Вариант фенил­кетонурии Дигидробиоптеринсинтетаза (?) + + (АР)
Тирозин Гипертирозинемия Тирозинаминотрансфераза (ци­тозоль) + Кератоз ладон­ных поверхностей, дистрофия рого­вицы (АР)
Тирозиноз То же (?) - - - - - Злокачествен­ная миастения ?
Наследственная тирозинемия Неизвестен Цирроз, пече­ночная недоста­точность, дис­функция почеч­ных канальцев АР
Алкаптонурия Оксидаза гомо- - - - - - Охроноз, артрит АР
гентизиновой кис­лоты
Альбинизм (глаза и кожа) Тирозиназа - Гипопигмента-ция волос, кожи и глазного дна АР
Альбинизм (глаза) Неизвестен - - - - - Гипопигмента-ция глазного дна ХС
Триптофан Триптофанурия » 4- + Светочувстви­тельная кожная сыпь АР
Ксантуреновая ацидурия Кинурениназа ? - - - - ?
Гистидин Гистидинемия Гистидин - ам­моний - лиаза ± - - - Нарушение слу­ха и речи АР
Урокановая ацидурия Урокиназа + + - - - ?
Формиминоглу-таминовая ациду­рия Формимино-трансфераза ? + (АР)
Глицин-иминокислоты
Глицин Гиперглицине-мия Расщепление глицина + + - - - АР
Саркозинемия Саркозиндегид-рогеназа - - - - - АР
Гипероксалурия (тип I) а- Кетоглутарат: глиоксалаткарбо-лигаза Почечная недо­статочность АР
Гипероксалурия (тип II) Дегидрогеназа D-глицериновой кислоты Кальцийокса-латный нефроли­тиаз, почечная не­достаточность АР
Иминокис­лоты Гиперпролинемия (тип I) Пролиноксидаза - - - " - - АР
Гиперпролинемия (тип II) А" -Пирролинде-гидрогеназа - - - - АР
Гипергидроксипролинемия Гидроксипро-линредуктаза - - - - . - АР
Иминопептидурия Пролидаза + Дерматит со струпьями, эрите­мой, экхимозами АР
Серосодержащие аминокислоты
Метионин Гиперметиони-немия Метионин-аде-нозил-трансфе-раза - - - - ?
Гомоцис-тин Гомоцистин­урия Цистионин-р-синтаза ± ± Дислокация хрусталиков, ос­теопороз, тромбоз сосудов АР
Гомоцистинурия 5,10-метилентет-рагидрофолат-ре-дуктаза ± ±. (АР)
Гомоцистинурия и метилмалоновая ацидемия (коба­ламин С, D, Е) 3 Кобаламин (ви­тамин В 12)-редук­таза (цитозоль) (?) ± ± Мегалобластная анемия (АР)
Цистатио-нин Цистатионин-урия Цистатионаза ± - - - - АР
Цистин Цистиноз Неизвестен Синдром Фан­кони, почечная не­достаточность, фотофобия АР
8-Сульфо-Ь-цистеин 8-Сульфо-Ь-цистеин-, суль­фит- и тиосуль-фатурия Сульфитокси-даза + + Дислокация АР хрусталика
Основные аминокислоты
Лизин Гиперлизинемия (тип I) Лизивдегидро-геназа - + + - + ?
Гиперлизинемия (тип II) Лизин: а-кето-глютаратредуктаза ± ± -- АР
Сахаропинурия Сахаропинде-гидрогеназа - - -- ?
Гидроксилизи-немия Неизвестен + - - -- (АР)
Пипеколиновая ацидемия » + + Гепатомегалия, дисплазия зри­тельных дисков
а-кетоадипиновая ацидурия Декарбоксилаза а-кетоадипиновой кислоты ± ± -- ?
Глютаровая ацидурия (тип I) Глутарил-КоА-дегидрогеназа - + - - - АР
Глютаровая ацидурия (тип II) Дегидрогеназа среднецепочечно-го ацилКоА (?) ч- Гипогликемия ?
Орнитин Гиперорнити не-мия (тип I) Орнитиндекар-боксилаза + + + - + (АР)
Гиперортинемия (тип II) Орнитинамино-трансфераза Извилистая ат­рофия сосудистой оболочки и сет­чатки глаза АР
Мочевинный цикл
Карбамил-фосфат Гипераммоние­мия (тип I) Карбамилфос-фатсинтетаза I + + + - + АР Yf
N-Ацетил-глутамат Гипераммоние­мия (тип IA) N-Ацетилглута-матсинтетаза ? + + + Л.\^
Орнитин Гипераммоние­мия (тип II) Орнитинтранс-карбамилаза ± + + - + АР
Цитруллин Цитруллинемия Аргининсукци-натсинтетаза + + + - + АР
Аргинин-янтарная Аргининянтар-ная ацидурия Аргининсукци-наза + + + - 4- АР
кислота Аргинин Аргининемия Аргиназа + + + - +
С разветвленной цепью
Валин Гипервалинемия Валинамино-трансфераза + + + - - ?
Лейцин, изолейцин Гиперлейци ни -золейцинемия Лейцинизолей-ци наминотранс -фераза + + + ?
Валин, лейцин, изо­лейцин Классическая разветвленно-це-почечная кетоаци-ДУрия + + + Запах кленово­го сиропа АР
Перемежаю­щаяся разветвлен-но-цепочечная ке-тоацидурия Дегидрогеназа кетокислот с раз­ветвленной цепью ± + + АР
Лейцин Изовалериано-вая ацидемия Изовалерил-КоА-Дегидроге­наза ± ± + + ± Запах пота ног АР


Плюс означает постоянный признак, плюс-минус-непостоянный, минус-его отсутствие, ?-неизвестно. Все это относится к проявлениям болезни у нелеченых больных.

2 АР - аутосомный рецессивный; (АР) - предположительно аутосомный рецессивный;ХС - сцепленный с Х-хромосомой. Обозначения в скобках относятся к группам комплементации. ацидурия) можно диагностировать in utero с помощью химического анализа или ДНК-ДНК-блотгибридизации с использованием культуры клеток амниотической жидкости. Далее в настоящей и следующей главах будут обсуждаться отдельные нарушения, обусловленные аминоацидопатиями.

Гиперфенилаланинемии

Определение. Гиперфенилаланинемии (см. табл. 306-1) обусловлены наруше­нием превращения фенилаланина в тирозин. Наиболее важной из них является фенилкетонурия, характеризующаяся повышенной концентрацией фенилаланина в крови, а также его побочных продуктов (особенно фенилпирувата, фенилацtтата, фениллактата и фенилацетилглютамина) в моче и выраженной отсталостью пси­хического развития.

Этиология и патогенез. Любая из Гиперфенилаланинемии обусловливается снижением активности ферментного комплекса, называемого фенилаланингидроксилазой. В заметных количествах этот комплекс обнаружен только в печени и почках. Субстратами фермента служат фенилаланин и молекулярный кислород, а кофактором - восстановленный птеридин (тетрагидробиоптерин). Продукты ферментативной реакции - тирозин и дигидробиоптерин. Последний вновь превращается в тетрагидробиоптерин под действием другого фермента дигидроптеридинредуктазы. При классической фенилкетонурии активность апофермента гидроксилазы снижена почти до нуля, но ген гидроксилазы все же присут­ствует и не подвергается крупной перестройке или делеции. Доброкачественная гиперфенилаланинемия связана с менее выраженной недостаточностью фермента, а транзиторная гиперфенилаланинемия (иногда называемая транзиторной фенилке­тонурией) обусловливается задержкой созревания апофермента гидроксилазы. Однако при двух вариантах фенилкетонурии стойкое нарушение гидроксилирующей активности определяется не дефектом апогидроксилазы, а отсутствием тетрагидробиоптерина. Недостаточность тетрагидробиоптерина может быть вызвана двумя причинами: блокадой синтеза биоптерина из его предшественников и недостаточ­ностью дигидроптеридинредуктазы, восстанавливающей тетрагидробиоптерин из ди-гидробиоптерина.

