Я, киборг: Как работают искусственные конечности и экзоскелеты. Испытания бионических ног

💖 Нравится? Поделись с друзьями ссылкой

Более 15% людей на сегодняшний день страдают из-за нарушений в организме, которые не дают им полноценной физической активности и препятствуют нормализации социальной жизни. Сложно себе представить, но всего лишь за 12 месяцев свыше 50 миллионов людей получают инвалидность. И все это ведет к огромным денежным расходам. Например, за 2015 год было потрачено практически четыре с половиной триллиона долларов. Эти расходы нельзя назвать потерями. Но можно сравнить с бедами мировой экономики – например, с ситуацией 2008 года, когда был провал в экономике. Вышеназванная сумма значительно выше годового ВВП РФ.

Никто не говорит о том, что нужно экономить на здоровье, например, инвалидов. Дело в другом – эти расходы можно было бы уменьшить без потери оказания медицинской помощи нуждающимся. Например, если бы в массы поступили качественные и функциональные протезы , то экономия была бы колоссальной. И это не пустые слова, а исследования Высшей школы экономики.

Сейчас есть возможности и материалы для создания многофункциональных протезов , которые по функциям ничем не уступали бы обычным, грубо говоря, человеческим рукам. Протез позволяет сгибать даже кисть, о чем раньше даже боялись говорить в медицине. Сгиб в запястье – это огромные возможности для инвалида и возможность вести полноценную жизнь. сегодня есть такие протезы, которые способны вращаться на 360 градусов, без какого-либо вреда человеку. Казалось бы, что мешает ученым наконец-то выпустить в медицину такие новшества? Все просто – для инвалидов модели станут непозволительной роскошью. То, что раньше казалось фантастикой, сейчас уже реализовано. Проблема в цене, которая по-прежнему фантастическая.

Бионический протез рук «BeBionic»

Сложно себе представить, но компания RSLSteeper посвятила области протезирования уже более 90 лет – и добилась в этой отрасли больших высот, начав производить целый ряд моделей бионических рук . Уже в 2010 году состоялась первая презентация технологии – она прошла в Германии. Один из протезов обладал четырьмя функциональными охватами, которые можно было переключить с помощью большого пальца, что достаточно удобно.

Дальше презентовали вторую модель протеза. У нее уже был прекрасный дизайн, причем вырос функционал охвата. Данный протез позволял работать даже с компьютерной мышью и делать быстрый двойной клик. С помощью сенсоров протез научился подстраиваться под габариты и формы объекта.

После вышла третья модель «BeBionic 3» — появилась она в 2012 году. Вы можете посмотреть видео ниже, чтобы посмотреть, на что способна данная технология.

Еще одна примечательная разработка – это «BeBionic Small». Это так называемый компактный протез , который отличается от третьей модели только размером. Также протез получил реалистичные подушечки на пальцах руки. Они нужны для комфортной и аккуратной работы с небольшими вещами.


Представители компании заявили, что проработать протез может весь день. Дальше его необходимо заряжать. Из минусов – нельзя ложиться спать с протезом. Так как покупка дорогостоящая, на нее идет гарантия на 12 месяцев. При желании клиент может доплатить и увеличить гарантию даже сроком на 5 лет.

Каждый палец работает благодаря своему мотору. Причем он очень грамотно расположены, чтобы не возникало у модели проблем с равновесием. За положение пальца отвечает микропроцессор. Огромное количество дел можно переделать за счет 14 хватов – этого количества вполне достаточно. Можно уменьшить силу хвата, скорость движения протеза. То есть, полноценная имитация настоящей руки . Если нужно что-то поднять, увеличиваешь силу, если просто берешь пластиковый стакан в руки, уменьшаешь ее. Что больше удивляет, автоматический захват. Если система понимает, что предмет в руке человека начинает падать, она сразу же усиливает охват в пределах нормы.

Протез будет достаточно легким. Производитель решил использовать алюминий и углепластик. Причем, несмотря на свою легкость, протез способен справиться с нагрузкой вплоть до 45 килограмм. Вращение в 360 градусов – один из приятнейших бонусов представленной модели.

Touch Bionics установили первую в мире бионическую руку

Компания «BeBionics» не сидит где-то в тени, создавая новые проекты. Сотрудничество с СМИ дает свои плоды – бренд этой фирмы известен во многих странах. Вдобавок в 2007 году не было конкурентов у данной компании. Они первые выпустили на рынок бионическую руку , чем и завоевали славу. Даже на момент 2007 года производитель научил работать протезы таким образом, что они справлялись с различными охватами.

Наступает 2014 год. Выходит протез под названием «i-Limb Revolution». Эта модель позволяла людям с легкостью упаковывать вещи, работать с мелкими предметами, носить продукты в пакете, закрывать и открывать шкаф и даже завязывать шнурки обоими руками.

