Митоз биологическое значение. Каково биологическое значение митоза

💖 Нравится? Поделись с друзьями ссылкой

Биологическое значение митоза очень высоко. Непосвещенному даже представить трудно, какую роль играет в жизнедеятельности процесс простого деления клеток в организме. Способность клеток делиться - это самая важная их функция, основополагающая. Без этого невозможно продолжение жизни на Земле, увеличение популяций одноклеточных организмов, невозможно развитие и продолжение существования большого многоклеточного организма, невозможно также путем и развитие новой жизни из оплодотворенной яйцеклетки.

Биологическое значение митоза было бы намного меньше, если бы не было сущностью большинства происходящих на нашей планете биологических процессов. Данный процесс происходит в несколько этапов. Каждый из них включает в себя несколько действий внутри клетки. Итогом этого является обязательное умножение генетического базиса одной клетки надвое путем дублирования ДНК, чтобы впоследствии материнская клетка дала жизнь двум дочерним.

Всю жизнь клетки можно заключить в период от образования дочерней до ее последующего деления надвое. Этот период носит в биологии название «клеточный цикл».

Самая первая фаза митоза - это собственно подготовка к Период, в котором клетки, наделенные ядрами, выполняют непосредственную подготовку к делению, называется интерфазой. В ней происходит все самое важное, а именно - удвоение цепочки ДНК и прочих структур, а также синтез большого количества белка. Таким образом, хромосомы клетки становятся удвоенными, и каждая половинка такой двойной хромосомы носит название «хроматида».

После интерфазы начинается непосредственно сам процесс деления - митоз. Он тоже проходит в несколько ступеней. В итоге все удвоенные части растягиваются симметрично по клетке, чтобы после образования центральной перегородки в каждой новой клетке осталось одинаковое количество образовавшихся компонентов.

И мейоза схожи, но в последнем (при делении имеется два деления, и в итоге получается не две, а четыре клетки-«дочери». Также перед вторым делением отсутствует удвоение хромосом, поэтому их набор в дочерних клетках остается половинным.

1. Профаза. В этой фазе центриоли клетки очень хорошо видны. Они присутствуют только в клетке животных и человека. У растений нет центриолей.
2. Прометафаза. В этот момент завершается профаза и начинается метафаза.
3. Метафаза. В этот момент хромосомы лежат на «экваторе» клетки.
4. Анафаза. Хромосомы отходят к разным полюсам.
5. Телофаза. Одна клетка-«мать» делится путем образования центральной перегородки на две клетки-«дочери». Так и завершается деление клетки или митоз.

Самое главное биологическое значение митоза - это абсолютно одинаковое разделение удвоенных хромосом на 2 одинаковые части и помещение их в две клетки-«дочери». Разные виды клеток и клетки разных организмов имеют варьирующееся время продолжительности деления - митоза, но в среднем он протекает примерно около полутора часов. Существует очень много факторов, влияющих на этот весьма хрупкий процесс. Любые изменяющиеся условия внешней среды, например, температура окружающего воздуха, режим световых фаз, давление в окружении и внутри организма и клетки, а также множество других факторов, могут значительно повлиять и на продолжительность, и на качество процесса деления клеток. Также длительность всего митоза и его отдельных ступеней напрямую может быть зависима от типа ткани, в клетках которой он и протекает.

Биологическое значение митоза с каждым новым открытием в области цитологии становится более ценным, потому что без этого процесса невозможна жизнь на планете.

Митоз –mitos (греч. - нити) – непрямое деление клетки, универсальный способ деления эукариотических клеток.

Главные события митотического цикла заключаются в редупликации (самоудвоении) наследственного материала материнской клетки и в равномерном распределении этого материала между дочерними клетками. Указанным событиям сопутствуют закономерные изменения химической и морфологической организации хромосом - ядерных структур, в которых сосредоточено более 90% генетического материала эукариотической клетки (основная часть внеядерной ДНК животной клетки находится в митохондриях).

Хромосомы во взаимодействии с внехромосомными механизмами обеспечивают: а) хранение генетической информации; б) использование этой информации для создания и поддержания клеточной организации; в) регуляцию считывания наследственной информации; г) удвоение генетического материала; д) передачу его от материнской клетки дочерним.

Митоз – непрерывный процесс, который делится на фазы.

В митозе можно выделить четыре фазы . Главные события по отдельным фазам представлены ниже.

Фаза митоза Содержание изменений
Профаза (0,60 времени от всего митоза, 2n4c) Увеличивается объем ядра. Хромосомы спирализуются, становятся видимыми, укорачиваются, утолщаются, приобретают вид нитей. В цитоплазме уменьшается количество структур шероховатой сети. Резко сокращается число полисом. Центриоли клеточного центра расходятся к полюсам клетки, между ними микротрубочки образуют веретено деления. Ядрышко разрушается. Ядерная оболочка растворяется, хромосомы оказываются в цитоплазме
Метафаза (0,05 времени) Спирализация достигает максимума. Хромосомы выстраиваются в экваториальной плоскости клетки (метафазная пластинка). Микротрубочки веретена деления связаны с кинетохорами хромосом. Митотическое веретено полностью сформировано и состоит из нетей, соединяющих полюса с центромерами хромосом. Каждая хромосома продольно расщепляется на две хроматиды (дочерние хромосомы), соединенные в области кинетохора.
Анафаза (0,05 времени) Центромеры разъединяются, связь между хроматидами нарушается, и они в качестве самостоятельных хромосом перемещаются к полюсам клетки со скоростью 0,2-5 мкм/мин. Движение хромосом обеспечивается взаимодействием центромерных участков хромосом с микротрубочками веретена деления. По завершении движения на полюсах собирается два равноценных полных набора хромосом.
Телофаза (0,3 времени) Реконструируются интерфазные ядра дочерних клеток. Хромосомы, состоящие из одной хроматиды, находятся у полюсов клетки. Они деспирализуются и становятся невидимы. Образуется ядерная оболочка, нити ахроматинового веретена распадаются. В ядре формируется ядрышко. Происходит деление цитоплазмы (цитотомия и цитокинез) и образование двух дочерних клеток. В клетках животных цитоплазма делится путем перетяжки, впячиванием цитоплазматической мембраны от краев к центру. В клетках растений - в центре образуется мембранная перегородка, которая растет по направлению к стенкам клетки. После образования поперечной цитоплазматической мембраны у растений образуется целлюлярная стенка.

Биологическое значение митоза: образование клеток с наследственной информацией, которая качественно и количественно идентична информации материнской клетки. Обеспечение постоянства кариотипа в ряду поколений клеток. Митоз служит клеточным механизмом процессов роста и развития организма, его регенерации и бесполого размножения. Таким образом, митоз является всеобщим механизмом воспроизведения клеточной организации эукариотического типа в индивидуальном развитии.



Патология митоза

Нарушения той или иной фазы митоза приводят к патологическим изменениям клеток. Отклонение от нормального течения процесса спирализации может привести к набуханию и слипанию хромосом. Иногда наблюдается отрыв участка хромосомы, который, если он лишен центромеры, не участвует в анафазном перемещении к полюсам и теряется. Отставать при движении могут отдельные хроматиды, что приводит к образованию дочерних ядер с несбалансированными хромосомными наборами. Повреждения со стороны веретена деления приводят к задержке митоза в метафазе, рассеиванию хромосом. При изменении количества центриолей возникают многополюсные или асимметричные митозы. Нарушение цитотомии приводит к появлению дву- и многоядерных клеток.

На основе митотического цикла возник ряд механизмов, с помощью которых в том или ином органе количество генетического материала и, следовательно, интенсивность обмена могут быть увеличены при сохранении постоянства числа клеток.

Эндомитоз. Удвоение ДНК клетки не всегда сопровождается ее разделением на две. Поскольку механизм такого удвоения совпадает с предмитотической редупликацией ДНК и оно сопровождается кратным увеличением количества хромосом, это явление получило название эндомитоза. При воздействии на клетки веществами разрушающими микротрубочки веретена, деление прекращается, а хромосомы будут продолжать цикл своих превращений: реплицироваться, что приведет к поэтапному образованию полиплоидных клеток – 4n, 8n и т.д. Такой процесс преобразований иначе называется эндорепродукцией. С генетической точки зрения, эндомитоз - геномная соматическая мутация. Способность клеток к эндомитозу используют в селекции растений для получения клеток с кратным набором хромосом. Для этого применяют колхицин, винбластин, разрушающие нити ахроматинового веретена. Полиплоидные клетки (а затем и взрослые растения) отличаются большими размерами, вегетативные органы из таких клеток крупные, с большим запасом питательных веществ. У человека эндорепродукция имеет место в некоторых гепатоцитах и кардиомиоцитах.

Политения. При политении в S-периоде в результате репликации и нерасхождения хромосомных нитей образуется многонитчатая, политенная структура. От митотических хромосом они отличаются большими размерами (длиннее в – 200 раз). Встречаются такие клетки в слюнных железах двукрылых насекомых, в макронуклеусах инфузорий. На политенных хромосомах видны вздутия, пуфы (места транскрипции) – выражение генной активности. Эти хромосомы – важнейший объект генетических исследований. Эндомитоз и политения приводят к образованию полиплоидных клеток, отличающихся кратным увеличением объема наследственного материала. В таких клетках в отличие от диплоидных гены повторены более чем два раза. Пропорционально увеличению числа генов растет масса клетки, что повышает ее функциональные возможности. В организме млекопитающих полиплоидизация с возрастом свойственна печеночным клеткам.

Аномалии митотического цикла . Митотический ритм, обычно адекватный потребности восстановления стареющих, погибших клеток, в условиях патологии может быть изменен. Замедление ритма наблюдается в стареющих или маловаскуляризированных тканях, увеличение ритма - в тканях при разных видах воспаления, гормональных воздействиях, в опухолях и др.

Аномалии развития митозов . Некоторые агрессивные агенты, действуя на фазу S, замедляют синтез и дупликацию ДНК. К ним относятся ионизирующая радиация, различные антиметаболиты (метатрексат, меркапто-6-пурин, флюоро-5-урацил, прокарбозин и др.). Их используют для противоопухолевой химиотерапии. Другие агрессивные агенты действуют на фазы митоза и препятствуют образованию ахроматического веретена. Они изменяют вязкость плазмы, не расщепляя нити хромосом. Такое цитофизиологическое изменение может повлечь за собой блокаду митоза в метафазу, а затем - острую смерть клетки, или митонекроз. Митонекрозы часто наблюдаются, в частности, в опухолевой ткани, в очагах некоторых воспалений с некрозом. Их можно вызвать при помощи подофиллина, который применяется при лечении злокачественных новообразований.

Аномалии морфологии митозов . При воспалении, действии ионизирующей радиации, химических агентов и особенно в злокачественных опухолях обнаруживаются морфологические аномалии митозов. Они связаны с тяжелыми метаболическими изменениями клеток и могут быть обозначены как «абортивные митозы». Примером такой аномалии служит митоз с анормальным числом и формой хромосом; трех-, четырех- и мультиполярные митозы.

Многоядерные клетки . Клетки, содержащие множество ядер, встречаются и в нормальном состоянии, например: остеокласты, мегакариоциты, синцитиотрофобласты. Но они поручаются часто и в условиях патологии - например: клетки Ланганса при туберкулезе, гигантские клетки инородных тел, множество опухолевых клеток. Цитоплазма таких клеток содержит гранулы или вакуоли, число ядер может колебаться от нескольких единиц до нескольких сотен, а объем отражён в названии - гигантские клетки. Происхождение их вариабельно: эпителиальные, мезенхимальные, гистиоцитарные. Механизм формирования гигантских многоядерных клеток различен. В одних случаях их образование обусловлено слиянием мононуклеарных клеток, в других оно осуществляется благодаря делению ядер без деления цитоплазмы. Считают также, что их образование может быть следствием некоторых аномалий митоза после облучения или введения цитостатиков, а также при злокачественном росте.