Все варианты Гиперфенилаланинемии в целом встречаются с частотой при­мерно 1:10000 новорожденных. Классическая фенилкетонурия, на долю которой приходится почти половина всех случаев, представляет собой аутосомный рецес­сивный признак и широко распространена среди представителей европеоидной популяции и жителей Востока. Среди представителей негроидной популяции она встречается редко. Активность фенилаланингидроксилазы у облигатных гетерозигот ниже, чем в норме, но выше, чем у гомозигот. Гетерозиготные носители клини­чески здоровы, хотя концентрация фенилаланина в плазме у них обычно несколько повышена. Другие Гиперфенилаланинемии, по-видимому, также наследуются как аутосомный рецессивный признак.

Прямым следствием нарушения гидроксилирования являются накопление фенилаланина в крови и моче и снижение образования тирозина. У нелеченых лиц с фенилкетонурией и ее вариантами, обусловленными недостаточностью тетра­гидробиоптерина, концентрация фенилаланина в плазме достигает уровня, достаточ­но высокого (более 200 мг/л) для активации альтернативных путей метаболизма с образованием фенилпирувата, фенилацётата, фениллактата и других производных, которые быстро подвергаются почечному клиренсу и выводятся с мочой. Уровень других аминокислот в плазме умеренно снижен, что объясняется, вероятно, тор­можением их всасывания в желудочно-кишечном тракте или нарушением реабсорб­ции из почечных канальцев в условиях избыточного содержания фенилаланина в жидких средах организма. Выраженное повреждение мозга может быть связано с рядом эффектов избытка фенилаланина: лишением мозга других аминокислот, необходимых для синтеза белка, нарушением образования или стабилизации полирибосом, снижением синтеза миелина и недостаточным синтезом норадрена­лина и серотонина. Фенилаланин представляет собой конкурентный ингибитор тирозиназы - ключевого фермента на пути синтеза меланина. Блокада этого пути наряду с уменьшением доступности предшественника меланина (тирозина) обус­ловливает недостаточную пигментацию волос и кожи.

Клинические проявления. У новорожденных никаких отклонений от нормы не отмечают. Однако оставленные без лечения дети с классической фенилкетонурией отстают в развитии, и у них обнаруживают прогрессирующие нарушения функций головного мозга. Большинство из них из-за гиперактивности и судорог, сопро­вождающих резкое отставание в психическом развитии, нуждаются в госпитали­зации в первые несколько лет жизни. Клинические признаки дополняются изме­нениями на электрокардиограмме, «мышиным» запахом кожи, волос и мочи (вслед­ствие накопления фенилаланина) и склонностью к гипопигментации и экземе. В отличие от этого у детей, у которых диагноз был установлен сразу после родов и быстро начато лечение, все эти признаки отсутствуют. Детям с транзиторной гиперфенилаланинемией или доброкачественным ее вариантом не грозят какие-либо клинические последствия из тех, что отмечаются при классической фенилкетонурии у нелеченых больных. С другой стороны, дети с недостаточностью тетрагидробиоп­терина находятся в наиболее неблагоприятных условиях. У них рано начинаются судороги, а затем развивается прогрессирующая дисфункция головного мозга и базальных ганглиев (ригидность мышц, хорея, спазмы, гипотензия). Несмотря на ранний диагноз и стандартное лечение, все они погибают в первые несколько лет жизни от вторичной инфекции.

Иногда нелеченые женщины с фенилкетонурией достигают зрелости и рожают. Более 90 % детей в этом случае отстают в психическом развитии, у многих из них выявляют другие врожденные аномалии, например микроцефалию, задержку роста и пороки сердца. Поскольку эти дети представляют собой гетерозиготы, а не гомозиготы по мутации, обусловливающей фенилкетонурию, клинические про­явления у них следует отнести на счет повреждений, связанных с повышенной концентрацией фенилаланина у матери и воздействием избытка этой аминокислоты на протяжении внутриутробного периода.

Диагностика. У новорожденного концентрация фенилаланина в плазме может быть в пределах нормы при всех типах Гиперфенилаланинемии, но после начала кормления белком она быстро увеличивается и обычно уже на 4-й день превышает норму. Поскольку диагностику и начало диетических мероприятий необходимо осуществлять до того, как ребенок достигнет месячного возраста (если иметь в виду профилактику психического отставания), то в Северной Америке и Европе проводится скрининг большинства новорожденных с определением концентрации фенилаланина в крови по методу Гутри (ингибирование роста бактерий). Дети, у которых уровень фенилаланина повышен, подвергаются дальнейшему обследова­нию с использованием более чувствительных количественных флюорометрических или хроматографических методов. При классической фенилкетонурии и недостаточ­ности тетрагидробиоптерииа концентрация фенилаланина, как правило, превышает. 200 мг/л. При транзиторной или доброкачественной Гиперфенилаланинемии она обычно ниже, хотя и выше цифр в контроле (менее 10 мг/л). Отличить классиче­скую фенилкетонурию от ее доброкачественных вариантов помогают последователь­ные серийные определения концентрации фенилаланина в плазме как функции возраста и диетических ограничений. При транзиторной Гиперфенилаланинемии уровень этой аминокислоты нормализуется в течение 3-4 мес. При доброкачест­венной Гиперфенилаланинемии диетические ограничения сопровождаются более заметным снижением уровня фенилаланина в плазме, чем при классической фенилкетонурии. У каждого ребенка с гиперфенилаланинемией, у которого, не­смотря на ранний диагноз и диетическое лечение, прогрессируют неврологические признаки, следует подозревать недостаточность тетрагидробиоптерина. Подтвердить диагноз этих вариантов, на долю которых приходится 1-5 % всех случаев фенил­кетонурии, можно с помощью ферментативного метода с использованием культуры фибробластов. С терапевтической точки зрения, однако, более важен тот факт, что пероральное введение тетрагидробиоптерина позволяет отличать детей с классиче­ской фенилкетонурией (у которых при этом уровень фенилаланина не снижается) от больных с недостаточностью тетрагидробиоптерина (у которых концентрация фенилаланина в плазме резко уменьшается). В настоящее время классическую фенилкетонурию можно диагностировать пренатально по полиморфизму "длины рестрикционных фрагментов, идентифицируемому с помощью ДНК-ДНК-блот­гибридизации.

Лечение. Именно при классической фенилкетонурии было впервые выявлено, что уменьшение накопления «виновного» метаболита предотвращает развитие клинической симптоматики. Это уменьшение достигается с помощью специальной диеты, в которой основная масса белка заменена на искусственную смесь амино­кислот, содержащую лишь небольшое количество фенилаланина. Обогащая эту диету некоторым количеством натуральных продуктов, можно подобрать такое количество фенилаланина в ней, которое окажется достаточным для нормального роста, но недостаточным для существенного повышения уровня фенилаланина в крови. Обычно концентрацию фенилаланина поддерживают на уровне между 30-120 мг/л.

До тех пор, пока не появится уверенность в безопасности отмены диетического лечения в каком-либо возрасте, ограничения в питании следует продолжать. При транзиторной и доброкачественной формах гиперфенилаланинемии не требуется длительных диетических ограничений. С другой стороны, как уже отмечалось, состояние детей с недостаточностью тетрагидробиоптерина ухудшается, несмотря на ограничения фенилаланина в диете. Эффективность заместительного введения птеридинового кофактора находится в стадии изучения.

Гомоцистинурии

Гомоцистинуриями называют три биохимически и клинически разных нару­шения (см. табл. 306-1), но каждое из них характеризуется увеличением кон­центрации серосодержащей аминокислоты гомоцистина в крови и моче. Наиболее частая форма заболевания обусловлена снижением активности цистатион-b-синтазы, фермента, принимающего участие в транссульфировании метионина в цисте­ин. Две другие формы обусловливаются нарушением конверсии гомоцистеина в метионин. Эта реакция катализируется гомоцистеинметилтетрагидрофолатметилтрансферазой и требует двух кофакторов - метилтетрагидрофолата и метилкобаламина (метилвитамин B12). От причины гомоцистинурии у некоторых больных зави­сит биохимическое и в ряде случаев клиническое состояние после обогащения диеты определенным витамином (пиридоксин, фолат или кобаламин).