Вы может и не замечали, но без запястий многие бы действия мы совершать не могли. Поэтому производитель начал работать над запястьем протеза. И добился успеха – движение кистью возможно на 40 градусов, причем в обе стороны – это значительно расширяет возможности протеза.

Наступает 2015 год. Рождается еще одна модель – «i-Limb Quantum». Ее функционал кажется удивительным. 24 хвата, вдобавок еще 12 может настроить сам владелец протеза. Это был прорыв в данной сфере технологий.

Чтобы выбрать охват, владельцам протеза нужно работать с мобильным приложением – оно программирует искусственную руку . Больше всего данная модель впечатляет тем, что можно контролировать и регулировать охваты жестами. Жест в одно направление сменяет охват, в другое – укрепляет его. Работает протез под четыре направления жестов – этого достаточно для комфортного и функционального управления искусственной рукой .


Компания «Touch Bionics» ведет активную деятельность на ютьюбе, постоянно публикуя интересные ролики, связанные с протезами. Например, один ролик посвящен тому, как с помощью искусственных рук человек готовит блюдо.

Отметим, что компания была основана в 2003 году. Ее основание произошло в 2003 году. Всего за 2015 год фирма заработал свыше 15 млн. долларов. Больше всего покупателей пришло из Германии и Франции. В 2016 году компанию продали Исландии. Стоимость сделки составила 27 с половиной миллионов фунтов. Продать Touch Bionics решили ввиду неправильно построенной бизнес-модели, из-за которой компания теряла прибыль.

Новый владелец компании, «Ossur» — далеко не новичок на рынке бинических протезов . Фирма уже давно работает над технологиями нижних конечностей, причем работает с огромными объемами. А за счет Touch Bionics выйдет на новый уровень.

Ottobock

Это немецкий концерн, входящий в тройку лидеров. Даже до нашей страны дошли разработки данной корпорации.

Компания представляет линейку «MyoFacil2». Это миолектрические устройства. Пока их функционал минимален. Подходят данные технологии для инвалидов, у которых ампутированы ниже локтя руки. Ниже мы разместим видео, где инвалид с таким протезом решает обычные домашние дела. Ему не составляет труда навести дома порядок, позавтракать, поехать на работе на автомобиле и т.д.

Стоимость такого товара может достигать пол миллиона рублей. Можно найти и за 400 тысяч протез – все зависит от того, какие расходники установлены, какое предприятие занимается их продажей.

У модели впечатляющие скоростные показатели схватывания рукой – показатели могут достигать 300 миллиметров за 1 секунду. С помощью протеза можно работать даже с мелкими деталями. Минус все же есть. Грубо говоря, перед нами миоэлектрический «крюк» с перчаткой, что пока пиком технологий назвать нельзя.


Есть еще одна интересная технология у организации – это «Michelangelo». Всего у модели семь хватов. Она позволяет с легкостью работать с плоскими и миниатюрными вещами. Эта модель отличный конкурент для «i-Limb».

Представители компании заявляют, что минимальная цена такого протеза составляет 2 миллиона рублей. Причем срок эксплуатации – 3 года. Дополнительные расходы – это покупка перчатки не реже чем раз в 6 месяцев. Увеличить цену протеза можно своеобразность культи инвалида. В итог цена может достигать 2 500 000 рублей при лучшей комплектации модели.

Работает искусственная рука за счет новой системы «Axon-Bus». Она ранее использовались в автомобильной и аэрокосмической промышленности. Далее компания решила адаптировать технологию с целью создания протезов. Было использование шарнирное соединение с учетом технологии «AxonWrist», в результате чего человек получил возможность как сгибать, так и поворачивать протезом без малейшего дискомфорта.

Проблем со здоровьем от использования протеза у инвалида не возникает. Напротив, модель позволяет держать правильно осанку, не допустить искривления позвоночника. В конце концов, человек получает возможность выполнять какие-то незначительные, но все же необходимые действия даже в процессе, например, прогулки.. Причем протез получился достаточно реалистичным, поскольку при ходьбе он покачивается, как реальная рука. И не в реализме дело, в том, что на осанку в данном случае не идет отрицательного влияния, а от ампутации она часто портится.


Из нюансов – есть два мотора, которые отвечают за работу среднего, указательного и большого пальца. Два остальных пальца работают уже на основе трех других, а не самостоятельно. Для кончиков пальцев установили мягкий материал, чтобы хрупкие и маленькие предметы не портились, не ломались при работе с ними. Всего у протеза 7 хватов. Хват «открытая ладонь» присутствует.