Амитоз

Прямое деление или амитоз – это деление клетки, у которой ядро находится в интерфазном состоянии. При этом не происходит конденсации хромосом и образования веретена деления. Формально амитоз должен приводить к появлению двух клеток, однако чаще всего он приводит к разделению ядра и появлению двух- или многоядерных клеток.

Начинается амитотическое деление с фрагментации ядрышек, вслед за этим делится перетяжкой ядро (или инвагинацией). Может быть множественное деление ядра, как правило, неравной величины (при патологических процессах). Многочисленные наблюдения показали, что амитоз встречается почти всегда в клетках отживающих, дегенерирующих и не способных дать в дальнейшем полноценные элементы. В норме амитотическое деление встречается в зародышевых оболочках животных, в фолликулярных клетках яичника, в гигантских клетках трофобластов. Положительное значение амитоз имеет в процессе регенерации тканей или органа (регенеративный амитоз). Амитоз в стареющих клетках сопровождается нарушениями биосинтетических процессов, включая репликацию, репарацию ДНК, а также транскрипцию и трансляцию. Изменяются физико-химические свойства белков хроматина ядер клеток, состав цитоплазмы, структура и функции органоидов, что влечет за собой функциональные нарушения на всех последующих уровнях – клеточном, тканевом, органном и организменном. По мере нарастания деструкции и угасания восстановления наступает естественная смерть клетки. Нередко амитоз встречается при воспалительных процессах и злокачественных новообразованиях (индуцированный амитоз).

Биологическое значение митоза очень высоко. Непосвещенному даже представить трудно, какую роль играет в жизнедеятельности процесс простого деления клеток в организме. Способность клеток делиться – это самая важная их функция, основополагающая. Без этого невозможно продолжение жизни на Земле, увеличение популяций одноклеточных организмов, невозможно развитие и продолжение существования большого многоклеточного организма, невозможно также размножение половым путем и развитие новой жизни из оплодотворенной яйцеклетки.

Биологическое значение митоза было бы намного меньше, если бы деление клеток не было сущностью большинства происходящих на нашей планете биологических процессов. Данный процесс происходит в несколько этапов. Каждый из них включает в себя несколько действий внутри клетки. Итогом этого является обязательное умножение генетического базиса одной клетки надвое путем дублирования ДНК, чтобы впоследствии материнская клетка дала жизнь двум дочерним.

Всю жизнь клетки можно заключить в период от образования дочерней до ее последующего деления надвое. Этот период носит в биологии название «клеточный цикл».

Самая первая фаза митоза – это собственно подготовка к клеточному делению. Период, в котором клетки, наделенные ядрами, выполняют непосредственную подготовку к делению, называется интерфазой. В ней происходит все самое важное, а именно – удвоение цепочки ДНК и прочих структур, а также синтез большого количества белка. Таким образом, хромосомы клетки становятся удвоенными, и каждая половинка такой двойной хромосомы носит название «хроматида».

После интерфазы начинается непосредственно сам процесс деления – митоз. Он тоже проходит в несколько ступеней. В итоге все удвоенные части растягиваются симметрично по клетке, чтобы после образования центральной перегородки в каждой новой клетке осталось одинаковое количество образовавшихся компонентов.

Фазы митоза и мейоза схожи, но в последнем (при делении половых клеток) имеется два деления, и в итоге получается не две, а четыре клетки-«дочери». Также перед вторым делением отсутствует удвоение хромосом, поэтому их набор в дочерних клетках остается половинным.

1. Профаза. В этой фазе центриоли клетки очень хорошо видны. Они присутствуют только в клетке животных и человека. У растений нет центриолей.
2. Прометафаза. В этот момент завершается профаза и начинается метафаза.
3. Метафаза. В этот момент хромосомы лежат на «экваторе» клетки.
4. Анафаза. Хромосомы отходят к разным полюсам.
5. Телофаза. Одна клетка-«мать» делится путем образования центральной перегородки на две клетки-«дочери». Так и завершается деление клетки или митоз.

Самое главное биологическое значение митоза – это абсолютно одинаковое разделение удвоенных хромосом на 2 одинаковые части и помещение их в две клетки-«дочери». Разные виды клеток и клетки разных организмов имеют варьирующееся время продолжительности деления – митоза, но в среднем он протекает примерно около полутора часов. Существует очень много факторов, влияющих на этот весьма хрупкий процесс. Любые изменяющиеся условия внешней среды, например, температура окружающего воздуха, режим световых фаз, давление в окружении и внутри организма и клетки, а также множество других факторов, могут значительно повлиять и на продолжительность, и на качество процесса деления клеток. Также длительность всего митоза и его отдельных ступеней напрямую может быть зависима от типа ткани, в клетках которой он и протекает.

Биологическое значение митоза с каждым новым открытием в области цитологии становится более ценным, потому что без этого процесса невозможна жизнь на планете.

Вопросы самоконтроля. Биологическое значение митоза

Задание № 1

Тема 14. Половое размножение.

Вопросы самоконтроля

Биологическое значение митоза.

ТЕЛОФАЗА

АНАФАЗА

МЕТАФАЗА.

Хромосомы приобретают упорядоченное расположение, передвигаясь к экватору. Достигнув экватора, хромосомы располагаются в одной плоскости, и в этот момент к центромерам каждой хромосомы прикрепляется одна из нитей веретена.

В метафазе отчетливо видно, что хромосомы состоят из двух хроматид, соединенных только в области центромеры.

Хроматиды каждой хромосомы начинают расходиться к полюсам клетки: к одному полюсу отходит одна хроматида, к противоположному другая. Движение хромосом осуществляется за счет нитей веретена, которые сокращаются и растягивают дочерние хромосомы от экватора к противоположным полюсам клетки. При движении используется энергия АТФ.

В этот момент в клетке находится два диплоидных набора хромосом.

Приблизившиеся к полюсам клетки хромосомы начинают раскручиваться и снова приобретают форму длинных нитей, переплетающихся друг с другом, что характерно для неделящегося ядра. В дочерних ядрах вновь образуется ядерная оболочка, формируется ядрышко и полностью восстанавливается характерное для интерфазы строение ядра. На протяжении телофазы происходит и деление цитоплазмы, в результате которого две дочерние клетки отделяются друг от друга. Эти клетки по строению полностью сходны с материнской, но отличаются от нее меньшими размерами.

В результате митоза каждая дочерняя клетка получает точно такие же хромосомы, какие имела материнская клетка. Число хромосом в обоих дочерних клетках равно числу хромосом материнской клетки.

Следовательно, биологическое значение митоза заключается в строго равномерном распределении хромосом между ядрами двух дочерних клеток. Это значит, что митоз обеспечивает тонкую передачу всей наследственной информации каждому из дочерних ядер.

Если произойдет нарушение нормального хода митоза и в дочерней клетке хромосом окажется меньше или больше, чем в материнской, то это приведет либо к гибели, либо к существенным изменениям в жизнедеятельности клетки - к возникновению мутаций.

1.Какие формы размножения характерны для живых организмов?

2.Какое размножение называют бесполым?

4.Какие формы бесполого размножения характерны для организмов?

5.Какая из форм бесполого размножения является наиболее молодой?

6.Что такое митоз?

7.Какие клетки делятся путем митоза?

8.Какой набор хромосом содержат клетки в конце интерфазы?

9.В какую из фаз митоза хромосомы располагаются в плоскости экватора?

10.В какую фазу митоза к полюсам клетки расходятся хроматиды?

11.На каком этапе клетки формируется веретено деления?

12.Каково биологическое значение митоза?

1.Прочитайте ниже изложенный учебный материал.

2.Проанализируйте таблицы из приложения

3.Ответьте на вопросы самоконтроля.

Половое размножение - смена поколений и развитие организмов на основе специализированных половых клеток.

Однако у беспозвоночных животных нередко сперматозоиды и яйцеклетки формируются в теле одного организма. Такое явление – обоеполость – называется гермафродитизмом.

Известны случаи, когда новый организм не обязательно появляется в результате слияния половых клеток. У некоторых видов животных и растений наблюдается развитие из неоплодотворенной яйцеклетки (пчелы, осы, тли, некоторые ракообразные (дафнии)). Такое размножение называется девственным или партеногенетическим .

Половое размножение. Новый организм образуется в результате слияния половых клеток-гамет (n). Образуется зигота (2n) с уникальным набором хромосом. Половое размножение характерно для большинства живых организмов. Преимущества : каждая особь обладает уникальным генотипом, что позволяет в результате естественного отбора приспособиться к различным условиям среды.

Характерны следующие особенности : в размножении обычно принимают участие две особи – мужская и женская; чаще осуществляется с помощью специализированных клеток – гамет; редукция количества хромосом и перекомбинация генетического материала в гаметах происходит в результате мейоза; потомки (за исключением однояйцевых близнецов) генетически отличны друг от друга и от родительских особей.

Сперматогенез, овогенез (оогенез).

Гаметогенез – это процесс развития половых клеток – гамет. Предшественники гамет (гаметоциты) диплоидны. Процесс образования сперматозоидов называется сперматогенезом, а образование яйцеклеток – оогенезом (овогенезом). В половых железах различают три разных участка, или зоны: зона размножения , зона роста , зона созревания . Сперматогенез и оогенез включают три одинаковые фазы: размножения, роста, созревания (деления). В сперматогенезе имеется еще одна фаза – формирования.

Фаза размножения : диплоидные клетки многократно делятся митозом. Количество клеток в гонадах растет, их называют оогонии и сперматогонии. Набор хромосом 2n.

В фазе роста происходит их рост, образовавшиеся клетки называются ооциты 1-го порядка и сперматоциты 1-го порядка.

В фазе созревания происходит мейоз, в результате первого мейотического деления образуются гаметоциты 2-го порядка (набор хромосом n2c), которые вступают во второе мейотическое деление, и образуются клетки с гаплоидным набором хромосом (nс). Оогенез на этом этапе практически заканчивается, а сперматогенез включает еще фазу формирования , во время которой формируются сперматозоиды.

В отличие от образования сперматозоидов, которое происходит только после достижения половой зрелости (в частности, у позвоночных животных), процесс образования яйцеклеток начинается еще у зародыша. Период размножения полностью осуществляется на зародышевой стадии развития и заканчивается к моменту рождения (у млекопитающих и человека). В период роста ооциты увеличиваются в размерах за счет накопления питательных веществ (белков, жиров, углеводов) и пигментов – образуется желток. Затем ооциты 1-го порядка вступают в период созревания. В результате первого мейотического деления возникают две дочерние клетки. Одна из них, относительно мелкая, называемая первым полярным тельцем, не является функциональной, а другая, более крупная (ооцит 2-го порядка), подвергается дальнейшим преобразованиям.

Второе деление мейоза осуществляется до стадии метафазы II и продолжится только после того, как ооцит 2-го порядка вступит во взаимодействие со сперматозоидом и произойдет оплодотворение. Таким образом, из яичника выходит, строго говоря, не яйцеклетка, а ооцит 2-го порядка. После оплодотворения он делится, в результате чего возникают яйцеклетка (или яйцо) и второе полярное тельце. Однако традиционно для удобства яйцеклеткой называют ооцит 2-го порядка, готовый к взаимодействию со сперматозоидом. Таким образом, в результате оогенеза образуется одна нормальная яйцеклетка и три полярных тельца.

