Дыхательный центр. Регуляция дыхания

💖 Нравится? Поделись с друзьями ссылкой

Внешнее дыхание - одна из важнейших функций организма. Прекращение дыхания вызывает неизбежную гибель человека уже через З-5 мин. Запасы кислорода в организме очень незначительны, поэтому необходимо его постоянное поступление через систему внешнего дыхания. Указанное обстоятельство объясняет формирование в процессе эволюции такого механизма регуляции, который должен обеспечивать высокую надежность выполнения дыхательных движений. Деятельность системы регуляции дыхания основывается на поддержании константного уровня таких показателей организма, как РП) , Р0 и рН. Основной принцип регуляции - саморегуляция: отклонения указанных показателей от нормального уровня немедленно вызывает цепь процессов, направленных на их восстановление.

Кроме того, дыхание участвует в мовотворенні, в выражении эмоций (смех), а также взаимосвязанное с некоторыми другими функциями организма (пищеварение, терморегуляция и т. п).

В системе регуляции дыхания можно выделить внутренние и внешние звенья саморегуляции. Внутренние звенья связаны с состоянием крови (буферные свойства, содержание гемоглобина) и сердечно-сосудистой системы, внешние - с механизмами внешнего дыхания. Регулируемые параметры системы внешнего дыхания - глубина и частота дыхательных движений.

Основной регулируемый объект - дыхательные мышцы, что принадлежат к скелетной. Кроме них к объекту регуляции дыхания необходимо отнести непосмуговані мышцы глотки, трахеи и бронхов, влияют на состояние дыхательных путей. Транспортировка газов кровью и газообмен в тканях осуществляют образование сердечно-сосудистой системы, регуляцию функции которой шла речь в соответствующем разделе.

Дыхание регулируется рефлекторным путем, который охватывает такие элементы:

1) рецепторы, воспринимающие информацию, и афферентные пути, которые передают ее нервным центрам;

2) нервные центры;

3) эффекторы (пути передачи команд от центров) и сами регулируемые объекты.

Дыхательный центр

Дыхательный центр расположен в области ствола мозга. Он состоит из нескольких отделов, нередко именуют отдельными дыхательными центрами. Местоположение каждого из них было установлено в экспериментах на животных с помощью перерізувань мозга, вживлению электродов.

Обе половины продолговатого мозга содержат не менее двух скоплений нейронов, проявляющих свою активность в момент осуществления вдоха или выдоха - дорсальне и вентральне ядра (рис. 86). Если возбуждение нейрона совпадает с вдохом, его причисляют к інспіраторних, если с выдохом-к експіраторних. Нейроны этих ядер широко контактируют с ретикулярной формацией ствола, через которую до дыхательного центра поступают афферентные сигналы от периферических рецепторов.

На сегодня все еще нет единой теории функционирования и строения дыхательного центра. Поэтому ниже изложена одна из гипотез.

Дорсальне ядро содержит нейроны, которые возбуждаются при инспирации. В нем можно выделить два основных типа нейронов:

а) Иа-нейроны (возбуждаются только во время вдоха);

б) ф-нейроны (возбуждаются одновременно с Иа и ігід время паузы).

Иа-нейроны - типичные инспираторные нейроны. Нервные импульсы от них передаются на мотонейроны диафрагмы, расположенные в спинном мозге (3-й и 4-й шейные сегменты). Одновременно с этим возбуждение Иа-нейронов передается к иβ-нейронов. Однако эти нейроны не передают свои импульсы к мотонейрон И В диафрагмы, их возбуждение приводит к торможению активности інспіраторних Иа-нейронов.

Группа нейронов, принадлежащего расположенного на 4-6 мм кпереди и латеральнее от предыдущих вентрального ядра, имеет большую длину. Верхняя часть вентрального ядра содержит инспираторные нейроны, а нижняя - експіраторні. Большая часть нервных волокон этих ядер идет в грудные сегменты спинного мозга к мотонейрон и в міжребрових мышц и мышц живота (в соответствии с мышц вдоха или выдоха). Лишь 20-25 % волокон разветвляются в области диафрагмальных ядер.

Кроме центров продолговатого мозга в передней части моста, сразу за чотиригорбовою пластиной обнаружено еще одно ядро, которое участвует в регуляции дыхания, - пневмотаксичний центр.

Рис. 86. 1 - дорсальне ядро; 2 - вентральне ядро; С - апнейстичний центр; 4 - пневмотаксичний центр; 5 - мост мозга

Нервная регуляция. В головном мозгу расположен дыхательный центр, представляющий группу взаимосвязанных нейронов. Центры вдоха и выдоха, совокупно называемые бульбарным центром, расположены в продолговатом мозгу, а пневмотоксический центр в верхней части воролиева моста среднего мозга. Пневмотоксический центр регулирует работу инспираторного (вдох) и экспираторного (выдох) центров. Нервные импульсы, возникающие в дыхательном центре продолговатого мозга, передаются к подчиненным дыхательным центрам спинного мозга.