Леон Е. Розенберг ( Leon Е. Rosenberg )

Все полипептиды и белки представляют собой полимеры 20 различных аминокислот. Восемь из них, называемые незаменимыми, не синтезируются в организме человека, поэтому их необходимо вводить с пищевыми продуктами. Остальные образуются эндогенно. Несмотря на то что большая часть содержащихся в организме аминокислот связана в белках, все же внутри клетки содержатся небольшие пулы свободных аминокислот, которые находятся в равновесии с их внеклеточными резервуарами в плазме, спинномозговой жидкости и просветах кишечника и почечных канальцев. С физиологической точки зрения, аминокислоты - это нечто большее, чем просто «строительные блоки». Одни из них (глицин, у-аминомасляная кислота) выполняют функцию нейромедиаторов, другие (фенилаланин, тирозин, триптофан, глицин) служат предшественниками гормонов, коферментов, пигментов, пуринов и пиримидинов. Каждая аминокислота распадается своим собственным путем, в результате чего ее азотистые и углеродные компоненты используются для синтеза других аминокислот, углеводов и липидов.

Современные представления о врожденных метаболических болезнях в значительной мере основываются на результатах изучения нарушений обмена аминокислот. В настоящее время известно более 70 врожденных аминоацидопатий; число нарушений катаболизма аминокислот (примерно 60) намного превосходит количество нарушений их транспорта (примерно 10). Каждое из этих нарушений встречается редко; их частота колеблется от 1:10000 для фенилкетонурии до 1:200 000 для алкаптонурии. Однако их суммарная частота составляет, вероятно, 1:500-1:1000 живых новорожденных.

Как правило, эти нарушения называют по веществу, накапливающемуся в наибольших концентрациях в крови (-емии) или моче (-урии). При многих состояниях определяется избыток аминокислоты-предшественника, при других накапливаются продукты ее распада. Естественно, что характер нарушения зависит от места ферментативного блока, обратимости реакций, протекающих выше поврежденного звена, и существования альтернативных путей «утечки» метаболитов. Для некоторых аминокислот, таких как серосодержащие или с разветвленной цепью, известны нарушения почти каждого этапа катаболизма, для других же в наших знаниях остается еще много пробелов. Аминоацидопатиям свойственна биохимическая и генетическая гетерогенность. Так, различают четыре формы гиперфенилаланинемии, три варианта гомоцистинурии и пять типов метил-малоновой ацидемии. Все эти варианты представляют не только химический, но и клинический интерес.

Проявления аминоацидопатий широко варьируют. При некоторых из них, например при саркозин- или гиперпролинемии, клинические последствия, по-видимому, вообще отсутствуют. На противоположном краю ряда находятся состояния (полная недостаточность орнитинтранскарбамилазы или дегидрогеназы кетокислот с разветвленной цепью), которые без лечения приводят к смерти новорожденных. Более чем в половине случаев при нарушениях страдает функция центральной нервной системы, что проявляется отставанием в развитии, судорогами, расстройствами чувствительности или поведенческими сдвигами. При многих аномалиях мочевинного цикла после приема белковой пищи появляются рвота, неврологические нарушения и гипераммониемия. Метаболический кетоацидоз, часто сопровождающийся гипераммониемией, обычно выявляют при нарушениях обмена аминокислот с разветвленной цепью. Отдельные нарушения приводят к локальным повреждениям тканей и органов, например печени, почек (недостаточность), кожи или глаз.

Клинические проявления многих состояний можно предотвратить или ослабить при ранней диагностике и своевременном начале адекватного лечения (ограничение белка и аминокислот в диете или добавки витаминов). Именно поэтому среди больших контингентов новорожденных проводится скрининг на аминоацидопатий с использованием разнообразных химических и микробиологических методов анализа крови или мочи. Предположительный диагноз можно подтвердить прямым ферментным методом с использованием экстрактов лейкоцитов, эритроцитов, культуры фибробластов или ткани печени, а также исследованиями по ДНК-ДНК-гибридизации. Последний подход был применен для диагностики и характеристики фенилкетонурии, недостаточности орнитинтранскарбамилазы, цитруллинемии и пропионовой ацидемии. По мере достижения успехов в клонировании других генов анализ, основанный на использовании ДНК, должен будет применяться все чаще. Некоторые нарушения (цистиноз, разветвленно-цепочечная кетоацидурия, пропионовая ацидемия, метилмалоновая ацидемия, фенилкетонурия, недостаточность орнитинтранскарбамилазы, цитруллинемия и аргининсукциновая

Гиперфенилаланинемии

Определение. Гиперфенилаланинемии обусловлены нарушением превращения фенилаланина в тирозин. Наиболее важной из них является фенилкетонурия, характеризующаяся повышенной концентрацией фенилаланина в крови, а также его побочных продуктов (особенно фенилпирувата, фенилацитата, фениллактата и фенилацетилглютамина) в моче и выраженной отсталостью психического развития.

Этиология и патогенез. Любая из Гиперфенилаланинемии обусловливается снижением активности ферментного комплекса, называемого фенилаланингидроксилазой. В заметных количествах этот комплекс обнаружен только в печени и почках. Субстратами фермента служат фенилаланин и молекулярный кислород, а кофактором - восстановленный птеридин (тетрагидробиоптерин). Продукты ферментативной реакции - тирозин и дигидробиоптерин. Последний вновь превращается в тетрагидробиоптерин под действием другого фермента дигидроптеридинредуктазы. При классической фенилкетонурии активность апофермента гидроксилазы снижена почти до нуля, но ген гидроксилазы все же присутствует и не подвергается крупной перестройке или делеции. Доброкачественная гиперфенилаланинемия связана с менее выраженной недостаточностью фермента, а транзиторная гиперфенилаланинемия (иногда называемая транзиторной фенилкетонурией) обусловливается задержкой созревания апофермента гидроксилазы. Однако при двух вариантах фенилкетонурии стойкое нарушение гидроксилирующей активности определяется не дефектом апогидроксилазы, а отсутствием тетрагидробиоптерина. Недостаточность тетрагидробиоптерина может быть вызвана двумя причинами: блокадой синтеза биоптерина из его предшественников и недостаточностью дигидроптеридинредуктазы, восстанавливающей тетрагидробиоптерин из дигидробиоптерина.

Все варианты Гиперфенилаланинемии в целом встречаются с частотой примерно 1:10000 новорожденных. Классическая фенилкетонурия, на долю которой приходится почти половина всех случаев, представляет собой аутосомный рецессивный признак и широко распространена среди представителей европеоидной популяции и жителей Востока. Среди представителей негроидной популяции она встречается редко. Активность фенилаланингидроксилазы у облигатных гетерозигот ниже, чем в норме, но выше, чем у гомозигот. Гетерозиготные носители клинически здоровы, хотя концентрация фенилаланина в плазме у них обычно несколько повышена. Другие Гиперфенилаланинемии, по-видимому, также наследуются как аутосомный рецессивный признак.

Прямым следствием нарушения гидроксилирования являются накопление фенилаланина в крови и моче и снижение образования тирозина. У нелеченых лиц с фенилкетонурией и ее вариантами, обусловленными недостаточностью тетрагидробиоптерина, концентрация фенилаланина в плазме достигает уровня, достаточно высокого (более 200 мг/л) для активации альтернативных путей метаболизма с образованием фенилпирувата, фенилацётата, фениллактата и других производных, которые быстро подвергаются почечному клиренсу и выводятся с мочой. Уровень других аминокислот в плазме умеренно снижен, что объясняется, вероятно, торможением их всасывания в желудочно-кишечном тракте или нарушением реабсорбции из почечных канальцев в условиях избыточного содержания фенилаланина в жидких средах организма. Выраженное повреждение мозга может быть связано с рядом эффектов избытка фенилаланина: лишением мозга других аминокислот, необходимых для синтеза белка, нарушением образования или стабилизации полирибосом, снижением синтеза миелина и недостаточным синтезом норадреналина и серотонина. Фенилаланин представляет собой конкурентный ингибитор тирозиназы - ключевого фермента на пути синтеза меланина. Блокада этого пути наряду с уменьшением доступности предшественника меланина (тирозина) обусловливает недостаточную пигментацию волос и кожи.