Гаметы. Это половые клетки, при слиянии которых образуется зигота, дающая начало новому организму. Они представляют собой высокоспециализированные клетки, участвующие в осуществлении процессов, связанных с половым размножением. Гаметы имеют ряд особенностей, отличающих их от соматических клеток : хромосомный набор соматических клеток – диплоидный (2n2с), а гамет – гаплоидный (nс); гаметы не делятся; гаметы, особенно яйцеклетки, более крупные, чем соматические клетки; яйцеклетка содержит много питательных веществ, сперматозоид – мало (практически отсутствуют); гаметы имеют измененное ядерно-цитоплазматическое соотношение по сравнению с соматическими клетками (в яйцеклетке ядро занимает значительно больший объем, чем цитоплазма, в сперматозоиде – наоборот, причем ядро имеет такие же размеры, что и в яйцеклетке). Активная роль в оплодотворении принадлежит сперматозоиду. Поэтому он имеет малые размеры и подвижен (у животных). Яйцеклетка не только приносит в зиготу свой набор хромосом, но и обеспечивает развитие зародыша на ранних стадиях. Поэтому она имеет крупные размеры и, как правило, содержит большой запас питательных веществ.

Организация яйцеклеток животных. Размер яйцеклеток колеблется в широких пределах – от нескольких десятков микрометров до нескольких сантиметров (яйцеклетка человека – около 100 мкм, яйцо страуса, имеющее длину со скорлупой порядка 155 мм, – тоже яйцеклетка). Яйцеклетка имеет ряд оболочек, располагающихся поверх плазматической мембраны, и запасные питательные вещества. У млекопитающих яйцеклетки имеют блестящую оболочку, поверх которой располагается лучистый венец – слой фолликулярных клеток.

Количество питательных веществ, накапливаемых в яйцеклетке, зависит от условий, в которых происходит развитие зародыша. Так, если развитие яйцеклетки происходит вне организма матери и приводит к формированию крупных животных, то желток может составлять более 95% объема яйцеклетки . Яйцеклетка млекопитающих содержит менее 5% желтка. В связи с накоплением питательных веществ у яйцеклеток появляется полярность. Противоположные полюсы называются вегетативным и анимальным. Поляризация проявляется в том, что происходит изменение местоположения ядра в клетке (оно смещается в сторону анимального полюса), а также в особенностях распределения цитоплазматических включений (во многих яйцах количество желтка возрастает от анимального к вегетативному полюсу).

Организация сперматозоидов. Длина сперматозоида человека – 50–60 мкм. Функции сперматозоида определяют и его строение. Головка – самая крупная часть сперматозоида, образованная ядром, которое окружено тонким слоем цитоплазмы. На переднем конце головки расположена акросома – часть цитоплазмы с видоизмененным аппаратом Гольджи. Она вырабатывает фермент, который способствует растворению оболочек яйцеклетки. В месте перехода головки в среднюю часть образуется перехват – шейка сперматозоида, в которой расположены две центриоли. За шейкой располагается средняя часть сперматозоида, содержащая митохондрии, и хвост, который имеет типичное для всех жгутиков эукариот строение и является органоидом движения сперматозоида. Энергию для движения поставляет гидролиз АТФ, происходящий в митохондриях средней части сперматозоида.

Оплодотворение. Совокупность процессов, приводящих к слиянию мужских и женских гамет, объединению их ядер и образованию зиготы, которая дает начало новому организму, называется оплодотворением.

Различают наружное оплодотворение, при котором встреча сперматозоидов и яйцеклеток происходит во внешней среде, и внутреннее оплодотворение, при котором встреча сперматозоидов и яйцеклеток происходит в половых путях самки.

Чаще всего сперматозоид полностью втягивается в яйцо, иногда жгутик остается снаружи и отбрасывается. С момента проникновения сперматозоида в яйцо гаметы перестают существовать, так как образуют единую клетку – зиготу. В зависимости от количества сперматозоидов, проникающих в яйцеклетку при оплодотворении, различают: моноспермию – оплодотворение, при котором в яйцо проникает только один сперматозоид (наиболее обычное оплодотворение), и полиспермию – оплодотворение, при котором в яйцеклетку проникает несколько сперматозоидов. Но даже в этом случае с ядром яйцеклетки сливается ядро только одного из сперматозоидов, а остальные ядра разрушаются.

Мейоз

Первое мейотическое деление.

1. Профаза I.

Хромосомы спирализуются. Можно различить, что каждая хромосома состоит из двух хроматид, соединенных между собой в области центромеры.

Гомологичные хромосомы тесно сближаются друг с другом, соединяются по всей длине и скручиваются – этот процесс называют – конъюгация. Далее проходит обмен одинаковыми, или гомологичными участками (обмен генами) – кроссинговер.

После конъюгации хромосомы расходятся.

2. Метафаза I.

Хромосомы крепятся к нитям веретена деления своими центромерами и располагаются в экваториальной плоскости.

3. Анафаза I.

К полюсам клетки отходят на половинки каждой хромосомы, включающие каждой хромосомы, включающие одну хроматиду, как при митозе, а целые хромосомы, каждая из которых состоит из 2-х хроматид. Следовательно, в дочернюю клетку попадает из каждой пары гомологичных хромосом только одна.

Число хромосом уменьшается в два раза, хромосомный набор становится гаплоидным.

4. Телофаза I.

На продолжительное время образуется ядерная оболочка. Поскольку отдельные хромосомы гаплоидных дочерних клеток продолжают оставаться удвоенными, во время интерфазы между первым и вторым делением мейоза удвоения ДНК не происходят. Клетки образуются в результате 1-го деления созревания, отличающиеся по составу отцовских и материнских хромосом и, следовательно, по набору генов.

Например, все клетки человека, в том числе первичные половые клетки, содержат 46 хромосом. Из них 23 получены от отца и 23 от матери. После 1-го мейотического деления в сперматоциты и овоциты попадает только по 23 хромосомы – по одной хромосоме из каждой пары гомологичных хромосом. Однако вследствие случайности расхождения отцовских и материнских хромосом в анафазе I – образующиеся клетки получают самые разнообразные комбинации родительских хромосом. Например, в одной из них может оказаться 3 отцовских и 20 материнских хромосом, в другой 10 отцовских и 12 материнских, в третьей 20 отцовских и 3 материнских и т.д. Число возможных комбинаций очень велико.

Следовательно, мейоз основа комбинативной генотипической изменчивости.

Второе мейотическое деление.

Протекает, в общем, так же как обычное митотическое деление, с той лишь разницей, что делящаяся клетка гаплоидна.

Профаза II

Хромосомы спирализуются, образуется веретено деления.

Метафаза II

Хромосомы располагаются в экваториальной плоскости клетки, нити веретена деления прикрепляются к центомерам.

Анафаза II.

Хроматиды расходятся к полюсам клетки.

Теплофаза II.

Т.о. из исходной первичной половой клетки образовались четыре гаплоидные клетки с хромосомным набором.

Сущность периода созревания состоит в том, что в половых клетках количество хромосом уменьшается вдвое.

Биологический смысл 2-го мейотического деления заключается в том, что количество ДНК приводится в соответствие хромосомному набору.

У особей мужского пола все четыре гаплоидные клетки, образуются в результате мейоза, в дальнейшем преобразуются в гаметы – сперматозоиды.

У особей женского пола вследствие неравномерного мейоза лишь из одной клетки получается жизнеспособное яйцо. Три другие клетки гораздо мельче, они превращаются в так называемые направительные или редукционные, тельца, вскоре погибающие. Биологический смысл этого – необходимость сохранения в одной клетке всех запасных питательных веществ, которые понадобятся для развития будущего зародыша.

1.Какое размножения называют половым?

2.В чем преимущества полового размножения перед бесполым?

3.Назвовите основные этапы в образовании яйцеклеток и сперматозоидов?

4.Назовите отличительные особенности мейоза и митоза.

5.Какой процесс называют конъюгацией?

6.Какой процесс носит название кроссинговера?

7.В чем заключается биологический смысл мейоза?

Тема 15. Индивидуальное развитие организмов: эмбриональный период

Каково биологическое значение митоза

Светлана сыщенко

Генетическая стабильность. В результате митоза получаются два ядра, содержащие каждое столько же хромосом, сколько их было в родительском ядре. Эти хромосомы происходят от родительских хромосом путем точной репликации ДНК, поэтому гены их содержат совершенно одинаковую наследственную информацию. Дочерние клетки генетически идентичны родительской клетке, так что никаких изменений в генетическую информцию митоз внести не может. Поэтому клеточные популяции (клоны) , происходящие от родительских клеток, обладают генетической стабильностью.
Рост. В результате митозов число клеток в организме увеличивается (процесс, известный под названием гиперплазии) , что представляет собой один из главных механизмов роста.
Бесполое размножение, регенерация и замещение клеток. Многие виды животных и растений размножаются бесполым путем при помощи одного лишь митотического деления клеток. Кроме того, митоз обеспечивает регенерацию утраченных частей (например, ног у ракообразных) и замещение клеток, происходящее в той или иной степени у всех многоклеточных организмов.

Angelina

МИТОЗ- основная форма клеточного деления, сущность которой заключается в равномерном распределении хромосом между дочерними клетками; деление клетки бесполое (соматические клетки) , образуются две дочерние клетки с набором хромосом 2n

Напишите, в чем заключается сущность митоза. Каково его биологическое значение?

Помогите с домашним заданием! Пожалуйста!

Важнейшим компонентом клеточного цикла является митотический (пролиферативный) цикл. Он представляет собой комплекс взаимосвязанных и согласованных явлений во время деления клетки, а также до и после него. Митотический цикл - это совокупность процессов, происходящих в клетке от одного деления до следующего и заканчивающихся образованием двух клеток следующей генерации. Кроме этого, в понятие жизненного цикла входят также период выполнения клеткой своих функций и периоды покоя. В это время дальнейшая клеточная судьба неопределенна: клетка может начать делиться (вступает в митоз) либо начать готовиться к выполнению специфических функций.
Биологическое знаение митоза состоит в том, что он обеспечивает наследственную передачу признаков и свойств в ряду поколений клеток при развитии многоклеточного организма. Благодаря точному и равномерному распределению хромосом при митозе все клетки единого организма генетически одинаковы.
Митотическое деление клеток лежит в основе всех форм бесполого размножения как у одноклеточных, так и у многоклеточных организмов. Митоз обусловливает важнейшие явления жизнедеятельности: рост, развитие и восстановление тканей и органов и бесполое размножение организмов.
http://xn--90aeobapscbe.xn--p1ai/Учебные-материалы/Деление-клеток/41-Митоз-его-фазы-биологическое-значение

Ирина

в чём заключается сущность митоза? каково его биологическое значение?
Метоз-основная форма клеточного деления, сущность которого заключается в равномерном распределении хромосом между дочерними клетками. Биологическое значение метоза. Метоз лежит в основе роста и вегетативного размножения всех организмов, имеющих ядро-энукриот. Обеспечевает постоянство числа хромосом во всех клетках организма.

Биологическое значение митоза.

Оно состоит в том, что митоз обеспечивает наследственную передачу признаков и свойств в ряду поколений клеток при развитии многоклеточного организма. Благодаря точному и равномерному распределению хромосом при митозе все клетки единого организма генетически одинаковы.

Митотическое деление клеток лежит в основе всех форм бесполого размножения, как у одноклеточных, так и у многоклеточных организмов. Митоз обусловливает важнейшие явления жизнедеятельности: рост, развитие и восстановление тканей и органов и бесполое размножение организмов.

Мейоз

При половом размножении дочерний организм возникает в результате слияния двух половых клеток (гамет) и последующего развития из оплодотворенной яйцеклетки - зиготы.

Половые клетки родителей обладают гаплоидным набором (n) хромосом, а в зиготе при объединении двух таких наборов число хромосом становится диплоидным (2n): каждая пара гомологичных хромосом содержит одну отцовскую и одну материнскую хромосому.

Гаплоидные клетки образуются из диплоидных в результате особого клеточного деления - мейоза.

Мейоз - разновидность митоза, в результате которого из диплоидных (2п) соматических клеток половых желез образуются гаплоидные гаметы (1n). При оплодотворении ядра гаметы сливаются, и восстанавливается диплоидный набор хромосом. Таким образом, мейоз обеспечивает сохранение постоянного для каждого вида набора хромосом и количества ДНК.