При нормальном дыхании импульсы из центра вдоха поступают к межреберным мышцам и диафрагме, вызывая их сокращение, что приводит к увеличению объема грудной клетки и поступлению воздуха в легкие, происходит вдох. Увеличение объема легких возбуждает рецепторы растяжения, расположенные в стенках легких. Импульсы от них по центростремительным нервам поступают в центр выдоха, в результате межреберные мышцы расслабляются, объем легких уменьшается, происходит выдох.

Адаптация дыхания к изменениям условий внешней среды тесно связана с корой больших полушарий. Например, у собаки с удаленной корой больших полушарий дыхание в покое происходит нормальное, но при команде сделать даже несколько шагов у нее появляется отдышка.

Другой пример – это выработка условных рефлексов на условия газовой среды. У собаки в комнате с большим содержанием СО 2 учащается дыхание. Если это сопровождать звонком или светом, то даже не поместив собаку в условия повышенного содержания СО 2 , но сделать звонок или выключить свет, у нее появится учащенное дыхание. У скаковых и рысистых лошадей перед бегами наступает учащенное дыхание.

Гуморальная регуляция . Специфическим фактором, определяющим интенсивность дыхательных движений, является концентрация СО 2 в крови. Повышение уровня СО 2 увеличивает возбудимость дыхательного центра, в результате усиливается и учащается дыхание. Первый вдох у новорожденного связан с увеличение концентрации СО 2 в крови после отделение его от дыхания через плаценту. Эта концентрация, достигнув порогового значения, активизирует нервные структуры дыхательного центра и новорожденный начинает дышать.

Основным факторам, стимулирующим дыхательный центр, является не уменьшение О 2 в крови, а увеличение СО 2 . Это было показано в опыте с перекрестным кровообращением (опыт Фредерика). Для этого у двух наркотизированных собак перерезали и перекрестно соединяли сонные артерии и яремные вены. После этого зажимали трахею первой собаки, т.е. производили ее удушение (остановка дыхания), в результате у второй проявлялась резко выраженная отдышка. Это связано с тем, что в крови правой собаки накопилось избыточное количество СО 2 , и, когда эта кровь поступала к голове второй собаки, то стимулировалась активность дыхательных центров (рис ***). Установлено, что с повышение СО 2 в крови хеморецепторы сосудистых стенок диафрагмы раздражаются и передают импульсы в дыхательный центр.

Треть скопления ядер дыхательных нейронов находится в передней части моста мозга. Эта группа называется пневмотоксическим центром. Он, как и бульбарный центр регулирует ритмику дыхания. От дыхательных нейронов импульсы идут до ядер диафрагмальных и межреберных нервов в спинном мозге. По этим нервам импульсы идут к диафрагме и наружным межреберным мышцам.

Так нервные центры среднего мозга и мозжечка координируют дыхание в соответствии с двигательной активностью, перемещением тела в пространстве.

Существует три механизма секреции:

Мерокриновая – наиболее общий вид секреции и заключается в удалении секретируемых веществ в растворенном состоянии путем диффузии через мембрану клетки. Таким путем происходит выделение гормонов, медиаторов, пищеварительных ферментов.

Апокриновая – сопровождается отторжением апикальной плазматической мембраной вместе с секретом и некоторыми составными частями цитоплазмы, после чего секретирующая клетка восстанавливается. Этот тип свойственен анальным и малым железам, коже половых органов.

Голокриновая – при такой секреции происходит полное разрушение синтезирующей клетки и ее отторжение вместе с секретом от эпителия. Такой тип характерен для сальных желез.

Введение

Дыхание - это неотъемлемый признак жизни. Мы дышим постоянно с момента рождения и до самой смерти, дышим днем и ночью во время глубокого сна, в состоянии здоровья и болезни.

В организме человека и животных запасы кислорода ограничены, поэтому организм нуждается в непрерывном поступлении кислорода из окружающей среды. Также постоянно и непрерывно из организма должен удаляться углекислый газ, который всегда образуется в процессе обмена веществ и в больших количествах является токсичным соединением.

Дыхание - сложный непрерывный процесс, в результате которого постоянно обновляется газовый состав крови и происходит биологическое окисление в тканях. В этом заключается его сущность.

Нормальное функционирование организма человека возможно только при условии пополнения энергией, которая непрерывно расходуется. Организм получает энергию за счет окисления органических веществ - белков, жиров, углеводов. При этом освобождается скрытая химическая энергия, которая является источником жизнедеятельности, развития и роста организма. Таким образом, значение дыхания состоит в поддержании в организме оптимального уровня окислительно-восстановительных процессов.

Состав выдыхаемого воздуха весьма непостоянен и зависит от интенсивности обмена веществ, а также от частоты и глубины дыхания. Стоит задержать дыхание или сделать несколько глубоких дыхательных движений, как состав выдыхаемого воздуха изменится.

Важную роль в жизнедеятельности человека играет регуляция дыхания.