Клинические проявления. У новорожденных никаких отклонений от нормы не отмечают. Однако оставленные без лечения дети с классической фенилкетонурией отстают в развитии, и у них обнаруживают прогрессирующие нарушения функций головного мозга. Большинство из них из-за гиперактивности и судорог, сопровождающих резкое отставание в психическом развитии, нуждаются в госпитализации в первые несколько лет жизни. Клинические признаки дополняются изменениями на электрокардиограмме, «мышиным» запахом кожи, волос и мочи (вследствие накопления фенилаланина) и склонностью к гипопигментации и экземе. В отличие от этого у детей, у которых диагноз был установлен сразу после родов и быстро начато лечение, все эти признаки отсутствуют. Детям с транзиторной гиперфенилаланинемией или доброкачественным ее вариантом не грозят какие-либо клинические последствия из тех, что отмечаются при классической фенилкетонурии у нелеченых больных. С другой стороны, дети с недостаточностью тетрагидробиоптерина находятся в наиболее неблагоприятных условиях. У них рано начинаются судороги, а затем развивается прогрессирующая дисфункция головного мозга и базальных ганглиев (ригидность мышц, хорея, спазмы, гипотензия). Несмотря на ранний диагноз и стандартное лечение, все они погибают в первые несколько лет жизни от вторичной инфекции.

Иногда нелеченые женщины с фенилкетонурией достигают зрелости и рожают. Более 90 % детей в этом случае отстают в психическом развитии, у многих из них выявляют другие врожденные аномалии, например микроцефалию, задержку роста и пороки сердца. Поскольку эти дети представляют собой гетерозиготы, а не гомозиготы по мутации, обусловливающей фенилкетонурию, клинические проявления у них следует отнести на счет повреждений, связанных с повышенной концентрацией фенилаланина у матери и воздействием избытка этой аминокислоты на протяжении внутриутробного периода.

Диагностика. У новорожденного концентрация фенилаланина в плазме может быть в пределах нормы при всех типах Гиперфенилаланинемии, но после начала кормления белком она быстро увеличивается и обычно уже на 4-й день превышает норму. Поскольку диагностику и начало диетических мероприятий необходимо осуществлять до того, как ребенок достигнет месячного возраста (если иметь в виду профилактику психического отставания), то в Северной Америке и Европе проводится скрининг большинства новорожденных с определением концентрации фенилаланина в крови по методу Гутри (ингибирование роста бактерий). Дети, у которых уровень фенилаланина повышен, подвергаются дальнейшему обследованию с использованием более чувствительных количественных флюорометрических или хроматографических методов. При классической фенилкетонурии и недостаточности тетрагидробиоптерииа концентрация фенилаланина, как правило, превышает. 200 мг/л. При транзиторной или доброкачественной Гиперфенилаланинемии она обычно ниже, хотя и выше цифр в контроле (менее 10 мг/л). Отличить классическую фенилкетонурию от ее доброкачественных вариантов помогают последовательные серийные определения концентрации фенилаланина в плазме как функции возраста и диетических ограничений. При транзиторной Гиперфенилаланинемии уровень этой аминокислоты нормализуется в течение 3-4 мес. При доброкачественной Гиперфенилаланинемии диетические ограничения сопровождаются более заметным снижением уровня фенилаланина в плазме, чем при классической фенилкетонурии. У каждого ребенка с гиперфенилаланинемией, у которого, несмотря на ранний диагноз и диетическое лечение, прогрессируют неврологические признаки, следует подозревать недостаточность тетрагидробиоптерина. Подтвердить диагноз этих вариантов, на долю которых приходится 1-5 % всех случаев фенилкетонурии, можно с помощью ферментативного метода с использованием культуры фибробластов. С терапевтической точки зрения, однако, более важен тот факт, что пероральное введение тетрагидробиоптерина позволяет отличать детей с классической фенилкетонурией (у которых при этом уровень фенилаланина не снижается) от больных с недостаточностью тетрагидробиоптерина (у которых концентрация фенилаланина в плазме резко уменьшается). В настоящее время классическую фенилкетонурию можно диагностировать пренатально по полиморфизму длины рестрикционных фрагментов, идентифицируемому с помощью ДНК-ДНК-блотгибридизации.

Лечение. Именно при классической фенилкетонурии было впервые выявлено, что уменьшение накопления «виновного» метаболита предотвращает развитие клинической симптоматики. Это уменьшение достигается с помощью специальной диеты, в которой основная масса белка заменена на искусственную смесь аминокислот, содержащую лишь небольшое количество фенилаланина. Обогащая эту диету некоторым количеством натуральных продуктов, можно подобрать такое количество фенилаланина в ней, которое окажется достаточным для нормального роста, но недостаточным для существенного повышения уровня фенилаланина в крови. Обычно концентрацию фенилаланина поддерживают на уровне между 30-120 мг/л.

До тех пор, пока не появится уверенность в безопасности отмены диетического лечения в каком-либо возрасте, ограничения в питании следует продолжать. При транзиторной и доброкачественной формах гиперфенилаланинемии не требуется длительных диетических ограничений. С другой стороны, как уже отмечалось, состояние детей с недостаточностью тетрагидробиоптерина ухудшается, несмотря на ограничения фенилаланина в диете. Эффективность заместительного введения птеридинового кофактора находится в стадии изучения.

Гомоцистинурии

Гомоцистинуриями называют три биохимически и клинически разных нарушения, но каждое из них характеризуется увеличением концентрации серосодержащей аминокислоты гомоцистина в крови и моче. Наиболее частая форма заболевания обусловлена снижением активности цистатион -синтазы, фермента, принимающего участие в транссульфировании метионина в цистеин. Две другие формы обусловливаются нарушением конверсии гомоцистеина в метионин. Эта реакция катализируется гомоцистеинметилтетрагидрофолатметилтрансферазой и требует двух кофакторов - метилтетрагидрофолата и метилкобаламина (метилвитамин В12). От причины гомоцистинурии у некоторых больных зависит биохимическое и в ряде случаев клиническое состояние после обогащения диеты определенным витамином (пиридоксин, фолат или кобаламин).

Недостаточность цистатионин -синтазы

Определение. Недостаточность этого фермента приводит к повышению уровней метионина и гомоцистина в жидких средах организма и к снижению уровня цистеина и цистина. Основным клиническим признаком служит дислокация глазных хрусталиков. Часто присоединяются отсталость психического развития, остеопороз и тромбоз сосудов.

Этиология и патогенез. Атом серы незаменимой аминокислоты метионина в конце концов переносится в молекулу цистеина. Это происходит в процессе реакции транссульфирования, на одной из стадии которой гомоцистеин конденсируется с серином, образуя цистатион. Эта реакция катализируется пиридоксальфосфатзависимым ферментом цистатион -синтазой. Сообщается более чем о 600 больных с недостаточностью этого фермента. Заболевание распространено в Ирландии (1:40000 новорожденных), но в других регионах встречается редко (менее 1:200000 новорожденных).

Гомоцистеин и метионин накапливаются в клетках и жидких средах организма; нарушается синтез цистеина, что приводит к снижению его уровня и дисульфидной формы цистеина. Примерно у половины больных в печени, головном мозге, лейкоцитах и культивируемых фибробластах не удается определить активность синтазы. У остальных больных активность фермента в тканях не превышает 1-5 % от нормы, причем эту остаточную активность часто можно повысить путем добавления пиридоксина. У гетерозиготных носителей этого аутосомного рецессивного признака не обнаруживается постоянных химических изменений жидких сред организма, хотя активность синтазы у них снижена.