Мейоз представляет собой непрерывный процесс, состоящий из двух последовательных делений, называемых мейозом I и мейозом II. В каждом делении различают профазу, метафазу, анафазу и телофазу. В результате мейоза I число хромосом уменьшается вдвое (редукционное деление): при мейозе II гаплоидность клеток сохраняется (эквационное деление). Клетки, вступающие в мейоз, содержат генетическую информацию 2n2хр.

Профаза I . Во время профазы происходит обмен генетической информацией между гомологичными хромосомами. Это самая сложная фаза мейоза, которая подразделяется на 5 под фаз.

Лептотена или стадия тонких нитей. Она названа так, потому что благодаря максимальному уплотнению хроматина можно различить отдельные хромосомы в ядре, которые выглядят, как тонкие нити.

Зиготена . Хромосомы объединяются в гомологичные пары. Каждая пара является уникальной по своей форме и расположению перетяжки. Такие пары хромосом называются биваленты. На этой стадии гомологичные хромосомы начинают сближаться по всей длине, образуя синаптонемальный комплекс. Этот процесс похож на застёгивание молнии.

Пахитена . Гомологичные хромосомы начинают избирательно обмениваться генами. Такой процесс носит название кроссинговер .

Диплотена . Синаптонемальный комплекс распадается, хроматин частично теряет свою плотную структуру, хромосомы немного отодвигаются друг от друга, но остаются связанными. Может проходить синтез и-РНК.

Диакинез . Ядерная оболочка растворяется и превращается в визикулы. Хроматин опять уплотняется. Две центромеры, содержащие центриоли расходятся к полюсам клетки - образуется веретено деления. Микротрубочки прикрепляются к кинетохору хромосом.

В метафазе мейоза I биваленты хромосом располагаются в экваториальной плоскости клетки. В этот момент спирализация их достигает максимума. Содержание генетического материала не изменяется (2п2хр).

В анафазе мейоза I гомологичные хромосомы, состоящие из двух хроматид, окончательно отходят друг от друга и расходятся к полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадает только одна - число хромосом уменьшается вдвое (происходит редукция). Содержание генетического материала становится 1n2хр у каждого полюса.

В телофазе происходит формирование ядер и разделение цитоплазмы - образуются две дочерние клетки. Дочерние клетки содержат гаплоидный набор хромосом, каждая хромосома - две хроматиды (1n2хр).

Интеркинез - короткий промежуток между первым и вторым мейотическими делениями. В это время не происходит репликации ДНК, и две дочерние клетки быстро вступают в мейоз II, протекающий по типу митоза.

В профазе мейоза II происходят тс же процессы, что и в профазе митоза. В метафазе хромосомы располагаются в экваториальной плоскости. Изменений содержания генетического материала не происходит (1n2хр). В анафазе мейоза II хроматиды каждой хромосомы отходят к противоположным полюсам клетки, и содержание генетического метериала у каждого полюса становится lnlxp. В телофазе образуются 4 гаплоидные клетки (lnlxp).

Таким образом, в результате мейоза из одной диплоидной материнской клетки образуются 4 клетки с гаплоидным набором хромосом. Кроме того, в профазе мейоза I происходит перекомбинация генетического материала (кроссинговер), а в анафазе I и II - случайное отхождение хромосом и хроматид к одному или другому полюсу. Эти процессы являются причиной комбинативной изменчивости.

Биологическое значение мейоза:

1) является основным этапом гаметогенеза;

2) обеспечивает передачу генетической информации от организма к организму при половом размножении;

3) дочерние клетки генетически не идентичны материнской и между собой.

А так же, биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гамет сливаются. Если бы указанной редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше. Однако это противоречит правилу постоянства числа хромосом. Благодаря мейозу половые клетки гаплоидны, а при оплодотворении в зиготе восстанавливается диплоидный набор хромосом

Вопр.

Среди многообразных проявлений жизнедеятельности (питание, обустройство местообитания, защита от врагов) размножению принадлежит особая роль. В известном смысле существование организма является подготовкой к выполнению им главной биологической задачи - участию в размножении. В основе способности организмов к размножению лежат определенные клеточные механизмы. Способность к размножению является неотъемлемым свойством живых существ. С его помощью сохраняются во времени биологические виды и жизнь как таковая. Биологическая роль размножения состоит в том, что оно обеспечивает смену поколений. Различия, закономерно проявляющиеся в фенотипах особей разных поколений, делают возможным естественный отбор и, следовательно, эволюцию жизни. Размножение возникло в ходе исторического развития органического мира на самом раннем этапе вместе с клеткой. В процессе биологического размножения наряду со сменой поколений и поддержанием достаточного уровня внутривидовой изменчивости решаются также задачи увеличения числа особей, сохранения складывающихся в эволюции типов структурно-физиологической организации (путем воспроизведения себе подобного). Последнее связано с тем, что при размножении осуществляется передача в ряду поколений генетического материала (ДНК), т.е. определенной, специфичной для данного вида биологической информации.



В зависимости от характера клеточного материала, используемого в целях размножения, выделяют различные способы и формы последнего. Различают два способа размножения: бесполое и половое.

Бесполое размножение - форма размножения, не связанная с обменом генетической информацией между особями - половым процессом.

Деление надвое приводит к возникновению из одного родительского организма двух

Бесполое размножение наблюдается у животных с относительно низким уровнем структурно-физиологической организации, к которым принадлежат многие

увеличению численности особей, но способствует расселению, помогает пережить

неблагоприятные условия.

Половое размножение отличается наличием полового процесса, который обеспечивает обмен наследственной информацией и создает условия для возникновения наследственной изменчивости. В нем, как правило, участвуют две особи - женская и мужская, которые образуют гаплоидные женские и мужские половые клетки - гаметы .

Формами полового процесса являются конъюгация и копуляция.

Конъюгация - своеобразная форма полового процесса, при которой оплодотворение происходит путем взаимного обмена мигрирующими ядрами, перемещающимися из одной клетки в другую по цитоплазматическому мостику, образуемому двумя особями. Копуляция (гаметогамия ) - форма полового процесса, при которой две различающиеся по полу клетки - гаметы - сливаются и образуют зиготу. При этом ядра гамет образуют одно ядро зиготы. Различают следующие основные формы гаметогамии: изогамия, анизогамия и оогамия. При изогамии образуются подвижные, морфологически одинаковые гаметы, однако физиологически они различаются на «мужскую» и «женскую». Изогамия встречается у многих водорослей.

При анизогамии (гетерогамии ) формируются подвижные, различающиеся морфологически и физиологически гаметы. Такой тип полового процесса характерен для многих водорослей.

В случае оогамии гаметы сильно отличаются друг от друга. Женская гамета - крупная неподвижная яйцеклетка, содержащая большой запас питательных веществ. Мужские гаметы - сперматозоиды -- мелкие, чаще всего подвижные клетки, которые перемещаются с помощью одного или нескольких жгутиков. У семенных растений мужские гаметы - спермии - не имеют жгутиков и доставляются к яйцеклетке с помощью пыльцевой трубки. Оогамия характерна для животных, высших растений и многих грибов.

Вопр.

Половое размножение отличается наличием полового процесса, который обеспечивает обмен наследственной информацией и создает условия для возникновения наследственной изменчивости. В нем, как правило, участвуют две особи - женская и мужская, которые образуют гаплоидные женские и мужские половые клетки - гаметы. В результате оплодотворения, т. е. слияния женской и мужской гамет, образуется диплоидная зигота с новой комбинацией наследственных признаков, которая и становится родоначальницей нового организма.

Гаметогенез . Процесс образования и развития гамет называется гаметогенезом. У животных гаметогенез протекает в специальных половых железах - гонадах. Однако, например, у губок и кишечнополостных половые железы отсутствуют и гаметы возникают из различных соматических клеток.

Сперматозоиды и яйцеклетки обычно формируются соответственно особями мужского и женского пола. Биологические виды, у которых все организмы делятся в зависимости от производимых ими клеток на самцов и самок, называются раздельнополыми. Встречаются виды, у которых один и тот же организм может образовывать как мужские, так и женские половые клетки. Такие организмы называются.

Половые клетки в своем развитии претерпевают ряд сложных преобразований. Процесс формирования мужских половых клеток называется сперматогенез, женских - оогенез.

Сперматогенез происходит в мужских половых железах - семенниках. Семенник высших животных состоит из семенных канальцев. В каждом канальце можно обнаружить отдельные зоны, в которых клетки расположены концентрическими кругами. В каждой зоне клетки находятся на соответствующих стадиях развития. Сперматогенез складывается из четырех периодов: размножения, роста, созревания и формирования. По периферии семенного канальца располагается зона размножения. Клетки этой зоны называются сперматогониями. Они усиленно делятся митозом, благодаря чему увеличивается их количество и сам семенник. Период интенсивного деления сперматогониев называется периодом размножения.

После наступления половой зрелости некоторые сперматогонии перемещаются в следующую зону - зону роста , расположенную ближе к просвету канальца. Здесь клетки увеличиваются в размерах за счет возрастания количества цитоплазмы и превращаются в сперматоциты первого порядка (период роста ).

Третий период развития мужских гамет называется периодом созревания . В это время сперматоциты первого порядка делятся мейозом. После первого деления образуется два сперматоцита второго порядка , а после второго - четыре сперматиды , имеющие овальную форму и значительно меньшие размеры. Сперматиды перемещаются в зону, ближайшую к просвету канальца (зона формирования). Здесь сперматиды изменяют свою форму и превращаются в зрелые сперматозоиды , которые затем выносятся из семенников по семявыносящим путям.В семенниках формируется огромное количество сперматозоидов. Так, при каждом половом акте у человека наружу выносится около 200 млн. сперматозоидов.

Форма мужских гамет у разных видов животных различна. Наиболее типичны для высших животных сперматозоиды, имеющие головку, шейку и длинный хвост, служащий для активного передвижения. Именно такое строение имеют сперматозоиды человека. Головка содержит ядро и незначительное количество цитоплазмы с органеллами. На переднем конце головки расположена акросома, представляющая собой видоизмененный аппарат Гольджи. В ней содержатся ферменты, растворяющие оболочку яйцеклетки при оплодотворении. В шейке находятся центриоли и митохондрия.

Сперматозоиды не имеют запасов питательных веществ и обычно быстро погибают.

Оогенез происходит в особых железах - яичниках - и включает три периода: размножение, рост и созревание. Период формирования здесь отсутствует.В период размножения интенсивно делятся предшественники половых клеток - оогонии. У млекопитающих этот период заканчивается еще до рождения. К этому времени формируется около 30 тыс. оогониев, которые сохраняются долгие годы без изменения. С наступлением половой зрелости отдельные оогонии периодически вступают в период роста. Клетки увеличиваются, в них накапливается желток - образуются ооциты первого порядка. Каждый ооцит окружается мелкими фолликулярными клетками, обеспечивающими его питание. Затем образуется зрелый ооцит (Граафов пузырек ), подходящий к поверхности яичника. Стенка его разрывается, и ооцит первого порядка попадает в брюшную полость и далее в маточную трубу. Ооциты первого порядка вступают в период созревания - они делятся, но в отличие от аналогичного процесса при сперматогенезе здесь образуются клетки, не равные по размерам: при первом делении созревания образуется один ооцит второго порядка и маленькое первое полярное тельце, при втором делении - зрелая яйцеклетка и второе полярное тельце. Такое неравномерное распределение цитоплазмы обеспечивает яйцеклетке получение значительного количества питательных веществ, которые затем используются при развитии зародыша.

Зрелая яйцеклетка , как и сперматозоид, содержит в себе половинное число хромосом, так как в период созревания ооциты первого порядка претерпевают мейоз. Яйцеклетки чаще всего имеют сферическую форму.Они обычно значительно крупнее соматических клеток. Яйцеклеткачеловека, например, имеет в диаметре 150-200 мкм. Особенно больших размеров достигают яйцеклетки животных, эмбриональное развитие которых происходит вне тела матери (яйца птиц, рептилий, амфибий и рыб).