Регуляция деятельности дыхательного центра, расположенного в продолговатом мозге, осуществляется гуморально, за счет рефлекторных воздействий и нервных импульсов, поступающих из отделов головного мозга.

В курсовой работе рассмотрены вопросы регуляции деятельности дыхательного центра и механизмы адаптации дыхания к мышечной деятельности.

Дыхательный центр

Дыхательным центром называют совокупность нервных клеток, расположенных в разных отделах центральной нервной системы, обеспечивающих координированную ритмическую деятельность дыхательных мышц и приспособление дыхания к изменяющимся условиям внешней и внутренней среды организма.

Некоторые группы нервных клеток являются необходимыми для ритмической деятельности дыхательных мышц. Они расположены в ретикулярной формации продолговатого мозга, составляя дыхательный центр в узком смысле слова. Нарушение функции этих клеток приводит к прекращению дыхания вследствие паралича дыхательных мышц.

Дыхательный центр продолговатого мозга посылает импульсы к мотонейронам спинного мозга, иннервирующим дыхательную мускулатуру.

Мотонейроны, отростки которых образуют диафрагмальные нервы, иннервирующие диафрагму, находятся в передних рогах III…IV шейных сегментов. Мотонейроны, отростки которых образуют межреберные нервы, иннервирующие межреберные мышцы, расположены в передних рогах грудного отдела спинного мозга. Отсюда понятно, что при перерезке спинного мозга между грудными и шейными сегментами прекращается реберное дыхание, а диафрагмальное дыхание сохраняется, так как двигательное ядро диафрагмального нерва, находящееся выше места перерезки, сохраняет связь с дыхательным центром и диафрагмой. При перерезке спинного мозга под продолговатым дыхание полностью прекращается и наступает гибель организма от удушения. Однако при такой перерезке мозга продолжаются в течение некоторого времени сокращения вспомогательных дыхательных мышц ноздрей и гортани, которые иннервируются нервами, выходящими непосредственно из продолговатого мозга.

Уже в древности было известно, что повреждение спинного мозга ниже продолговатого приводит к смерти. В 1812 г. Легаллуа путем перерезки мозга у птиц, а в 1842 г. Флуранс путем раздражения и разрушения участков продолговатого мозга дали объяснение этого факта и привели экспериментальные доказательства местонахождения дыхательного центра в продолговатом мозгу. Флуранс представлял дыхательный центр как ограниченную зону размером с булавочную головку и дал ему название «жизненного узла».

Н. А. Миславский в 1885 г., применяя методику точечного раздражения и разрушения отдельных участков продолговатого мозга, установил, что дыхательный центр расположен в ретикулярной формации продолговатого мозга, в области дна IV желудочка, и является парным, причем каждая его половина иннервирует дыхательные мышцы той же половины тела. Кроме того, Н. А. Миславский показал, что дыхательный центр представляет собой сложное образование, состоящее из центра вдоха (инспираторный центр) и центра выдоха (экспираторный центр). Он пришел к заключению, что определенный участок продолговатого мозга является центром, регулирующим и координирующим дыхательные движения.

Выводы Н.А. Миславского подтверждены многочисленными экспериментальными исследованиями, в частности проведенными в последнее время с помощью микроэлектродной техники. При записи электрических потенциалов отдельных нейронов дыхательного центра обнаружено, что в нем существуют нейроны, разряды которых резко учащаются в фазе вдоха, и другие нейроны, разряды которых учащаются в фазе выдоха. Раздражение отдельных точек продолговатого мозга электрическим током, проводимое с помощью микроэлектродов, также выявило наличие нейронов, стимуляция которых вызывает акт вдоха, и других нейронов, стимулирующих акт выдоха.

Баумгартен в 1956 г. показал, что нейроны дыхательного центра распределены в ретикулярной формации продолговатого мозга, вблизи от striae acusticae (рисунок 1). Точной границы между экспираторными и инспираторными нейронами не существует, но имеются участки, где преобладают одни из них: инспираторные - в каудальном отделе одиночного пучка, (tractus solitarius), экспираторные - в вентральном ядре (nucleus ambiguus).

Рисунок 1 - Локализация дыхательных центров На рисунке - нижняя часть ствола мозга (вид сзади). ПН - центр пневмотаксиса; ИНСП - инспираторный центр; ЭКСП - экспираторный центр. Центры являются двусторонними, но для упрощения схемы на каждой из сторон изображен только один из центров. Перерезка выше линии 1 на дыхании не отражается. Перерезка по линии 2 отделяет центр пневмотаксиса. Перерезка ниже линии 3 вызывает прекращение дыхания

Лумсден и другие исследователи в опытах на теплокровных животных нашли, что дыхательный центр имеет более сложную структуру, чем предполагалось ранее. В верхней части варолиева моста находится так называемый пневмотаксический центр, который контролирует деятельность расположенных ниже дыхательных центров вдоха и выдоха и обеспечивает нормальные дыхательные движения. Полагают, что значение пневмотаксического центра состоит в том, что во время вдоха он вызывает возбуждение центра выдоха и, таким образом, обеспечивает ритмическое чередование вдоха и выдоха.