Гомоцистеин нарушает нормальные перекрестные связи коллагена, что, по-видимому, играет важную роль в генезе глазных, костных и сосудистых осложнений. Аномальный коллаген в поддерживающей связке хрусталика глаза и костном матриксе может определять дислокацию хрусталиков и остеопороз. Точно так же нарушение обмена базального вещества в сосудистой стенке может обусловить предрасположенность к артериальному и венозному тромботическому диатезу. В основе отставания психического развития могут лежать повторные инсульты, вызываемые тромбозом, хотя нельзя исключить и прямых химических влияний на метаболизм клеток головного мозга.

Клинические проявления. Более 80 % гомозигот с абсолютной недостаточностью синтазы страдают смещением глазных хрусталиков. Эта патология проявляется обычно на 3-4-м году жизни и часто приводит к острой глаукоме и снижению остроты зрения. Примерно у половины больных отмечают отставание психического развития с нечеткими изменениями поведенческих реакций. Рентгенологически обычно выявляют остеопороз (у 64 % больных к возрасту 15 лет), но клинически он проявляется редко. Угрожающие жизни сосудистые осложнения, обусловленные, вероятно, повреждением эндотелия сосудов, служат основной причиной заболеваемости и смертности. Тромбоз коронарных, почечных и мозговых артерий с сопутствующим инфарктом тканей может произойти уже в первые 10 лет жизни. Почти 25 % больных умирают в возрасте до 30 лет в результате патологии сосудов, которую провоцируют, вероятно, ангиографические процедуры. Важно подчеркнуть, что у больных, поддающихся лечению пиридоксином, все клинические проявления болезни выражены слабее. Гетерозиготные носители недостаточности синтазы (в популяции примерно 1:70) могут составлять группу риска в отношении преждевременного развития обструкции периферических и мозговых сосудов.

Диагностика. Простым методом выявления усиленной экскреции сульфгидрильных соединений с мочой служит цианиднитропруссидная проба. Поскольку ее положительные результаты могут определяться также присутствием цистина и S -сульфоцистеина, необходимо исключить другие нарушения обмена серы, что обычно можно сделать по клиническим признакам. Отличить недостаточность р -синтазы от других причин гомоцистинурии удается обычно по результатам определения уровня метионина в плазме, который имеет тенденцию к повышению у больных с недостаточностью синтазы и остается в пределах нормы или снижен при нарушении образования метионина. Для подтверждения диагноза требуется определение синтазной активности в тканевых экстрактах. Гетерозиготы могут быть идентифицированы по максимальному уровню гомоцистина после пероральной нагрузки метионином и путем определения активности синтазы в тканях.

Лечение. Как и при классической фенилкетонурии, эффективность лечения определяется ранней диагностикой. У нескольких детей, у которых диагноз был установлен в неонатальном периоде, эффектом сопровождалось соблюдение обогащенной цистином диеты на фоне ограничения метионина. До сих пор заболевание у них протекает доброкачественно по сравнению с нелечеными больными сиблингами. Примерно у половины больных прием пиридоксина (25-500 мг/сут) сопровождается снижением уровня метионина и гомоцистина в плазме и моче и повышением уровня цистина в жидких средах организма. Этот эффект связан, вероятно, с умеренным повышением активности синтазы в клетках больных, у которых ферментативное нарушение характеризуется либо снижением сродства к кофактору, либо ускорением распада мутантного фермента. Поскольку эта витаминная добавка проста и, очевидно, безопасна, ее следует назначать всем больным. Пока отсутствуют данные об эффективности лечения добавками пиридоксина, начатого вскоре после рождения. Точно так же нет сведений об эффективности пиридоксиновых добавок у гетерозиготных носителей болезни.

Недостаточность 5, 10-метилентетрагидрофолатредуктазы

Определение. При этой форме гомоцистинурии концентрация метионина в жидких средах организма находится в пределах нормы или снижена, поскольку недостаточность 5,10-метилентетрагидрофолатредуктазы обусловливает нарушение синтеза 5-метилтетрагидрофолата - кофактора образования метионина из гомоцистеина. У большинства больных отмечается дисфункция центральной нервной системы.

Этиология и патогенез. Фермент 5-метилтетрагидрофолатгомоцистеинметилтрансфераза катализирует превращение гомоцистеина в метионин. Донором метильной группы, переносимой в этой реакции, служит 5-метилтетрагидрофолат, в свою очередь синтезирующийся из 5, 10-метилентетрагидрофолата под действием фермента 5, 10-метилентетрагидрофолатредуктазы. Таким образом, активность редуктазы контролирует как синтез метионина, так и образование тетрагидрофолата. Эта последовательность реакций играет ключевую роль в нормальном синтезе ДНК и РНК. Первичное снижение активности редуктазы приводит уже вторично к снижению активности метилтрансферазы и нарушению превращения гомоцистеина в метионин. Дефицит метионина и нарушение синтеза нуклеиновых кислот могут определять дисфункцию центральной нервной системы. Эта патология наследуется, очевидно, как аутосомный рецессивный признак.

Клинические проявления. До настоящего времени сведения о гомоцистинурии, обусловленной недостаточностью редуктазы, получены при обследовании менее 10 детей. В наиболее тяжелых случаях уже в раннем возрасте у ребенка были заметны резкая задержка развития и атрофия головного мозга. У остальных больных в возрасте после 10 лет отмечались психические нарушения (кататония) или некоторое отставание в развитии. Клинические проявления зависят, вероятно, от степени недостаточности редуктазы.

Диагностика и лечение. Основанием для диагноза должно служить сочетание повышенной концентрации гомоцистина в жидких средах организма с нормальным или сниженным уровнем метионина. У некоторых больных снижен уровень фолата в сыворотке. Для подтверждения диагноза необходимо прямое определение активности редуктазы в тканевых экстрактах (мозг, печень, культура фибробластов). Несмотря на то что опыт лечения при этом состоянии невелик, но у одной девочки-подростка с кататоническим психозом отметили заметное улучшение состояния и нормализацию биохимических показателей после введения фолата (5-10 мг/сут). При его отмене психические нарушения становились более тяжелыми. Это наблюдение позволяет надеяться, что ранняя диагностика с последующей терапией фолатом сможет предотвратить неврологические и психические проявления.

Недостаточность синтеза кобаламиновых (витамин В 12) коферментов

Определение. Эта форма гомоцистинурии также обусловлена нарушением превращения гомоцистеина в метионин. Первичный дефект локализуется на этапе синтеза метилкобаламина - кобаламинового (витамин В 12) кофермента, необходимого для функционирования метилтетрагидрофолатгомоцистеинметилтрансферазы. Одновременно в жидких средах организма накапливается метилмалоновая кислота, поскольку нарушен синтез и второго кофермента - аденозилкобаламина, необходимого для изомеризации метилмалонилфермента А (КоА) в сукцинил-КоА.

Этиология и патогенез. Как и недостаточность 5, 10-метилентетрагидрофолатредуктазы, этот дефект приводит к нарушению реметилирования гомоцистеина. В основе лежит недостаточный синтез кобаламиновых коферментов. Поскольку для переноса метильной группы с метилтетрагидрофолата на гомоцистеин необходим метилкобаламин, нарушение метаболизма витамина В12 обусловливает снижение активности метилтрансферазы. Синтез метилкобаламина нарушается на каком-то раннем этапе активации витаминного предшественника в лизосомах или цитозоле. Генетические исследования на соматических клетках указывают на возможность существования трех механизмов нарушения образования коферментов, каждый из которых наследуется аутосомным рецессивным способом.

Клинические проявления. Первый больной умер от инфекции в возрасте 6 нед. У него была отмечена резкая задержка развития. У других детей клинические проявления варьировали: у двоих были выявлены мегалобластическая анемия и панцитопения, у троих - тяжелые нарушения функций спинного и головного мозга, а у одного клиническая симптоматика была очень скудной.