В яйцеклетках содержится ряд веществ, необходимых для формирования зародыша. В первую очередь это питательный материал - желток. В зависимости от количества желтка и характера его распределения различают несколько типов яйцеклеток. Яйцеклетки покрыты оболочками. Оболочки выполняют защитные функции, обеспечивают обмен веществ с окружающей средой, а у плацентарных служат для внедрения зародыша в стенку матки. Процесс, обусловливающий встречу мужских и женских половых клеток у животных, называется осеменением. Различают наружное и внутреннее осеменение.

При наружном осеменении, характерном для большинства водных животных, сперматозоиды и яйцеклетки выделяются в воду, где и происходит их слияние. Для такого осеменения не обязательна непосредственная встреча мужских и женских особей, но необходимо большое количество гамет, так как большая часть их гибнет.

Внутреннее осеменение характерно для обитателей суши, где отсутствуют условия для сохранения и встречи гамет во внешней среде. При таком типе осеменения сперматозоиды вводятся в половые пути самки. Внутреннее осеменение характерно для всех наземных позвоночных (рептилий, птиц, млекопитающих), а также червей, пауков и насекомых. При достижении сперматозоидами яйцеклеток происходит процесс оплодотворения . Осуществляется он следующим образом. При контакте с яйцеклеткой акросома сперматозоида разрывается и ее содержимое высвобождается. Под воздействием ферментов акросомы оболочка яйцеклетки в месте контакта растворяется. Внутренняя поверхность акросомы вытягивается, и формируется акросомальный отросток, который проникает через растворенную зону яйцевых оболочек и сливается с мембраной яйцеклетки. В этом месте из цитоплазмы образуется воспринимающий бугорок. Он захватывает ядро, центриоли и митохондрии сперматозоида и увлекает их внутрь яйцеклетки. Цитоплазматическая мембрана сперматозоида встраивается в мембрану яйцеклетки.

Проникновение сперматозоида в яйцеклетку вызывает отслаивание от яйцеклетки оболочки оплодотворения. Между ней и поверхностью яйцеклетки возникает пространство, заполненное жидкостью. Образование оболочки оплодотворения препятствует проникновению других сперматозоидов в яйцеклетку.

Проникшее в цитоплазму яйцеклетки ядро сперматозоида набухает, достигает величины ядра яйцеклетки. Ядра сближаются и сливаются. Этот момент и есть собственно оплодотворение. В результате из двух гамет образуется одна диплоидная зигота, т. е. восстанавливается диплоидный набор хромосом.

При оплодотворении в яйцеклетку обычно проникает один сперматозоид. Однако у насекомых, рыб, птиц и других животных в яйцеклетку может проникать несколько сперматозоидов. Это явление получило название полиспермии. При этом с ядром яйцеклетки сливается ядро только одного сперматозоида. Ядра других сперматозоидов разрушаются. Тем не менее для оплодотворения требуется участие многих сперматозоидов, так как они выделяют ферменты, обеспечивающие их проникновение в яйцеклетку. Если ферментов недостаточно, оплодотворение не наступает.

Вопр

Генетика – как наука: цели, задачи, объекты и методы изучения. Уровни изучения генетических явлений. Основные направления и этапы развития генетики с 1900 года. Роль отечественных и зарубежных ученых. Основные понятия генетики. Значение генетики для медицины.

Как наука генетика изучает две основные проблемы – наследственность и изменчивость, она пытается объяснить механизмы передачи признаков от родителей к их детям, а также сходство и различия между родственными организмами. Наследственность - это свойственная всем организмам способность передавать свои признаки потомству, что приводит к биологическому сходству между родителями и их потомством, а также обеспечивать возможность индивидуального развития сообразно с постоянно меняющимися условиями среды. Изменчивость представляет собой способность организмов приобретать различного рода изменения. Таким образом, наследственность, будучи консервативной, обеспечивает сохранение признаков и свойств организмов на протяжении многих поколений, а изменчивость обусловливает формирование новых признаков в результате изменения генетической информации или условий внешней среды. Задачи генетики вытекают из установленных общих закономерностей наследственности и изменчивости. К этим задачам относятся исследования: 1) механизмов хранения и передачи генетической информации от родительских форм к дочерним; 2) механизма реализации этой информации в виде признаков и свойств организмов в процессе их индивидуального развития под контролем генов и влиянием условий внешней среды; 3) типов, причин и механизмов изменчивости всех живых существ; 4) взаимосвязи процессов наследственности, изменчивости и отбора как движущих факторов эволюции органического мира.

Генетика является также основой для решения ряда важнейших практических задач. К ним относятся: 1) выбор наиболее эффективных типов гибридизации и способов отбора; 2) управление развитием наследственных признаков с целью получения наиболее значимых для человека результатов; 3) искусственное получение наследственно измененных форм живых организмов; 4) разработка мероприятий по защите живой природы от вредных мутагенных воздействий различных факторов внешней среды и методов борьбы с наследственными болезнями человека, вредителями сельскохозяйственных растений и животных; 5) разработка методов генетической инженерии с целью получения высокоэффективных продуцентов биологически активных соединений, а также для создания принципиально новых технологий в селекции микроорганизмов, растений и животных.

При изучении наследственности и изменчивости на разных уровнях организации живой материи (молекулярный, клеточный, организменный, популяционный) в генетике используют разнообразные методы современной биологии: гибридологический, цитогенетический, биохимический, генеалогический, близнецовый, мутационный и др. Однако среди множества методов изучения закономерностей наследственности центральное место принадлежит гибридологическому методу. Суть его заключается в гибридизации (скрещивании) организмов, отличающихся друг от друга по одному или нескольким признакам, с последующим анализом потомства. Этот метод позволяет анализировать закономерности наследования и изменчивости отдельных признаков и свойств организма при половом размножении, а также изменчивость генов и их комбинирование. Главной целью генетики всегда было понимание механизмов наследственности, изучение каждого гена в отдельности для определения его функций как строительного элемента, несущего в себе определенный объем наследственной информации. Само собой разумеется, что невозможно провести такие исследования лишь в одном направлении науки. Именно поэтому хромосомная теория наследственности развивалась параллельно несколькими смежными дисциплинами, такими как цитология, молекулярная биология и т.д.Генетика человека, или медицинская генетика , изучает явления наследственности и изменчивости в различных популяциях людей, особенности проявления и развития нормальных (физических, творческих, интеллектуальных способностей) и патологических признаков, зависимость заболеваний от генетической предопределенности и условий окружающей среды, в том числе от социальных условий жизни. Формирование медицинской генетики началось в 30-е гг. XX в., когда стали появляться факты, подтверждающие, что наследование признаков у человека подчиняется тем же закономерностям, что и у других живых организмов. Задачей медицинской генетики является выявление, изучение, профилактика и лечение наследственных болезней, а также разработка путей предотвращения вредного воздействия факторов среды на наследственность человека. При изучении наследственности и изменчивости человека используют следующие методы:

Генеалогический метод позволяет выяснить родственные связи и проследить наследование нормальных или патологических признаков среди близких и дальних родственников в данной семье на основе составления родословной - генеалогии. Если есть родословные, то, используя суммарные данные по несколь-кям семьям, можно определить тип наследования признака - доминантный или рецессивный, сцепленный с полом или ауто-сомный, атакже его моногенность или полигенность. Генеалогическим методом доказано наследование многих заболеваний, например сахарного диабета, шизофрении, гемофилии и др.

Генеалогический метод используется для диагностики наследственных болезней и медико-генетического консультирования; он позволяет осуществлять генетическую профилактику (предупреждение рождения больного ребенка) и раннюю профилактику наследственных болезней.

Близнецовый метод состоит в изучении развития признаков у близнецов. Он позволяет определять роль генотипа в наследовании сложных признаков, а также оценивать влияние таких факторов, как воспитание, обучение и др.

Цитогенетичесий метод основан на микроскопическом исследовании структуры хромосом у здоровых и больных людей. Цитогенетический контроль применяют при диагностике ряда наследственных заболеваний, связанных с явлениями анеуплои-дии и различными хромосомными перестройками. Он позволяет также изучать старение тканей на основе исследований возрастной динамики структуры клеток, устанавливать мутагенное действие факторов внешней среды на человека и т. д.

Биохимические методы изучения наследственности человека помогают обнаружить ряд заболеваний обмена веществ (углеводного, аминокислотного, липидного и др.) при помощи, например, исследования биологических жидкостей (крови, мочи, амниотической жидкости) путем качественного или количественного анализа. Причиной этих болезней является изменение активности определенных ферментов.

Краткие сведения из истории генетики. Генетика изучает закономерности наследственности и изменчивости, которые относятся к основным свойствам живой материи, всех организмов. Генетика как наука развилась в связи с практическими потребностями. При разведении домашних животных и культурных растений исстари применялась гибридизация, т. е. скрещивание организмов, относящихся к различным видам, породам, сортам или отличающихся друг от друга какими-либо признаками. Сравнивая гибриды с исходными формами, практики давно подметили некоторые особенности наследования признаков.

Основные закономерности преемственности свойств и признаков в поколениях были открыты Г. Менделем (1822-1884). О своих исследованиях он сделал сообщение в 1865 г. на заседании Общества любителей естествознания в г. Брно (Чехословакия). Ставшая впоследствии классической работа Менделя «Опыты над растительными гибридами» была опубликована в трудах того же общества в 1866 г., но в свое время не привлекла внимания современников.

Лишь в 1900г. те же закономерности вновь установили независимо друг от друга Г.де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии. Вскоре благодаря опытам по гибридизации, проведенным с многочисленными объектами, было показано, что открытые Менделем закономерности свойственны всем организмам, растениям и животным. 1900 г. можно считать годом второго рождения генетики.

В начале XX в. по предложению датского ученого И. Иогансена дискретным единицам наследственности было дано название генов .

В 1902 г. Т. Бовери в Германии, Э. Вильсон и Д. Сеттон в США отметили, что в передаче наследственных факторов существует параллелизм в поведении хромосом при формировании половых клеток и оплодотворении. Из этого совпадения вытекало предположение о связи наследственных факторов с хромосомами. Гипотеза оказалась плодотворной и ознаменовала новый этап в изучении явлений наследственности, связанный с синтезом генетики:и цитологии.

Наибольшие успехи в этом направлении были достигнуты школой американского генетика Т.Г. Моргана (1866-1945), сформулировавшего хромосомную теорию наследственности (1911). Школа Моргана доказала, что гены находятся в хромосомах и расположены в них в линейном порядке.

В 30-х годах XX в. определение гена только как части хромосомы уже перестало удовлетворять исследователей. Успехи развития биохимии позволили более точно охарактеризовать материальный субстрат наследственности.

Советский исследователь Н. К. Кольцов (1872-1940) еще в 1928 г. высказал мысль о связи генов с определенным химическим веществом. Он предполагал, что хромосома представляет собой крупную белковую молекулу, отдельные радикалы которой выполняют функцию генов. Н.К. Кольцов считал, что белковые мицеллы способны к самовоспроизведению. Эта теория оказалась ошибочной, но в ней впервые в науке была сделана попытка рассмотреть закономерности наследственности на молекулярном уровне и впервые выдвинута идея об авторепродукции единиц наследственной информации (матричный принцип синтеза макромолекул). В последние десятилетия удалось более глубоко проникнуть в изучение материальных основ наследственности и перейти к выяснению их химической природы.

В 40-х годах Г. Бидл и Е. Татум выяснили, что гены обусловливают образование ферментов, которые, направляя определенным образом клеточный метаболизм, влияют на развитие структур и физиологических свойств организмов (один ген - один фермент).