Деятельность всей совокупности нейронов, образующих дыхательный центр, необходима для сохранения нормального дыхания. Однако в процессах регуляции дыхания принимают участие также вышележащие отделы центральной нервной системы, которые обеспечивают тонкие приспособительные изменения дыхания при различных видах деятельности организма. Важная роль в регуляции дыхания принадлежит большим полушариям головного мозга и их коре, благодаря которой осуществляется приспособление дыхательных движений при разговоре, пении, спорте и трудовой деятельности.

Регуляция деятельности дыхательного центра осуществляется гуморально, за счет рефлекторных воздействий и нервных импульсов, поступающих из вышележащих отделов головного мозга.

По И.П. Павлову, деятельность дыхательного центра зависит от химических свойств крови и от рефлекторных влияний, в первую очередь с легочной ткани.

Нейронам дыхательного центра свойственна ритмическая автоматия. Это видно из того, что даже после полного выключения приходящих к дыхательному центру афферентных импульсов в его нейронах возникают ритмические колебания биопотенциалов, которые можно зарегистрировать электроизмерительным прибором. Впервые это явление обнаружил еще в 1882 г. И. М. Сеченов. Много позднее Эдриан и Бутендайк посредством осциллографа с усилителем зарегистрировали ритмические колебания электрических потенциалов в изолированном стволе мозга золотой рыбки. Б. Д. Кравчинский наблюдал подобные ритмические колебания электрических потенциалов, происходящие в ритме дыхания, в изолированном продолговатом мозге лягушки.

Автоматическое возбуждение дыхательного центра обусловлено протекающими в нем самом процессами обмена веществ и его высокой чувствительностью к углекислоте. Автоматия центра регулируется нервными импульсами, приходящими от рецепторов легких, сосудистых рефлексогенных зон, дыхательных и скелетных мышц, а также импульсами из вышележащих отделов центральной нервной системы и, наконец, гуморальными влияниями.


Введение…………………………………………………………………….3

1. Дыхательный центр продолговатого мозга…………………………...4

2. Нейронная организация дыхательного центра………………………..6

3. Взаимодействие нейронов дыхательного центра……………………...7

4. Схема саморегуляции вдоха и выдоха…………………………………9

Заключение………………………………………………………………...11

Литература…………………………………………………………………12

Введение

Уже к Галену (I в.) было известно, что при отделении голов­ного мозга от спинного наступает остановка дыхания. На осно­вании результатов перерезок и электрического раздражения в об­ласти продолговатого мозга Н. А. Миславский (1885) пришел к заключению, что дыхательный центр находится в ретикулярной формации продолговатого мозга по обеим сторонам шва на уров­не корешков подъязычного нерва. Н. А. Миславский впервые привел доказательства функционального деления дыхательного центра на инспираторную и экспираторную части.

По современным представлениям, механизм, регулирующий дыхание у высших позвоночных животных, состоит из трех уровней.

Первый находится в спинном мозге. Это - центры диафрагмальных и межреберных нервов, обеспечивающие сокращение дыхательной мускулатуры.

Второй уровень регуляции представлен дыхательным центром продолговатого мозга, в который поступает афферентация от ды­хательного аппарата, а также от основных сосудистых зон. Этот центр обеспечивает ритмичную смену фаз дыхания и интеграцию деятельности спинномозговых центров дыхательной мускулату­ры. Однако дыхательный центр не способен обеспечить дыхатель­ные реакции без связи с верхними отделами головного мозга.

Третий уровень регуляции дыхания обеспечивается ассоциацией центров, которые находятся на разных уровнях головного мозга, включая кору больших полушарий.

1. Дыхательный центр продолговатого мозга

Дыхательный центр, как и любой другой центр, представляет собой совокупность ней­ронов, расположенных на различных уровнях ЦНС, достаточных для приспособительной регуляции газообмена.

В продолговатом мозге находится главная часть дыхательного центра, о чем свидетельствуют исследования М.Флуранса (1794 - 1867), обнаружившего, что разрушение медиальной части про­долговатого мозга в нижнем углу ромбовидной ямки ведет к пол­ной остановке дыхания. Позже Н.А. Миславский (1885) устано­вил наличие двух структур, ответственных за вдох и выдох.

Мост играет важную роль в регуляции продолжительности фаз вдоха, выдоха и паузы между ними. Нейроны моста при взаимодей­ствии с нейронами продолговатого мозга обеспечивают нормаль­ный цикл дыхания.

Мотонейроны спинного мозга получают импульсы от нейронов продолговатого мозга и посылают их к дыхательным мышцам по диафрагмальному и межреберным нервам. Центр диафрагмальных нервов находится в основном в 3 - 4-м шейных сегментах спин­ного мозга. Центры межреберных нервов, иннервирующих муску­латуру грудной клетки, локализуются в грудном отделе спинного мозга (4 - 10-й сегменты), иннервация мышц брюшной стенки осуществляется Th4-L3-сегментами.