Диагностика и лечение. Биохимическими признаками заболевания служат гомоцистинурия, гипометионинемия и метилмалоновая ацидурия. Эти изменения могут быть выявлены и при пернициозной анемии ювенильного или взрослого типа, при которой нарушено всасывание кобаламина в кишечнике. Дифференциальному диагнозу помогает определение сывороточной концентрации кобаламина: низкой при пернициозной анемии и нормальной у больных с нарушением превращения кобаламина в коферменты. Окончательный диагноз требует доказательства нарушенного синтеза коферментов в культуре клеток. Лечение больных детей добавками кобаламина (1-2 мг/сут) достаточно перспективно: экскреция гомоцистина и метилмалоната почти достигает нормы; гематологические и неврологические признаки также нивелируются в той или иной степени.

T.P. Harrison. Principles of internal medicine. Перевод д.м.н. А. В. Сучкова, к.м.н. Н. Н. Заваденко, к.м.н. Д. Г. Катковского


Генные болезни человека

Генные болезни – это разнообразная по клинической картине группа заболеваний, обусловленная мутациями единичных генов.

Число известных в настоящее время моногенных наследственных заболеваний составляет около 4500. Встречаются эти заболевания с частотой 1: 500 - 1: 100000 и реже. Моногенная патология определяется примерно у 3% новорожденных и является причиной 10% младенческой смертности.

Наследуются моногенные заболевания в соответствии с законами Менделя.

Начало патогенеза любой генной болезни связано с первичным эффектом мутантного аллеля. Он может проявляться в следующих вариантах: отсутствие синтеза белка; синтез аномального белка; количественно избыточный синтез белка; количественно недостаточный синтез белка.

Патологический процесс, возникающий в результате мутации единичного гена, проявляется одновременно на молекулярном, клеточном и органном уровнях у одного индивида.

Существует несколько подходов к классификации моногенных болезней: генетический, патогенетический, клинический и др.

Классификация, основанная на генетическом принципе: согласно ей моногенные болезни можно подразделять по типам наследования – аутосомно-доминантные, аутосомно-рецессивные, Х-сцепленные доминантные, Х-сцепленные рецессивные, У-сцепленные (голандрические). Эта классификация наиболее удобна, т.к. позволяет сориентироваться относительно ситуации в семье и прогноза потомства.

Вторая классификация основана на клиническом принципе, т.е. на отнесении болезни к той или иной группе в зависимости от системы органов, наиболее вовлеченной в патологический процесс, - моногенные заболевания нервной, дыхательной, сердечно-сосудистой систем, органов зрения, кожи, психические, эндокринные и т.д.

Третья классификация основывается на патогенетическом принципе. Согласно ей все моногенные болезни можно разделить на три группы:

    наследственные болезни обмена веществ;

    моногенные синдромы множественных врожденных пороков развития;

    комбинированные формы.

Рассмотрим наиболее распространенные моногенные заболевания.

Нарушение обмена аминокислот.

Наследственные заболевания, обусловленные нарушением обмена аминокислот, составляют значительную часть генетической патологии детей раннего возраста. Большинство из них начинаются после достаточно короткого периода благополучного развития ребёнка, но в дальнейшем приводят к тяжелому поражению интеллекта и физических показателей. Встречается и острое течение этих заболеваний, когда состояние новорожденного резко ухудшается на 2-5-е сутки жизни. В такой ситуации высока вероятность летального исхода ещё до момента уточнения диагноза.

Абсолютное большинство этих болезней наследуется аутосомно-рецессивно. Вероятность повторного рождения больного ребёнка в семьях, где уже регистрировалась эта патология, составляет 25%.

Фенилкетонурия (ФКУ) – самое распространенное заболевание, вызванное нарушением аминокислотного обмена. Впервые было описано в 1934 году. Это заболевание наследуется аутосомно-рецессивно.

В Западной Европе один больной ФКУ обнаруживается среди 10000-17000 новорожденных, в Беларуссии и России частота ФКУ колеблется в пределах 1 случай на 6000-10000 новорожденных. Очень редко ФКУ встречается среди негров, евреев-ашкеназов, в Японии.

Основной причиной ФКУ является дефект фермента фенилаланин-4-гидроксилазы, который способствует превращению аминокислоты фенилаланина в тирозин. Фенилаланин относится к жизненно необходимым аминокислотам, которые не синтезируются в организме, а поступают с продуктами питания, содержащими белок. Фенилаланин входит в состав многих белков человека, имеет большое значение для созревания нервной системы.

Ген, определяющий структуру фенилаланин-4-гидроксилазы, локализован на длинном плече 12-й хромосомы, содержит 70000 пар нуклеиновых оснований. Чаще всего мутация этого гена вызвана заменой одного нуклеотида (90% всех случаев заболевания).

Дефект фермента при ФКУ приводит к нарушению реакции превращения фенилаланина в тирозин. В результате в организме больного накапливается избыточное количество фенилаланина и его производных: фенилпировиноградной, фенилмолочной, фенилуксусной и др. В то же время при ФКУ в организме больного формируется недостаток продуктов реакции: тирозина, являющегося важной частью обмена нейромедиаторов (катехоламинов и серотонина), и меланина, определяющего окрашивание кожи и волос у человека.

Избыток фенилаланина и его производных оказывает непосредственное повреждающее действие на нервную систему, функцию печени, обмена белков и других веществ в организме.

Беременность и роды при ФКУ у плода обычно не имеют каких-либо специфических особенностей. Новорожденных ребёнок выглядит здоровым, так как в период в период внутриутробного развития обмен веществ матери обеспечивает нормальный уровень фенилаланина в организме плода. После рождения ребенок начинает получать белок с молоком матери. Дефект фенилаланингидроксилазы препятствует обмену содержащегося в белке грудного молока фенилаланина, который начинает постепенно накапливаться в организме больного.

Первые клинические проявления ФКУ можно заметить у 2-4-месячного ребенка. Кожа и волосы начинают терять пигментацию. Глаза становятся голубыми. Часто появляются экземоподобные изменения кожных покровов: покраснения, мокнутие и шелушение щечек и складок кожи, коричневатые корочки в области волосистой части черепа. Возникает, а затем усиливается специфический запах, описываемый как «мышиный».

Ребёнок становится вялым, теряет интерес к окружающему. С 4 месяцев становится заметной задержка моторного и психического развития. Ребёнок значительно позже начинает сидеть, ходить, не всегда способен научиться разговаривать. Степень выраженности поражения нервной системы варьирует, но при отсутствии лечения обычно регистрируется глубокая умственная отсталость. Примерно у четверти больных детей во втором полугодии жизни возникают судороги. Особенно характерны кратковременные приступы, сопровождающиеся наклонами головы («кивки»). Дети с ФКУ старше 1 года обычно расторможены, эмоционально неустойчивы.

Диагностика ФКУ основывается не только на клиническом осмотре и генеалогических данных, но и на результатах лабораторных исследований (определение фенилпировиноградной кислоты в моче). Для уточнения диагноза необходимо определение уровня фенилаланина в крови ребенка (в норме содержание фенилаланина в крови не более 4 мг%, у больного ФКУ превышает 10, а иногда и 30 мг%).

Поскольку главной причиной поражения нервной системы при классической форме ФКУ является избыток фенилаланина, то ограничение его поступления с пищей в организм больного даёт возможность предупредить патологические изменения. С этой целью применяется специальная диета, обеспечивающая только минимальную возрастную потребность в фенилаланине для ребенка. Эта аминокислота входит в структуру большинства белков, поэтому из рациона больного исключаются высокобелковые продукты: мясо, рыба, творог, яичный белок, хлебобулочные изделия и др.

Раннее введение диеты (на 1-ом месяце жизни) и её регулярное соблюдение обеспечивает практически нормальное развитие ребенка.

Строгая диетотерапия рекомендуется до 10-12 лет. После этого объем обычных продуктов питания для больных ФКУ постепенно увеличивается, и пациенты переводятся на вегетарианское питание. В случае повышенной физической или умственной нагрузки рекомендуют использовать в пищу заменители белка.

В зрелом возрасте строгая диета необходима женщинам, больным ФКУ, которые планируют деторождение. Если уровень ФА крови беременной превышает нормальный, то её ребёнок будет иметь микроцефалию, врожденный порок сердца и другие аномалии.