В 1944 г. О. Эвери, К. Мак-Леод и М. Мак-Карти на микроорганизмах установили, что передача наследственной информации связана с нуклеиновой кислотой (ДНК). Важную роль в изучении ДНК сыграли исследования советского биохимика А. Н. Белозерского (1905-1972). Еще в 30-е годы он представил данные о том, что ДНК - обязательный компонент хромосом клеток растений и животных, и изучил нуклеотидный состав ДНК многих видов. Дальнейшие исследования явлений наследственности должны были перейти на молекулярный уровень. К началу 40-х годов были предложены принципиально новые методы, позволившие заложить основу молекулярной генетики: электронная микроскопия, метод меченых атомов, рентгено-структурный анализ и др. Молекулярная биология возникла на стыке генетики, микробиологии, биохимии и физики. Исследования физиков сыграли важнейшую роль; так, в начале 50-х годов в лаборатории, руководимой английским физиком М. Уилкинсон, с помощью рентгеновских лучей и математических расчетов были получены рентгенограммы нити ДНК. Американский биохимик Э. Чаргафф открыл правило комплементарности пуриновых и пиримидиновых оснований. На основе сопоставления и анализов этих данных генетики Дж. Уотсон и Ф. Крик в 1953 г. предложили модель макромолекулярной структуры ДНК, имеющей вид двойной спирали. Началось углубленное изучение наследственности на молекулярном уровне.

Таким образом, в истории генетики можно выделить три этапа: первый - изучение явлений наследственности на организменном уровне, второй - на клеточном, третий - на молекулярном. Естественно, что и в настоящее время изучение свойств наследственности на всех уровнях не потеряло своего значения. На изучении генетических закономерностей основана селекция, т.е. создание новых и улучшение прежних пород домашних животных, сортов культурных растений, а также микроорганизмов, используемых в фармацевтической промышленности, медицине, народном хозяйстве.

Основные понятия и термины генетики.

Наследственность - свойство организмов повторять в ряде поколений сходные признаки и обеспечивать специфический характер индивидуального развития в определенных условиях среды. Благодаря наследственности родители и потомки имеют сходный тип биосинтеза, определяющий сходство в химическом составе тканей, характере обмена веществ, физиологических отправлениях, морфологических признаках и других особенностях. Вследствие этого каждый вид организмов воспроизводит себя из поколения в поколение.

Изменчивость - это явление, противоположное наследственности. Она заключается в изменении наследственных задатков, а также в вариабельности их проявлений в процессе развития организмов при взаимодействии с внешней средой. Элементарными дискретными единицами наследственности являются гены . С химической точки зрения они представляют собой отрезки молекулы ДНК. Каждый ген определяет последовательность аминокислот в одном из белков, что в конечном счете приводит к реализации тех или иных признаков в онтогенезе особи. Под признаками понимаются морфологические, физиологические, биохимические, патологические и иные свойства организмов, по которым одни из них отличаются от других.

Гены, определяющие развитие альтернативных признаков, принято называть аллельными они расположены в одних и тех же локусах гомологичных хромосом.

Если в обеих гомологичных хромосомах находятся одинаковые аллельные гены, такой организм называется гомозиготным и дает только один тип гамет. Если же аллельные гены различны, то такой организм носит название гетерозиготного по данному признаку, он образует два типа гамет.

Совокупность всех наследственных факторов получила название генотипа . Термин «генотип» используется и в более узком смысле для обозначения тех генов, наследование которых составляет предмет изучения.

Совокупность всех признаков и свойств организма называется фенотипом . Фенотип развивается на генетической основе в результате взаимодействия организма с условиями внешней среды. Поэтому организмы, имеющие одинаковый генотип, могут отличаться друг от друга в зависимости от условий развития и существования. Пределы, в которых в зависимости от условий среды изменяются фенотипические проявления генотипа, называются нормой реакции.

Наследование - способ передачи наследственной информации, который может изменяться в зависимости от форм размножения. При бесполом размножении наследование осуществляется через вегетативные клетки и споры, чем обеспечивается большое сходство между материнскими и дочерними поколениями. При половом размножении наследование осуществляется через половые клетки. Сходство между родителями и детьми в этом случае меньше, чем в предыдущем, но зато имеет место большая изменчивость, а следовательно, гораздо более богатый материал для отбора и процесса эволюции.

12Следующая ⇒

Амитоз, или прямое деление — это деление интерфазного ядра путем перетяжки без образования веретена деления. Такое деление встречается у одноклеточных организмов, а также в некоторых высокоспециализированных клетках растений и животных с ослабленной физиологической активностью, дегенерирующих, обреченных на гибель, либо при различных патологических процессах, таких как злокачественный рост, воспаление и т.п. Амитоз можно наблюдать в тканях растущего клубня картофеля, эндосперме, стенках завязи пестика и паренхиме черешков листьев. Такой тип деления характерен для клеток печени, хрящевых клеток, роговицы глаза. Очень часто при амитозе наблюдается только деление ядра, в этом случае могут возникнуть двух- и многоядерные клетки. К амитозу близко клеточное деление у прокариот. Бактериальная клетка содержит только одну, чаще всего кольцевую молекулу ДНК, прикрепленную к клеточной мембране. Перед делением клетки ДНК реплицируется, и образуются две идентичные молекулы ДНК, каждая из которых также прикреплена к клеточной мембране. При делении клетки клеточная мембрана врастает между этими двумя молекулами ДНК, так что в конечном итоге в каждой дочерней клетке, оказывается, по одной идентичной молекуле ДНК. Такой процесс получил название прямого бинарного деления.

Митоз — это деление ядра, которое приводит к образованию двух дочерних ядер, в каждом из которых имеется точно такой же набор хромосом, что и в родительском ядре. Вслед за делением ядра обычно следует деление самой клетки, поэтому часто термином — «митоз» обозначают деление клетки целиком. В митозе выделяют профазу, метафазу, ана-фазу и телофазу.

1) В профазе происходит укорочение и утолщение хромосом вследствие их спирализации. В это время хромосомы двой-ные состоят из двух сестринских хроматид, связанных между собой. Одновременно со спирализацией хромосом исчезает ядрышко и фрагментируется (распадается на отдельные цистерны) ядерная оболочка. После распада ядерной оболочки хромосомы свободно и беспорядочно лежат в цитоплазме. В профазе центриоли (в тех клетках, где они есть) расходятся к полюсам клетки. В конце профазы начинает образовываться веретено деления, которое формируется из микротрубочек путем полимеризации белковых субъединиц.

2) В метафазе завершается образование веретена деления, которое состоит из микротрубочек двух типов: хромосомных, которые связываются с центромерами хромосом, и центросомных (полюсных), которые тянутся от полюса к полюсу клетки. Каждая двойная хромосома прикрепляется к микротрубочкам веретена деления. Хромосомы как бы выталкиваются микротрубочками в область экватора клетки, т. е. располагаются равном расстоянии от полюсов. Они лежат в одной плоскости и образуют так называемую экваториальную, или метафазную пластинку. В метафазе отчетливо видно двойное строение хромосом, соединенных только в области центромеры. В этот период легко подсчитывать число хромосом, изучать их морфологические особенности. В анафазе дочерние хромосомы с помощью микротрубочек веретена деления растягиваются к полюсам клетки. Во время движения дочерние хромосомы несколько изгибаются наподобие шпильки, концы которой повернуты в сторону экватора клетки.

3) В анафазе хроматиды удвоенные в интерфазе хромосом расходятся к полюсам клетки. В этот момент в клетке находятся два диплоидных набора хромосом.

4) В телофазе происходят процессы, обратные тем, которые наблюдаются в профазе: начинается деспирализация (раскручивание) хромосом, они набухают и становятся плохо видимыми под микроскопом. Вокруг хромосом у каждого полюса из мембранных структур цитоплазмы формируется ядерная оболочка, в ядрах возникают ядрышки. Разрушается верете-но деления. На стадии телофазы происходит разделение цитоплазмы с образованием двух клеток. В клетках живот-ных плазматическая мембрана начинает впячиваться внутрь области, где располагался экватор веретена. В результате впячивания образуется непрерывная борозда, опоясывающая клетку по экватору и постепенно разделяющая одну клетку на две. В клетках растений в области экватора из остатков нитей веретена деления возникает бочковидное образование – фрагмопласт. В результате митоза из одной клетки возникают две дочерние с тем же набором хромосом, что и в материнской клетке.

Биологическое значение митоза состоит в том, что обеспечивает наследственную передачу признаков и свойств в ряду поколений клеток при развитии многоклеточного организма.

12Следующая ⇒

Похожая информация:

Поиск на сайте:

Клеточный цикл. Митоз

Формирование новых знаний. Лекционный блок.

План изучения темы:

1. Клеточный цикл. Митоз

2. Краткая история открытия митоза

3. Делœение клетки – митоз

4. Типы митоза

5.Регуляция клеточного цикла

Одним из важнейших свойств жизни является самовоспроизведение биологических систем, в базе которого лежит делœение клеток: ʼʼОт клеточного делœения зависят не только явления наследственности, но и сама непрерывность жизниʼʼ (Э. Вильсон). Универсальным способом делœения эукариотических клеток является непрямое делœение, или митоз (от древнегреч. ʼʼмитосʼʼ – нить). Биологическое значение митоза состоит в сохранении объёма и качества наследственной информации.

Впервые делœение клеток (дробление яиц лягушки) наблюдали французские ученые Прево и Дюма (1824). Более подробно данный процесс описал итальянский эмбриолог М. Рускони (1826). Процесс делœения ядер при дроблении яиц у морских ежей описал К. Бэр (1845). Первое описание делœения клеток у водорослей выполнил Б. Дюмортье (1832). Отдельные фазы митоза наблюдали: немецкий ботаник В. Гофмейстер (1849; клетки тычиночной нити традесканции), российские ботаники Э. Руссов (1872; материнские клетки спор папоротников, хвощей, лилии) и И.Д. Чистяков (1874; споры хвоща и плауна), немецкий зоолог А. Шнейдер (1873; дробящиеся яйца плоских червей), польский ботаник Э. Страсбургер (1875; спирогира, плаун, лук).

Для обозначения процессов перемещения составных частей ядра немецкий гистолог В. Шлейхнер предложил термин кариокинœез (1879), а немецкий гистолог В. Флемминг ввел термин митоз (1878). В 1880-е гᴦ. Общая морфология хромосом была описана еще в работах Гофмейстера, однако лишь в 1888 ᴦ. немецкий гистолог В. Вальдейер ввел термин хромосома. Ведущая роль хромосом в хранении, воспроизведении и передаче наследственной информации была доказана лишь в ХХ веке.

Клеточный цикл

В. Флемминг сформулировал представление о митозе как циклическом процессе, кульминационным моментом которого является расщепление каждой хромосомы на две дочерние хромосомы и их распределœение по двум вновь образующимся клеткам. У одноклеточных организмов продолжительность существования клетки совпадает с продолжительностью жизни организма. В организме многоклеточных животных и растений различаются две группы клеток: постоянно делящиеся (пролиферирующие) и покоящиеся (статичные). Совокупность пролиферирующих клеток образует пролиферативный пул.

В группах пролиферирующих клеток интервал между завершением митоза в исходной клетке и завершением митоза в ее дочерней клетке принято называть клеточный цикл. Клеточный цикл контролируется определœенными генами. Полный клеточный цикл включает интерфазу и собственно митоз. В свою очередь, собственно митоз включает кариокинœез (делœение ядра) и цитокинœез (делœение цитоплазмы).

Интерфаза. Интерфаза — ϶ᴛᴏ период между двумя клеточными делœениями. В интерфазе ядро компактное, не имеет выраженной структуры, хорошо видны ядрышки. Совокупность интерфазных хромосом представляет собой хроматин. В состав хроматина входят: ДНК, белки и РНК в соотношении 1: 1,3: 0,2, а также неорганические ионы. Структура хроматина изменчива и зависит от состояния клетки.