В регуляции дыхания принимают участие также средний мозг , гипоталамус , лимбико-ретикулярный комплекс , кора большого мозга . В частности, средний мозг играет важную роль в регуляции тонуса всей мускулатуры организма, в том числе и дыхательной. Гипотала­мус выполняет интегрирующую роль в вегетативном обеспечении соматической деятельности, в том числе участвует в регуляции ча­стоты и глубины дыхания при физической деятельности, повыше­нии температуры внешней и внутренней среды (тепловая одышка).

Об участии коры большого мозга в регуляции дыхания свиде­тельствует тот факт, что частоту и глубину дыхания можно изме­нять произвольно в широком диапазоне. Но произвольная задерж­ка дыхания не может быть длительной, так как наступает непре­одолимая потребность возобновить дыхание. Об участии коры мозга свидетельствует также усиление дыхания перед стартом или по любому условно-рефлекторному сигналу. Минимальная физичес­кая нагрузка (несколько шагов в течение 1 - 2 мин) бескоркового животного в эксперименте вызывает у него длительную одышку. Благодаря коре большого мозга при выполнении физических уп­ражнений интенсивность дыхания становится адекватной потреб­ностям организма (более экономное дыхание). Это связано также и с тем, что сами движения становятся более экономичными.

Под автоматией дыхательного центра понимают циркуляцию возбуждения в его нейронах, обеспечивающую саморегуляцию вдоха и выдоха. Автоматию дыхательного центра впервые наблю­дал с помощью гальванометра на изолированном продолговатом мозге лягушки И. М. Сеченов (1882). Ритмическую активность изо­лированного продолговатого мозга золотой рыбки зарегистриро­вал Эдриан (1931). С помощью микроэлектродной техники под­тверждено, что продолговатый мозг способен генерировать элек­трические импульсы. Основная часть нейронов дыхательного цен­тра в продолговатом мозге относится к ретикулярной формации, эти нейроны обладают свойством спонтанной активности. Кроме спонтанной активности автоматии дыхательного центра способ­ствуют гуморальные влияния непосредственно на центр, главным образом СО2, а также афферентная импульсация от рефлексоген­ных зон (от хемо- и механорецепторов), взаимодействие возбуж­дающих и тормозящих влияний нейронов дыхательного центра, возбуждающих влияние вышележащих отделов ЦНС.

2. Нейронная организация дыхательного центра

Нейронная организация дыхательного центра (продолговатый мозг и мост). Дыхательные нейроны, возбуждающиеся в различ­ные фазы дыхательного цикла, обнаружены почти на всем протя­жении продолговатого мозга. Однако в обеих половинах продолго­ватого мозга есть участки ретикулярной формации, где имеются скопления дыхательных нейронов. Как.отметил Р.Баумгартен (1956), в правой и левой половине продолговатого мозга имеется по два таких скопления - дорсальное и вентральное, которые локализуются вблизи задвижки (obex), расположенной у нижнего угла ромбовидной ямки.

Дорсальная группа дыхательных нейронов примыкает к ядру одиночного пучка и состоит на 95 % из инспираторных нейронов (возбуждающихся в фазу вдоха, условно - центра вдоха). Аксоны этих нейронов идут к другим нейронам дыхательного центра и к мото­нейронам диафрагмального нерва в передних рогах шейного отде­ла, главным образом сегменты 2-4. Нейроны диафрагмального ядра спинного мозга возбуждаются непрерывно, но с учащением в фазу вдоха или залпами, как и связанные с ними нейроны про­долговатого мозга. Коллатерали от аксонов нейронов дорсального дыхательного ядра идут также в вентральное дыхательное ядро продолговатого мозга, образуя возбуждающие синапсы на его инспираторных нейронах и тормозные - на экспираторных. Экс­пираторные нейроны в дорсальном ядре встречаются редко (не­сколько процентов).

Вентральная группа дыхательных нейронов расположена в обла­сти обоюдного, ретроамбигуального ядер и простирается до 2-го шейного сегмента спинного мозга включительно. В вентральной группе содержатся инспираторные и экспираторные нейроны (пос­ледних большинство). Часть нейронов вентральной группы посы­лает свои аксоны в спинной мозг к мотонейронам межреберных мышц и мышц живота, часть - к ядру диафрагмального нерва, часть - к другим нейронам дыхательного центра. Инспираторные нейроны в спинном мозге расположены в основном во 2 -6 м, а экспираторные - в 8 -10-м грудных сегментах. В вентральной груп­пе находятся эфферентные нейроны центров блуждающего не­рва, регулирующие просвет воздухоносного пути в ритме дыха­тельного цикла. Максимум активности этих нейронов регистриру­ется в конце выдоха, что ведет к сужению просвета воздухонос­ного пути в результате повышения тонуса гладких мышц и спо­собствует выдоху; минимум активности нейронов наблюдается в конце вдоха, что сопровождается уменьшением тонуса гладких мышц воздухоносного пути, расширяет его и облегчает вдох.