Нарушение обмена соединительной ткани.

Абсолютное большинство этих болезней наследуется аутосомно-доминантно. При данном типе наследования больные встречаются в каждом поколении; у больных родителей рождается больной ребёнок; вероятность наследования составляет 100% - если хотя бы один родитель гомозиготен, 75% - если оба родителя гетерозиготны, и 50% - если один родитель гетерозиготен.

Синдром Марфана. Это одна из наследственных форм врожденной генерализованной патологии соединительной ткани, впервые описана в 1886 году В. Марфаном. Частота в популяции – 1: 10000-15000.

Этиологическим фактором синдрома Марфана (СМ) является мутация в гене фибриллина, локализованном в длинном плече 15-й хромосомы.

Больные синдромом Марфана имеют характерный внешний вид: они отличаются высоким ростом, астеническим телосложением, количество подкожно-жировой клетчатки у них снижено, конечности удлинены преимущественно за счет дистальных отделов, размах рук превышает длину тела (норме эти показатели совпадают). Отмечаются длинные тонкие пальцы – паукообразные (арахнодактилия), часто наблюдается «симптом большого пальца», при котором длинный 1-ый палец кисти в поперечном положении достигает ульнарного края узкой ладони. При охватывании 1-ым и 5-м пальцами запястья другой руки они обязательно перекрываются (симптом запястья). У половины больных отмечается деформация грудной клетки (воронкообразная, килеобразная), искривление позвоночника (кифоз, сколиоз), гиперподвижность суставов, клинодактилия мизинцев, сандалевидная щель. Со стороны сердечно-сосудистой системы наиболее патогномоничными являются расширение восходящей части аорты с развитием аневризмы, пролапс сердечных клапанов. Со стороны органов зрения наиболее характерны подвывихи и вывихи хрусталиков, отслойка сетчатки, миопия, гетерохромия радужки. У половины больных отмечаются паховые, диафрагмальные, пупочные и бедренные грыжи. Может наблюдаться поликистоз почек, нефроптоз, понижение слуха, глухота.

Психические и умственное развитие больных не отличается от нормы.

Прогноз жизни и здоровья определяется прежде всего состоянием сердечно-сосудистой системы. Средняя продолжительность жизни при выраженной форме синдрома Марфана около 27 лет, хотя часть больных доживает до глубокой старости.

При ведении беременных с СМ необходимо помнить о возможности расслоения аневризмы аорты и последующего её разрыва. Эти осложнения возникают обычно на поздних стадиях беременности.

Синдромом Марфана страдали президент США Авраам Линкольн, скрипач Николо Паганини.

Нарушение обмена углеводов.

Эти заболевания развиваются при врожденной недостаточности ферментов или транспортных систем мембран клеток, которые необходимы для обмена какого-либо углевода.

Клинические проявления этих патологических состояний очень разнообразны. Но для многих из них характерно начало болезни после того, как в организм ребёнка попадает соответствующий углевод. Так, галактоземия развивается с первых дней жизни ребёнка после того, как он начинает питаться молоком, фруктоземия – обычно после введения соков, сахара и блюд прикорма. Нарушение обмена углеводов часто сопровождается нарушением их всасывания в кишечнике (синдром мальабсорбции). Накапливающийся в просвете кишки сахар увеличивает содержание воды в тонком кишечнике. Всё это приводит к диарее (поносам), вздутию и болям в животе, срыгиванию.

Однако при дефектах обмена углеводов определяется поражение и других органов: нервной системы, печени, глаз и т.д.

Эти заболевания встречаются относительно редко. Исключением является врожденная лактазная недостаточность.

Галактоземия – это патология впервые была описана в 1908 году. Ген этого заболевания локализован на коротком плече 9-й хромосомы.

Причиной классической формы галактоземии является дефицит фермента галактозо-1-фосфоуридилтрансферазы, который приводит к накоплению в тканях больного ребёнка галактозо-1-фосфата. Это заболевание наследуется по аутосомно-рецессивному типу и встречается с частотой 1: 15000-50000.

Галактоза – основной фермент молока, в том числе и женского. Поэтому патологические изменения возникают с первых дней жизни ребёнка, как только он начинает вскармливаться молоком.

Сначала появляется рвота, диарея, желтушность кожи, которая не исчезает и после периода новорожденности. В дальнейшем увеличивается печень и селезенка. При приёме молочной пищи у ребенка регистрируется низкий уровень глюкозы в крови. В первые месяцы жизни ребёнка формируется помутнение хрусталиков глаз (катаракта), нарушаются функции почек. Постепенно становится заметной задержка умственного и физического развития, возможно возникновение судорог, даже смерть ребёнка на фоне очень низкого уровня глюкозы в крови или цирроза печени.

Главным в лечении этого дефекта обмена является назначение специальной диеты, не содержащей продуктов с галактозой. Раннее начало подобной терапии предупреждает поражение печени и почек, тяжелые неврологические изменения у таких больных. Возможно рассасывание катаракты. Уровень глюкозы крови нормализуется. Однако даже у пациентов, которые получают специальную диету с периода новорожденности, могут регистрироваться некоторые признаки поражения нервной системы и гипофункция яичников у девочек.

В настоящее время известны и другие типы галактоземии, которые не сопровождаются тяжелым нарушением состояния здоровья. Так, при атипичных вариантах заболевания, связанных с дефицитом галактокиназы и уридиндифосфогалактозо-4-эпимеразы, клинические проявления обычно отсутствуют. При недостаточности фермента галактокиназы единственным симптомом является катаракта. Поэтому у детей с врожденной катарактой необходимо исследовать уровень галактозы в моче и крови. При этом заболевании рано начатая диетотерапия тоже способствует восстановлению прозрачности хрусталика.

Нарушение обмена гормонов.

Врожденный гипотиреоз – один из самых распространенных дефектов обмена веществ. Это заболевание обнаруживается примерно у 1 на 4000 новорожденных Европы и Северной Америки. Несколько чаще эта патология встречается у девочек.

Причиной заболевания является полная или частичная недостаточность гормонов щитовидной железы (тиреоидных), которая сопровождается снижением скорости обменных процессов в организме. Подобные изменения приводят к торможению роста и развития ребёнка.

Врожденный гипотиреоз разделяют на первичный, вторичный и третичный.

Первичный гипотиреоз составляет около 90% всех случаев заболевания. Причиной его является поражение самой щитовидной железы. В большинстве случаев обнаруживается её отсутствие (аплазия) или недоразвитие (гипоплазия). Часто щитовидная железа оказывается не в обычной месте (на корне языка, в трахее и т.д.) Эта форма заболевания обычно регистрируется как единственный случай в семье. Однако описаны аутосомно-рецессивный и аутосомно-доминантный типы наследования порока развития щитовидной железы.

Примерно 10% всех случаев первичного гипотиреоза обусловлены дефектом образования гормонов. При этой форме заболевания отмечается увеличение размеров щитовидной железы у ребёнка (врожденный зоб). Данная патология наследуется аутосомно-рецессивно.

Вторичный и третичный гипотиреоз регистрируется только в 3-4% случаев. Эти формы заболевания обусловлены нарушением функции гипофиза и гипоталамуса, наследуется аутосомно-рецессивно.

В последние годы описаны случаи врожденного гипотиреоза, вызванные нечувствительностью тканей к действию тиреоидных гормонов. Это нарушение также характеризуется аутосомно-рецессивным типом наследования.

Недостаток тиреоидных гормонов приводит к задержке дифференцировки мозга, уменьшению количества нейронов, нейромедиаторов и других веществ. Все это вызывает угнетение функции ЦНС и задержку психического развития ребенка.

Кроме того, при гипотиреозе снижается активность ферментных систем, скорость окислительных процессов, происходит накопление недоокисленных продуктов обмена. В результате замедляется рост и дифференцировка практические всех тканей организма ребёнка (скелета, мышц, сердечно-сосудистой и иммунной систем, эндокринных желез и т.д.)