Хромосомы в интерфазе не видны, в связи с этим их изучение ведется электронно-микроскопическими и биохимическими методами. Интерфаза включает три стадии: пресинтетическую (G1 – ʼʼджи-одинʼʼ), синтетическую (S – ʼʼэсʼʼ) и постсинтетическую (G2 – ʼʼджи-дваʼʼ). Символ G представляет собой сокращение от англ. gap – интервал; символ S – сокращение от англ. synthesis – синтез. Рассмотрим эти стадии подробнее.

Пресинтетическая стадия (G1). В корне каждой хромосомы лежит одна двуспиральная молекула ДНК. Количество ДНК в клетке на пресинтетической стадии обозначается символом 2с (от англ.

Митоз, его биологическое значение, патология

Синтетическая стадия (S). Происходит самоудвоение, или репликация ДНК. При этом одни участки хромосом удваиваются раньше, а другие – позже, то есть репликация ДНК протекает асинхронно. Параллельно происходит удвоение центриолей (если они имеются).

Постсинтетическая стадия (G2). Завершается репликация ДНК. В состав каждой хромосомы входит две двойных молекулы ДНК, которые являются точной копией исходной молекулы ДНК. Количество ДНК в клетке на постсинтетической стадии обозначается символом 4с. Синтезируются вещества, необходимые для делœения клетки. В конце интерфазы процессы синтеза прекращаются.

Поиск Лекций

Постоянство строения и правильность функционирования органов и тканей многоклеточного организма были бы невозможны без сохранения одинакового набора генетического материала в бесчисленных клеточных поколениях. Митоз обеспечивает важные проявления жизнедеятельности: эмбриональное развитие, рост, восстановление органов и тканей после повреждения, замещение погибших и отмерших клеток.

Неклеточные формы жизни – вирусы

Строение вируса

Просто организованные вирусы представляют собой нуклеопротеиды т.е.

состоят из нуклеиновой кислоты и нескольких белков, образующих оболочку – капсид. Сложноорганизованные вирусы имеют дополнительную оболочку – белковую (вирусы гриппа и герпеса). В клетку вирусы могут проникать вместе с пиноцитозным или фагоцитозным пузырьком. Как правило вирус связывается с белками – рецепторами на поверхности клетки, погружается в цитоплазму и может доставляться в любой участок клетки.

Рецепторный механизм проникновения вируса в клетку обеспечивает специфичность инфекционного процесса. Вирус гепатита А или В проникает и размножается в клетках печени, вирус гриппа – в клетках эпителия верхних дыхательных путей, вирус СПИД связывается с лейкоцитами крови, отвечающими за иммунную систему. Инфекционный процесс начинается с проникновения вируса в клетку и его размножения. Накопление вирусных частиц приводит их к выходу из клетки и дальнейшего заражения.

Контрольные вопросы

1. Чем характеризуются ткани живого организма?

2. Что представляет собой жизненный цикл клетки?

3. Что такое митотический цикл? Из каких периодов он состоит?

4. Перечислить и охарактеризовать фазы митоза.

5. В чём биологический смысл митоза?

6. Охарактеризовать неклеточные формы жизни.

7. Строении и роли вируса в жизни человека.

Раздел 3 РАЗМНОЖЕНИЕ И ИНДИВИДАЛЬНОЕ РАЗВИТИЕ ОРГАНИЗМОВ

Тема 3.1 Формы размножения организмов

Терминология

1. Онтогенез – индивидуальное развитие организмов.

2. Соматические клетки – клетки из которых строится организм.

3. Гаметы – специализированные, половые клетки, передающие наследственную информацию.

4. Споры – участок молекулы ДНК, покрытый плотной оболочкой.

5. Вегетативное размножение – размножение частями растения.

6. Гаметогенез – развитие гамет.

7. Зигота – оплодотворенная яйцеклетка.

8. Партеногенез – развитие яйцеклетки без оплодотворения.

Размножение или самовоспроизведение – свойство присущее всем живым организмам – от бактерий до млекопитающих.

Существование любого вида животных, растений, бактерий и грибов, преемственность между родительскими особями и их потомством поддерживаются благодаря размножению. Тесно связано с самовоспроизведением и другое свойство живых организмов – развитие. Оно также присуще всему живому на Земле: и одноклеточным и многоклеточным организмам. На любом уровне организации живая материя представлена элементарными структурными единицами. Для клетки это органоид: целостность клетки поддерживается постоянным воспроизведением новых органоидов вместо утраченных. Каждый организм состоит из клеток.

Размножение – один из самых сложных процессов жизнедеятельности. Естественный отбор благоприятствует сохранению любых признаков и свойств, повышающих жизнеспособность потомства на всех этапах жизни организма. В борьбе за существование побеждают организмы, которые в свою очередь оставляют больше потомков, доживающих до взрослого состояния и свою очередь оставляющих потомство. Такая направленность отбора приводит к тому, что многие особенности строения и поведения служат для наиболее успешного размножения. Известно много способов размножения, но все они могут быть объединены в две большие группы: бесполое и половое.

Бесполое размножение

Бесполое размножение характеризуется тем, что новая особь развивается из неполовых (соматических клеток). При бесполом размножении новый организм может возникнуть из одной клетки или нескольких неспециализированных для размножения клеток материнской особи. Многие простейшие одноклеточные водоросли размножаются обычным митотическим делением клетки. Другим одноклеточным: низшим грибам, водорослям – свойственно спорообразование. Многоклеточные организмы так же способны к спорообразованию: у них споры часто формируются в специальных клетках или органах – спорангиях. Примером организмов размножающихся таким образом, могут служить некоторые растения: мхи, высшие грибы, папоротники. У одноклеточных и многоклеточных организмов способом бесполого размножения служит также почкование. Например у дрожжевых грибов и некоторых инфузорий почкование заключается в том, что на материнской клетке первоначально образуется небольшой бугорок – почка, содержащая ядро. Она растет и достигает размеров близких к материнским и затем отделяется. У многоклеточных почка состоит из группы клеток обоих слоев стенки тела. Почка растёт, удлиняется, на переднем её конце появляется ротовое отверстие, окружённое щупальцами. Почкование завершается образованием маленькой гидры, которая может отделиться от материнского организма и начать самостоятельное существование. У многоклеточных животных бесполое размножение осуществляется так же делением тела на две и более частей: плоские черви, кольчатые черви, иглокожие. Из таких частей развиваются полноценные особи. У растений широко распространено вегетативное размножение (частями тела): черенками, усами, клубнями. Так, у картофеля для размножения служат видоизмененные подземные части стебля – клубни. У жасмина или ивы легко укореняются срезанные побеги – черенки. Черенками размножают виноград, смородину. Длинные ползучие стебли – усы земляники образуют почки, которые укореняясь дают начало новому растению.

Деление клетки: амитоз, митоз. Биологический смысл митоза.

Немногие растения могут размножаться листовыми черенками. На нижней части листа в местах разветвления крупных жилок возникают корни, на верхней – почки, а затем побеги.

Бесполое размножение, эволюционно возникшее раньше полового – эффективный процесс. На его основе в благоприятных условиях численность вида может быстро увеличиваться, однако при любых формах бесполого размножения все потомки имеют генотип, идентичный материнскому. Вспомните, что в интерфазе митоза происходит абсолютно точное удвоение генетического материала клетки, в результате которого при делении каждая из дочерних клеток получает наследственную информацию сходную с таковой у материнской клетки. Поскольку все соматические клетки организма возникли путём митоза, а именно из них и развивается новый организм, становится понятным, почему все особи при бесполом размножении генетически сходны: оно не сопровождается повышением генетического разнообразия. Новые признаки, которые могут оказаться полезными при изменении условий среды, появляются только в результате относительно редких мутаций.

Половое размножение

Половым размножением называют смену поколений и развитие организмов на основе слияния специализированных половых клеток – гамет, образующихся в половых железах. Половое размножение даёт огромные эволюционные преимущества по сравнению с бесполым. Это обусловлено тем, что генотип потомков формируется благодаря комбинации генов, принадлежащих обоим родителям. Появление новых комбинаций генов обеспечивает более успешное и быстрое приспособление вида к меняющимся условиям обитания, к освоению новых экологических ниш. Таким образом, сущность полового размножения заключается в объединении в наследственном материале потомка генетической информации из двух разных источников – родителей и в увеличении генетического разнообразия потомков. Однако процесс этот не всегда сопровождается увеличением числа особей. Нередко бывает, что две особи обмениваются только частью наследственной информации. Основное направление эволюции полового процесса – путь к слиянию половых клеток, принадлежащих раздельнополым организмам. Такой тип размножения наилучшим образом обеспечивает генетическое разнообразие потомства. У обоеполых животных и растений существуют приспособления, предотвращающие самооплодотворение. Это может быть спариванием разных особей. У растений самооплодотворение исключается в случае их однополовости. Когда же растения обоеполые, то пестики и тычинки созревают в разное время, что и делает возможным только перекрестное опыление.

Гаметогенез

Половые клетки (гаметы): мужские – сперматозоиды и женские – яйцеклетки развиваются в половых железах. В первом случае путь их развития – сперматогенез, во втором – овогенез. Некоторые животные содержат в себе признаки обоих полов, однако чаще всего животные раздельнополые. Разделение полов имеет очевидное эволюционное преимущество, оно создает возможность специализации родителей по строению и поведению, способствует развитию различных форм заботы о потомстве.

В процессе образования половых клеток выделяют ряд стадий.

Первая стадия – период размножения, в котором первичные половые клетки делятся путём митоза, в результате увеличивается их количество. Сперматогенез начинается в период половой зрелости и продолжается весь репродуктивный период. Размножение женских половых клеток у низших позвоночных продолжается всю жизнь. У человека эти клетки с наибольшей интенсивностью размножаются лишь во внутриутробном периоде. После формирования женских половых желез, первичные половые клетки перестают делится, большая часть их погибает, а остальные сохраняются в состоянии покоя до полового созревания.

Вторая стадия – период роста. Незрелые мужские гаметы растут медленно, яйцеклетки – быстро. У одних животных яйцеклетки растут в течение нескольких дней или недель, у других месяцы и годы. Рост яйцеклетки происходит за счёт веществ, образуемых другими клетками. У рыб, амфибий, птиц основную массу яйца составляет желток. Он синтезируется в печени и доставляется овоцит. Кроме желтка синтезируются многочисленные белки и РНК всех видов: и-РНК, т-РНК, р-РНК.

Третья стадия – период созревания или мейоз. Клетки вступающие в период мейоза содержат диплоидный набор хромосом и уже удвоенное количество ДНК. В процессе полового размножения у организмов любого вида из поколения в поколение сохраняется свойственное ему число хромосом. Это достигается тем, что перед слиянием половых клеток – оплодотворением в процессе созревания в них уменьшается (редуцируется) число хромосом, т.е. из диплоидного набора образуется гаплоидный. Сущность мейоза состоит в том, что каждая половая клетка получает одинарный – гаплоидный набор хромосом. Во время мейоза создаются новые комбинации генов через сочетание разных материнских и отцовских хромосом.

Контрольные вопросы

1. Размножение, его сущность и значение.

2. Способы размножения.

3. Бесполое размножение, его сущность и значение.

4. Вегетативное размножение.

5. Половое размножение, его сущность и преимущество перед бесполым.

6. Гаметогенез и его стадии.

7. Мейоз, его сущность и значение.

8. Назвать клетки способные размножаться микозом, мейозом.

©2015-2018 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Нарушение авторских прав и Нарушение персональных данных

Важнейшим компонентом клеточного цикла является митотический (пролиферативный) цикл. Он представляет собой комплекс взаимосвязанных и согласованных явлений во время деления клетки, а также до и после него. Митотический цикл - это совокупность процессов, происходящих в клетке от одного деления до следующего и заканчивающихся образованием двух клеток следующей генерации. Кроме этого, в понятие жизненного цикла входят также период выполнения клеткой своих функций и периоды покоя. В это время дальнейшая клеточная судьба неопределенна: клетка может начать делиться (вступает в митоз) либо начать готовиться к выполнению специфических функций.