3. Взаимодействие нейронов дыхательного центра

Взаимодействие нейронов дыхательного центра заключается в следующем: ритмическая смена вдоха и выдоха (постоянное их че­редование) обеспечивается циркуляцией возбуждения в дыхатель­ных нейронах продолговатого мозга, т. е. главной части дыхатель­ного центра, а также взаимодействием импульсации нейронов про­долговатого мозга с импульсацией дыхательных нейронов моста и рефлексогенных зон, главной из которых является легочная (механорецепторы). Эфферентные импульсы ритмично поступают по диафрагмальному и межреберным нервам к дыхательным мышцам, что ведет к их сокращению (вдох). Отсутствие импульсации сопро­вождается расслаблением дыхательной мускулатуры (выдох). Цикл дыхания у человека состоит из вдоха, выдоха и паузы.

С учетом этого дыхательные нейроны классифицируют на группы.

1. Ранние инспираторные и экспираторные нейроны, дающие ко­роткую серию импульсов соответственно перед вдохом или перед выдохом.

2. Поздние инспираторные и экспираторные нейроны, возбуждаю­щиеся соответственно после начала вдоха или выдоха.

3. Полные инспираторные и экспираторные нейроны, возбужде­ние которых совпадает соответственно с фазой вдоха или выдоха.

4. Инспираторно-экспираторные нейроны начинают возбуждать­ся в фазе вдоха и заканчивают в начале выдоха.

5. Экспираторно-инспираторные нейроны начинают возбуждать­ся во время выдоха и заканчивают в начале вдоха.

6. Непрерывно активные нейроны, т.е. постоянно возбуждающи­еся, но увеличивающие импульсацию во время вдоха или выдоха.

Имеются и другие классификации нейронов дыхательного цен­тра. Разные по характеру импульсации дыхательные нейроны рас­положены диффузно. Возбуждающее и тормозящее взаимодействие всех типов нейронов обеспечивает ритмическую деятельность ды­хательного центра.

Большинство экспираторных нейронов является антиинспираторными, и только часть из них посылает свои импульсы к мышцам выдоха. Они возбуждаются под влиянием афферентной импульса­ции блуждающих нервов и нейронов моста. Большинство инспираторных нейронов обладает непрерывной спонтанной импульсной активностью, которая преобразуется в фазную благодаря тормоз­ным реципрокным влияниям экспираторных и поздних инспираторных нейронов. После перерезки блуждающих нервов и ствола мозга между мостом и продолговатым мозгом наблюдается дли­тельный тетанус инспираторных мышц (инспираторное апноэ), что также свидетельствует о постоянной активности инспиратор­ных нейронов. Однако после выхода животного из наркоза восста­навливается ритмичное дыхание, что демонстрирует высокую сте­пень автоматии главной части дыхательного центра продолгова­того мозга и компенсационные возможности ЦНС в случае ее по­вреждения. Срез основных дыхательных нейронов толщиной всего лишь 0,5 мм продолжает генерировать дыхательный ритм in vitro.

4. Схема саморегуляции вдоха и выдоха.

Каждый дыхательный цикл начинается с возбуждения ранних инспираторных нейронов. Затем возбуждение переходит на полные инспиратор­ные нейроны. В процессе циркуляции возбужде­ния импульсы по возвратным связям поступают к предшествую­щим нейронам и тормозят их. Полные инспираторные и экспираторные нейроны по нисходящим путям посылают импульсы к мо­тонейронам спинного мозга, иннервирующим дыхательную мус­кулатуру.

Поскольку при спокойном дыхании выдох обычно осуществляется за счет потенциальной энергии, накопленной во время вдоха, экспираторные нейроны и мышцы не показаны. Роль моста в регуляции вдоха и выдоха доказана в опытах с перерезкой ствола мозга (Люмсден, 1923): при отделении моста вдох становится очень длительным, преры­вается короткими выдохами. При перерезке блуждающих нервов дыхание становится резко замедленным и глубоким, вдох про­должается дольше обычного. Таким образом, импульсация от ней­ронов моста и афферентная импульсация, поступающая в про­долговатый мозг по блуждающим нервам, обеспечивают смену вдоха на выдох, причем главную роль играют нейроны моста. Об этом свидетельствуют более грубые нарушения дыхания после от­деления моста, нежели после перерезки блуждающих нервов.