Клиническая картина всех форм гипотиреоза практически однотипна. Различается только степень тяжести заболевания. Возможно как легкое, малосимптомное течение при частично сохраненной функции тиреоидных гормонов, так и очень тяжелое состояние больного.

Врожденный гипотиреоз развивается постепенно в течение первых месяцев жизни ребенка. Несколько позже заболевание проявляется у детей, находящихся на естественном вскармливании, так как грудное молоко содержит тиреоидные гормоны.

У 10-15% больных детей первые признаки гипотиреоза можно обнаружить уже на первом месяце жизни. Роды таким ребёнком обычно происходят позже 40 недель (переношенная беременность). Новорожденные с этим заболеванием имеют большую массу тела, часто выше 4 кг. При осмотре такого ребёнка можно отметить отёчность тканей лица, большой язык, лежащий на губах, отёки в виде «подушечек» на тыльной поверхности кистей и стоп. В дальнейшем наблюдается грубый голос при плаче.

Больной ребёнок плохо удерживает тепло, вяло сосёт. Часто желтушность кожи сохраняется до 1 месяца и более.

Полного развития клиническая картина обычно достигает к 3-6 месяцам. Ребенок начинает отставать в росте, плохо набирает массу тела, лениво сосет. Кожа больного становится сухой, желтовато-бледной, утолщенной, часто шелушится. Обнаруживается большой язык, низкий хриплый голос, ломкие, сухие волосы, обычно холодные кисти и стопы, запоры. Мышечный тонус снижен. В этот период формируются особенности лицевого скелета: широкая запавшая переносица, широко расставленные глаза, низкий лоб.

После 5-6 месяцев становится заметной нарастающая задержка психомоторного и физического развития больного ребенка. Ребенок значительно позже начинает сидеть, ходить, формируется умственная отсталость. Изменяются пропорции скелета: укорачивается шея, конечности и пальцы, усиливаются грудной кифоз и поясничный лордоз, кисти и стопы становятся широкими. Ребенок начинает значительно отставать в росте. Сохраняются и усугубляются деформация лица, восковая бледность и утолщение кожи, низкий грубый голос. Мышечный тонус снижен. Больные страдают запорами. При осмотре обращается внимание на увеличение камер сердца, глухость его тонов, брадикардию, вздутый живот, пупочные грыжи. Лабораторное исследование обнаруживает нарушение возрастной дифференцировки скелета, анемию, гиперхолестеринемию.

Диагноз гипотиреоза подтверждается исследованием тиреотропного гормона гипофиза (ТТГ), тиреоидных гормонов: трийодтиронина (ТЗ) и тироксина (Т4) крови. Для больных характерно снижение уровня Т3 и Т4 крови. Уровень ТТГ увеличен при первичной форме заболевания и является низким при вторичном и третичном гипотиреозе.

Главным в лечении детей с врожденным гипотиреозом является постоянная, пожизненная терапия препаратами гормонов щитовидной железы. Если ребенок начинает принимать эти лекарственные средства на первом месяце жизни, то возможно обратное развитие всех патологических изменений в нервной системе. При условии раннего начала лечения и постоянного приема необходимой дозы тиреоидных гормонов под контролем их содержания в крови в абсолютном большинстве случаев психомоторное и физическое развитие больных детей оказывается в пределах нормы.

Особенности ухода за больными с наследственной патологией.

Пациенты, имеющие наследственную патологию, нуждаются в постоянном наблюдении медицинских работников. Хронические прогрессирующее течение заболевания делает необходимым длительное пребывание в стационарах разного профиля, частые обращения в амбулаторные учреждения.

Уход за такими больными представляет собой сложную задачу. Часто приходится иметь дело не с одним человеком, а с целой семьей, так как даже физически здоровые родственники могут нуждаться в психологической поддержке, помощи, а иногда и в превентивном лечении.

Режим дня больного с наследственной патологией должен быть по возможности приближен к обычному для соответствующего возраста. Организация прогулок, игр, учёбы, общения со сверстниками способствуют социальной адаптации больных и их семей. При заболеваниях, характеризующихся нарушением умственного развития, важно обеспечить частое общение с ребёнком, разнообразие игрушек и пособий, развивающие занятия. Формированию моторных навыков помогают регулярные занятия лечебной физкультурой и массажем.

Питание больных должно быть сбалансировано по основным ингредиентам и соответствовать возрасту. В случаях необходимости кормления через зонд при нарушении жевания и глотания дети должны получать протертое мясо, овощи и фрукты в соответствии с возрастом, а не только молоко и каши. Если такой ребёнок будет вскармливаться только молоком и кашами, он будет отставать по массе и длине тела, возникнет анемия и иммунодефицитное состояние.

Особого внимания заслуживает специальная диетотерапия при некоторых заболеваниях обмена веществ (фенилкетонурии, галактоземии, гиперхолестеринемии и т.д.) Необходима постоянная помощь родителям и семьям больных в организации питания. Кроме того, подобная диетотерапия должна сопровождаться регулярным контролем показателей массы и длины тела ребёнка: на 1-м голу жизни – ежемесячно, до трех лет – 1 раз в 3 месяца до подросткового возраста – каждое полугодие.

Дети с наследственной патологией часто страдают нарушением естественных отправлений. Для предупреждения запоров в питание больных вводят продукты, богатые клетчаткой, соки. При отсутствии самостоятельного стула нужно поставить очистительную клизму. Некоторые болезни обмена веществ и пороки развития органов желудочно-кишечного тракта сопровождаются учащенным стулом. В таких случаях нужно особенно тщательно следить за сухостью кожи ребёнка. Каждый раз ребенка необходимо обмыть теплой водой, промокнуть кожу мягкой салфеткой и обработать складки кожи растительным маслом или детским кремом.

Наследственные заболевания могут сопровождаться нарушением мочеиспускания. При такой патологии проводится учёт количества выпитой жидкости. При атонии мочевого пузыря, вызванной поражением нервной системы, используется его катетеризация.

Больные с наследственной патологией нуждаются в создании оптимальных условий по температуре и влажности в помещениях, где они находятся, поскольку такие дети часто страдают нарушением терморегуляции и склонны к перегреванию и переохлаждению.

Кроме того, комнаты, в которых ребенок проводит время, должны быть освобождены от опасных предметов (колющих, режущих, очень горячих и т.д.)

Пациенты, вынужденные длительное время проводить в лежащем положении, могут иметь пролежни. С целью их предупреждения необходимы: частая смена нательного и постельного белья; разглаживание складок на ткани, соприкасающейся с кожей больного; использование специальных подкладочных резиновых кругов или тканевых матрасов; систематическая смена положения тела больного. В таких случаях кожу больного необходимо обрабатывать камфорным спиртом или одеколоном 2-3 раза в день и затем присыпать тальком.

Важнейшей частью ухода за пациентами с наследственной патологией является работа с их родственниками. Доброжелательное отношение к больному, разъяснение родителям сущности заболевания, освобождение их от чувства вины перед ребенком, создание положительной установки на лечение – все это снижает тревожность в семье и улучшает результаты реабилитационных мероприятий.

Книга >> Медицина, здоровье

... другие аллергические болезни дыхательной системы. Хронические обструктивные болезни ... нарушениями обмена аминокислот , липидов, углеводов, соединительной ткани . Подходы к лечению наследственных нарушений метаболизма. Генная ... обмен в организме человека 4 2 2 ...

  • Значение медицинской генетики для общей патологии человека . Классификация болезней человека (генетические аспекты)

    Шпаргалка >> Биология

    ... человека . Классификация болезней человека (... обмена или морфогенетических процессов. Другая черта клинической картины генных болезней ... тканей -мишеней... нарушениями обмена пуринов. Болезнь ... аминокислот в белке, можно «воссоздать» последовательность гена ...

  • Основы медицинской генетики. Человек как объект генетических исследований

    Реферат >> Биология

    У человек составляют генные болезни . Эти болезни наследуются... группу наследственных болезней обмена составляют нарушения обмена аминокислот В настоящее... соединительной ткани в связи нарушениями синтеза коллагена, переразгибание коленного, локтевого и других



  • Рассказать друзьям