Основные стадии митоза.

1.Редупликация (самоудвоение) генетической информации материнской клетки и равномерное распределение ее между дочерними клетками. Это сопровождается изменениями структуры и морфологии хромосом, в которых сосредоточено более 90% информации эукариотической клетки.

2.Митотический цикл состоит из четырех последовательных периодов: пресинтетического (или постмитотического) G1, синтетического S, постсинтетического (или премитотического) G2 и собственно митоза. Они составляют автокаталитическую интерфазу (подготовительный период).

Фазы клеточного цикла:

1) пресинтетическая (G1) (2n2c, где n-число хромосом, c- число молекул). Идет сразу после деления клетки. Синтеза ДНК еще не происходит. Клетка активно растет в размерах, запасает вещества, необходимые для деления: белки (гистоны, структурные белки, ферменты), РНК, молекулы АТФ. Происходит деление митохондрий и хлоропластов (т. е. структур, способных к ауторепродукции). Восстанавливаются черты организации интерфазной клетки после предшествующего деления;

2) синтетическая (S) (2n4c). Происходит удвоение генетического материала путем репликации ДНК. Она происходит полуконсервативным способом, когда двойная спираль молекулы ДНК расходится на две цепи и на каждой из них синтезируется комплементарная цепочка.

В итоге образуются две идентичные двойные спирали ДНК, каждая из которых состоит из одной новой и старой цепи ДНК. Количество наследственного материала удваивается. Кроме этого, продолжается синтез РНК и белков. Также репликации подвергается небольшая часть митохонд-риальной ДНК (основная же ее часть реплицируется в G2 период);

3) постсинтетическая (G2) (2n4c). ДНК уже не синтезируется, но происходит исправление недочетов, допущенных при синтезе ее в S период (репарация). Также накапливаются энергия и питательные вещества, продолжается синтез РНК и белков (преимущественно ядерных).

Стадии митоза.

Процесс митоза принято подразделять на четыре основные фазы: профазу, метафазу, анафазу и телофазу (рис. 1–3). Так как он непрерывен, смена фаз осуществляется плавно - одна незаметно переходит в другую.

В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. Центриоли расходятся к полюсам клетки. Формируется ахроматиновое веретено деления, часть нитей которого идет от полюса к полюсу, а часть - прикрепляется к центромерам хромосом. Содержание генетического материала в клетке остается неизменным (2n4c).

Рис. 1.

Рис. 2. Схема митоза в клетках корешка лука: 1- интерфаза; 2,3 — профаза; 4 — метафаза; 5,6 — анафаза; 7,8 — телофаза; 9 — образование двух клеток

Рис. 3. Митоз в клетках кончика корешка лука: а - интерфаза; б - профаза; в - метафаза; г - анафаза; л , е - ранняя и поздняя телофазы

В метафазе хромосомы достигают максимальной спирализации и располагаются упорядоченно на экваторе клетки, поэтому их подсчет и изучение проводят в этот период. Содержание генетического материала не изменяется (2n4c).

В анафазе каждая хромосома «расщепляется» на две хроматиды, которые с этого момента называются дочерними хромосомами. Нити веретена, прикрепленные к центромерам, сокращаются и тянут хроматиды (дочерние хромосомы) к противоположным полюсам клетки. Содержание генетического материала в клетке у каждого полюса представлено диплоидным набором хромосом, но каждая хромосома содержит одну хроматиду (4n4c).

В телофазе расположившиеся у полюсов хромосомы деспирализуются и становятся плохо видимыми. Вокруг хромосом у каждого полюса из мембранных структур цитоплазмы формируется ядерная оболочка, в ядрах образуются ядрышки. Разрушается веретено деления. Одновременно идет деление цитоплазмы. Дочерние клетки имеют диплоидный набор хромосом, каждая из которых состоит из одной хроматиды (2n2c).

Нетипичные формы митоза

К нетипичным формам митоза относятся амитоз, эндомитоз, политения.

1. Амитоз - это прямое деление ядра. При этом сохраняется морфология ядра, видны ядрышко и ядерная мембрана. Хромосомы не видны, и их равномерного распределения не происходит. Ядро делится на две относительно равные части без образования митотического аппарата (системы микротрубочек, центриолей, структурированных хромосом). Если при этом деление заканчивается, возникает двухъядерная клетка. Но иногда перешнуровывается и цитоплазма.

Такой вид деления существует в некоторых дифференцированных тканях (в клетках скелетной мускулатуры, кожи, соединительной ткани), а также в патологически измененных тканях. Амитоз никогда не встречается в клетках, которые нуждаются в сохранении полноценной генетической информации, - оплодотворенных яйцеклетках, клетках нормально развивающегося эмбриона. Этот способ деления не может считаться полноценным способом размножения эукариотических клеток.

2. Эндомитоз. При этом типе деления после репликации ДНК не происходит разделения хромосом на две дочерние хроматиды. Это приводит к увеличению числа хромосом в клетке иногда в десятки раз по сравнению с диплоидным набором. Так возникают полиплоидные клетки.

Биологический смысл митотического деления клеток заключается в

В норме этот процесс имеет место в интенсивно функционирующих тканях, например, в печени, где полиплоидные клетки встречаются очень часто. Однако с генетической точки зрения эндомитоз представляет собой геномную соматическую мутацию.

3. Политения. Происходит кратное увеличение содержания ДНК (хромонем) в хромосомах без увеличения содержания самих хромосом. При этом количество хромонем может достигать 1000 и более, хромосомы при этом приобретают гигантские размеры. При политении выпадают все фазы митотического цикла, кроме репродукции первичных нитей ДНК. Такой тип деления наблюдается в некоторых высокоспециализированных тканях (печеночных клетках, клетках слюнных желез двукрылых насекомых). По-литенные хромосомы дрозофил используются для построения цитологических карт генов в хромосомах.

Биологическое значение митоза.

Оно состоит в том, что митоз обеспечивает наследственную передачу признаков и свойств в ряду поколений клеток при развитии многоклеточного организма. Благодаря точному и равномерному распределению хромосом при митозе все клетки единого организма генетически одинаковы.

Митотическое деление клеток лежит в основе всех форм бесполого размножения как у одноклеточных, так и у многоклеточных организмов. Митоз обусловливает важнейшие явления жизнедеятельности: рост, развитие и восстановление тканей и органов и бесполое размножение организмов.

Краснодембский Е. Г."Общая биология: Пособие для старшеклассников и поступающих в вузы"

Н. С. Курбатова, Е. А. Козлова "Конспект лекций по общей биологии"

Р.Г. Заяц "Биология для абитуриентов. Вопросы, ответы, тесты, задачи"

Митоз - непрямое деление клетки, наиболее распространённый способ репродукции эукариотических клеток. Важнейшим компонентом клеточного цикла является митотический (пролиферативный) цикл. Он представляет собой комплекс взаимосвязанных и согласованных явлений во время деления клетки, а также до и после него. Митотический цикл - это совокупность процессов, происходящих в клетке от одного деления до следующего и заканчивающихся образованием двух клеток следующей генерации. Кроме этого, в понятие жизненного цикла входят также период выполнения клеткой своих функций и периоды покоя. В это время дальнейшая клеточная судьба неопределенна: клетка может начать делиться (вступает в митоз) либо начать готовиться к выполнению специфических функций.

Основные стадии митоза:

Редупликация (самоудвоение) генетической информации материнской клетки и равномерное распределение ее между дочерними клетками. Это сопровождается изменениями структуры и морфологии хромосом, в которых сосредоточено более 90% информации эукариотической клетки.

Митотический цикл состоит из четырех последовательных периодов (фаз):

  • пресинтетического (или постмитотического) G1,
  • синтетического S,
  • постсинтетического (или премитотического) G2 ,
  • собственно митоза.

Они составляют автокаталитическую интерфазу (подготовительный период).

Пресинтетическая (G1). Идет сразу после деления клетки. Синтеза ДНК еще не происходит. Клетка активно растет в размерах, запасает вещества, необходимые для деления: белки (гистоны, структурные белки, ферменты), РНК, молекулы АТФ. Происходит деление митохондрий и хлоропластов (т. е.

Непрямое деление клеток (митоз, или кариокинез)

структур, способных к ауторепродукции). Восстанавливаются черты организации интерфазной клетки после предшествующего деления.

Синтетическая (S). Происходит удвоение генетического материала путем репликации ДНК. Она происходит полуконсервативным способом, когда двойная спираль молекулы ДНК расходится на две цепи и на каждой из них синтезируется комплементарная цепочка. В итоге образуются две идентичные двойные спирали ДНК, каждая из которых состоит из одной новой и старой цепи ДНК. Количество наследственного материала удваивается. Кроме этого, продолжается синтез РНК и белков. Также репликации подвергается небольшая часть митохондриальной ДНК (основная же ее часть реплицируется в G2 период).

Постсинтетическая (G2). ДНК уже не синтезируется, но происходит исправление недочетов, допущенных при синтезе ее в S период (репарация). Также накапливаются энергия и питательные вещества, продолжается синтез РНК и белков (преимущественно ядерных).

S и G2 непосредственно связаны с митозом, поэтому их иногда выделяют в отдельный период - препрофазу.

После этого наступает собственно митоз, который состоит из четырех фаз. Процесс деления включает в себя несколько последовательных фаз и представляет собой цикл. Его продолжительность различна и составляет у большинства клеток от 10 до 50 ч. При этом у клеток тела человека продолжительность самого митоза составляет 1-1,5 ч, G2-периода интерфазы - 2-3 ч, S-периода интерфазы - 6-10 ч.

Процесс митоза принято подразделять на четыре основные фазы:

  • профазу,
  • метафазу,
  • анафазу,
  • телофазу.

Так как он непрерывен, смена фаз осуществляется плавно - одна незаметно переходит в другую.

В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. Центриоли расходятся к полюсам клетки. Формируется ахроматиновое веретено деления, часть нитей которого идет от полюса к полюсу, а часть - прикрепляется к центромерам хромосом. Содержание генетического материала в клетке остается неизменным (2n4c).

В метафазе хромосомы достигают максимальной спирализации и располагаются упорядоченно на экваторе клетки, поэтому их подсчет и изучение проводят в этот период. Содержание генетического материала не изменяется (2n4c).

В анафазе каждая хромосома «расщепляется» на две хроматиды, которые с этого момента называются дочерними хромосомами. Нити веретена, прикрепленные к центромерам, сокращаются и тянут хроматиды (дочерние хромосомы) к противоположным полюсам клетки. Содержание генетического материала в клетке у каждого полюса представлено диплоидным набором хромосом, но каждая хромосома содержит одну хроматиду (4n4c).

В телофазе расположившиеся у полюсов хромосомы деспирализуются и становятся плохо видимыми. Вокруг хромосом у каждого полюса из мембранных структур цитоплазмы формируется ядерная оболочка, в ядрах образуются ядрышки. Разрушается веретено деления. Одновременно идет деление цитоплазмы. Дочерние клетки имеют диплоидный набор хромосом, каждая из которых состоит из одной хроматиды (2n2c).

Схема митоза в клетках корешка лука

Все процессы, протекающие в период клеточного цикла, контролируются определенными генами. Мутации этих генов приводят к нарушению клеточного цикла на разных его этапах. Митоз свойственен всем эукариотам. Его биологическое значение заключается в том, что в результате, все дочерние клетки имеют одинаковое с родительской число хромосом. Индивидуальность хромосом полностью сохраняется. В этом и состоит генетическое значение митоза, ибо каждая из возникающих в результате деления клеток несет полный набор генов, свойственный инициальной клетке. Последнее очень важно при все более широком внедрении в практику биотехнологических методов, благодаря которым из отдельных соматических клеток, развиваются нормальные фертильные растения

Социальные кнопки для Joomla



Рассказать друзьям