В мосту обнаружены две области скопления нейронов, участвую­щих в регуляции дыхания. Одна группа дыхательных нейронов находится в ростральной части - на 2 мм ниже задних холмиков четверохолмия, медиальнее парабрахиального ядра (пневмотаксический центр по Люмсдену). Возбуждение этих нейронов облег­чает смену вдоха на выдох. В средней и каудальной областях моста также обнаружены дыхательные нейроны (возбуждаются в ритме дыхания), но они, напротив, тормозят смену вдоха на выдох. В целом нейроны моста способствуют смене вдоха на выдох и дела­ют дыхательный цикл более плавным. Считают, что дыхательные нейроны моста получают импульсы от инспираторных нейронов продолговатого мозга и посылают импульсы обратно в продолго­ватый мозг, где они возбуждают экспираторные нейроны и тор­мозят инспираторные. Поскольку в мосте обнаружены две группы нейронов, взаимодействие которых с нейронами продолговатого мозга обеспечивает плавность дыхательного цикла, применение понятия «пневмотаксический центр» утратило смысл.

Роль блуждающих нервов в регуляции вдоха и выдоха доказали К. Геринг и Дж. Брейер в опыте с раздуванием легких воздухом в различные фазы дыхательного цикла. Оказалось, что раздувание легких воздухом тормозит вдох, после чего наступает выдох. Уменьшение объема легких (забор воздуха) тормозит выдох, ус­коряет вдох. После перерезки блуждающих нервов раздувание легких не изменяет характер дыхания - тормозный эффект от­сутствует.

Заключение

Итак, результаты опытов многих ученых свидетельствуют о том, что во время вдоха вследствие растяжения легких возбуждаются их механорецепторы (рецепторы растяжения). Афферентные импульсы по блуждающим нервам поступают к дыхательным нейронам, тормозят вдох и обес­печивают смену вдоха на выдох (рефлексы Геринга-Брейера). При этом возбуждаются экспираторные и поздние инспираторные ней­роны, которые, в свою очередь, тормозят ранние инспираторные нейроны. Афферентные импульсы от легких по блуждающим нервам поступают также к дыхательным нейронам моста. Рецепторы рас­тяжения легких локализуются преимущественно в гладкомышечных стенках трахеи и бронхов всех калибров. В каждом легком име­ется около 1000 рецепторов, они возбуждаются при вдохе. Чем глубже вдох, тем выше их активность. Возбудимость рецепторов растяжения различна, некоторые из них (низкопороговые) воз­буждаются не только при вдохе, но и при выдохе. Рецепторы рас­тяжения легких являются медленно адаптирующимися.

Значение проприорецепторов дыхательных мышц в регуляции дыхания является таким же, как и для всей скелетной мускула­туры. Причем главную роль играют проприорецепторы (мышеч­ные веретена и сухожильные рецепторы) межреберных мышц и мышц стенки живота, которые содержат большое количество этих рецепторов. Диафрагма содержит очень мало проприорецепторов. Поэтому активность нейронов диафрагмального нерва практи­чески полностью определяется импульсами дыхательных нейро­нов продолговатого мозга; активность мотонейронов межребер­ных нервов зависит от импульсов продолговатого мозга и от аф­ферентных импульсов проприорецепторов дыхательной муску­латуры. Импульсация от проприорецепторов усиливает сокраще­ние дыхательной мускулатуры и способствует смене вдоха на выдох.

Литература.


1. Бехтерева Н.П. «Не люблю, когда человеческий мозг сравнивают с компьютером»// Смена.-2000.-№4.-с.244-251.

2. Блум А. Мозг, разум, поведение. Пер. с англ. М.:1995. – 356с.

3. Бычков С.М., Кузьмина С.А. Биохимия мозга. //Вопросы медицинской химии. – 1986.вып 1.-с.21.

4. Воронин Л.Г. Физиология ВНД. М. Высная школа, 1999. – 312с.

5. Гомазков О. Мозг – ХХI: Закон доминанты.// Знание-сила.-1995.-№5.-с.51-57.

5. Камбарова Д. Болезни мозга глазами физиолога.\\ Новая еженедельная газета.-1995.1февр.с.2.

6. Мозг. Пер. с англ. Под ред. П.В.Симонова. М.:Мир. – 1982. -287с..

7. Моренков Э.Д. Морфология мозга человека.М.:1983.-276с.

8. Михайлов А.С. Физики задумываются над механизмом работы мозга.//Природа. 1987. -№3.-с.15-26.

9. Смирнов В.М. Физиология ЦНС: уч. пос. М. Изд. Центр «Академия», 2004. – 352с.

10. Эвелин Пирс. Анатомия и физиология мозга. Пер. с англ. М.: 2003.-315с.

Регуляция дыхательных движений

Нервная регуляция

Дыхательный центр (центр вдоха и выдоха) находится в продолговатом отделе головного мозга. Работа Дыхательного центра зависит от болевых и температурных воздействий, а также артериального давления, лекарственных средств и других факторов.

Кора больших полушарий головного мозга позволяет произвольно задерживать, изменять ритм и глубину дыхания.

Гуморальная регуляция

При увеличении в крови концентрации углекислого газа (СО г) возбудимость дыхательного центра повышается - дыхание учащается. При уменьшении концентрации С0 2 возбудимость дыхательного центра снижается.

Внешнее дыхание - одна из важнейших функций организма. Остановка дыхания приводит верную смерть уже через 3-5 мин. Количество кислорода в организме незначительна, поэтому важно, чтобы он постоянно поступал через систему внешнего дыхания. Этим объясняется формирование в процессе эволюции такого механизма регуляции, который бы обеспечил высокую надежность дыхания. В основе регуляциГ дыхания лежит поддержка константного уровня-таких показателей организма, как Рсо8, Ро? и рН. Основным принципом регуляции е саморегуляция, при которой отклонение этих параметров от нормального уровня немедленно вызывает ряд процессов, направленных на их восстановление. В системе регуляции дыхания можно выделить внутренние и внешние звенья саморегуляции. Внутренние звенья связаны с состоянием крови (буферные свойства, содержание гемоглобина) и сердечно-сосудистой системы, внешние - с механизмами внешнего дыхания. Изменяемыми параметрами системы регуляции внешнего дыхания является глубина и частота дыхательных движений. Основным регулируемым объектом являются дыхательные мышцы, которые относятся к скелетных мышц. Кроме них, к объекту регуляции дыхания должны быть зачислены гладкие мышцы глотки, трахеи и бронхов, которые влияют на состояние дыхательных путей. Транспорт газов кровью и газообмен в тканях осуществляет сердечно-сосудистая система, о регуляции функций которой речь пойдет в соответствующих разделах. Дыхание регулируется главным образом рефлекторным путем, который включает в себя 3 элемента: 1) рецепторы, воспринимающие информацию и афферентные пути, которые передают Ее нервным центрам, 2) нервные центры, 3) эффекторы - пути передачи команд от центров и собственно исполнительные элементы.

Непроизвольную регуляцию дыхания осуществляет дыхательный центр, находящийся в продолговатом мозге (одном из отделов заднего мозга) . Вентральная (нижняя) часть дыхательного центра ответственна за стимуляцию вдоха; ее называют центром вдоха (инспнра-торным центром) . Стимуляция этого центра увеличивает частоту и глубину вдоха. Дорсальная (верхняя) часть и обе латеральные (боковые) тормозят вдох и стимулируют выдох; они носят собирательное название центра выдоха (экспираторного центра) . Дыхательный центр связан с межреберными мышцами межреберными нервами, а с диафрагмой - диафрагмальными. Бронхиальное дерево (совокупность бронхов и бронхиол) иннервируется блуждающим нервом. Ритмично повторяющиеся нервные импульсы, направляющиеся к диафрагме и межреберным мышцам обеспечивают осуществление вентиляционных движений. Расширение легких при вдохе стимулирует находящиеся в бронхиальном дереве рецепторы растяжения (проприоцепторы) и они посылают через блуждающий нерв все больше и больше импульсов в экспираторный центр. Это на время подавляет инспираторный центр и вдох. Наружные межреберные мышцы теперь расслабляются, эластично сокращается растянутая легочная ткань - происходит выдох. После выдоха рецепторы растяжения в бронхиальном дереве более уже не подвергаются стимуляции. Поэтому экспираторный центр отключается и вдох может начаться снова. Весь этот цикл непрерывно и ритмично повторяется на протяжении всей жизни организма. Форсированное дыхание осуществляется при участии внутренних межреберных мышц. Основной ритм дыхания поддерживается дыхательным центром продолговатого мозга, даже если все входящие в него нервы перерезаны. Однако в обычных условиях на этот основной ритм накладываются различные влияния. Главным фактором, регулирующим частоту дыхания, служит не концентрация кислорода в крови, а концентрация С02. Когда уровень С02 повышается (например, при физической нагрузке) , имеющиеся в кровеносной системе хеморецепторы каротидных и аортальных телец посылают нервные импульсы в инспираторный центр. В самом продолговатом мозге также имеются хеморецепторы. От инспираторного центра через диафрагмальные и межреберные нервы поступают импульсы в диафрагму и наружные межреберные мышцы, что ведет к их более частому сокращению, а следовательно, к увеличению частоты дыхания. Накапливающийся в организме С02 может причинить большой вред организму. При соединении С02 с водой образуется кислота, способная вызвать денатурацию ферментов и других белков. Поэтому в процессе эволюции у организмов выработалась очень быстрая реакция на любое повышение концентрации С02. Если концентрация С02 в воздухе увеличивается на 0,25%, то легочная вентиляция удваивается. Чтобы вызвать такой же результат, концентрация кислорода в воздухе должна снизиться с 20% до 5%. Концентрация кислорода тоже влияет на дыхание, однако в обычных условиях кислорода всегда бывает достаточно, и потому его влияние относительно невелико. Хеморецепторы, реагирующие на концентрацию кислорода, располагаются в продолговатом мозге, в каротидных и аортальных тельцах, так же, как и рецепторы С02. В известных пределах частота и глубина дыхания могут регулироваться произвольно, о чем свидетельствует, например, наша способность «затаить дыхание» . К произвольной регуляции дыхания мы прибегаем при форсированном дыхании, при разговоре, пении, чихании и кашле.



Рассказать друзьям