Представители компании заявляют, что даже если человек активно пользуется протезом в течение дня, до вечера он точно не разрядится. Также компания отметила, что протезов для нижних конечностей сейчас больше, чем для верхних. Например, на территории России хороших моделей в продаже не более 7000. А что касаемо биоэлектрики, здесь точное число назвать сложно. Пока и модель «MyoFacil» не сильно популярна в России.


И вполне очевидно, в чем беда продаж в России. Рынок далек от пика развития. Специалистов в стране минимум, комплектующих всегда не хватает. В результате лишь единицы инвалидов покупают себе такие протезы, если смогут их найти на рынке.

Бионическая рука имеет свой не достаток

Батарея

Все мы знаем, что день активного пользования смартфоном – это предел его возможностей батареи. Какими бы невероятными технологии протезов не казались, они также не живут без подзарядки больше суток точно. День человек поработал с протезом, ночью придется ставить его на зарядку через обычную розетку. А что если человек любит путешествовать, часто в дороге? Приходится тратиться на покупку дополнительных аккумуляторов – и стоят они не так дешево, как аккумуляторы для гаджетов.

Вода враг – протезов

К сожалению, покупаться в протезах не получится. Даже перед походом в душ придется снимать искусственную руку. Чтобы в устройство не попадала влага, да и не влияла агрессивная среда в целом, нужно надевать специальные перчатки. Конечно, сделать герметичный корпус для протезов – не так уже сложно. В будущем такие модели будут, и их не нужно будет постоянно снимать. Лишь для технического обслуживания.

Управление не всегда работает корректно

В плане скорости у протезов все нормально. Если покупать хорошую модель, то она будет способна справиться с теми нагрузками, с которыми настоящая рука просто не справиться. И вроде бы все замечательно, но миоэлектричесские датчики не всегда срабатывают грамотно. Проблема в том, что первым делом мозг отправляет команду в мышцу у датчика, дальше в работу вступает датчик, который передает команду двигателю. И только после этого совершается жест. К чему мы клоним? Протез работает быстро, но в плане скорости реакции все пока печально.

Кстати, в плане протезов для нижних конечностей уже с реакцией все хорошо. Опять же, это заслуга «Ossur». Всего лишь за 15 минут хирурги могут установить ступни . Поскольку их работа заключается в установке в остатке конечностей специальных сенсоров. А скорость реакции гарантирует мыслительное управление, а не механическое. То есть, не нужно соединять протез с мышцами или нервами. Сигнал будет идти конкретно на нервную систему, чем и достигается прекрасная скорость работы.

Стоимость

Как мы уже сказали, удовольствие за два миллиона рублей (а то и больше), позволить себе может не каждый инвалид. А когда ценовая политика станет более-менее приемлемой, сложно представить.

Как работает бионическая рука April 23rd, 2017

8 летняя Тилли впервые использует бионическую руку.

Я почему то думал, что до таких функциональных протезов наука на планете Земля еще не дошла. Однако же...

Как же это работает?



вот тут про эти протезы

До недавнего времени протезы прикреплялись к человеческому телу механически и не имели никакой связи с нервной системой. Они могли сгибаться в своих железных шарнирах-суставах, но для выполнения каждого движения владельцу нужно было тем или иным образом регулировать поведение своего протеза, вручную обеспечивая обратную связь. Таким образом человек сигнализировал своей ноге, что впереди лужа и ее нужно обойти, а руке — что нужно аккуратно взять яйцо и приготовить яичницу или, наоборот, крепко зажать в руке инструмент. Чтобы научить человека управлять новой конечностью таким образом, требовалось долгое время, да и набор команд был довольно ограниченным, поэтому мелкая моторика оставляла желать лучшего.

Но ученые, вдохновленные воображением писателей-фантастов, смогли сделать невероятное — присоединить механическую руку к человеческой нервной системе.

На перехват

Когда человеку без руки хочется пошевелить пальцем, мозг генерирует соответствующий сигнал, который идет по нервам, ведущим к мышцам конечности. Но, поскольку рука отсутствует, сигнал уходит «в пустоту». Но что, если где-то по пути «перехватить» нервные импульсы и на этой основе после анализа и обработки данных сформировать команды управления роботизированной рукой? Именно по этому пути идут многочисленные научные группы, стремясь разработать протезы, считывающие нервные сигналы и преобразующие их в движения.

В американских Хьюстонском университете и Университете Райса велись эксперименты со снятием моторных нервных сигналов методом электроэнцефалографии (ЭЭГ) с помощью электродов на коже головы. Сложность в том, что ЭЭГ — это набор большого количества разных сигналов, и задача выделить среди них те, которые управляют движением конечности, сродни поискам иголки в стоге сена.

Исследователи из Технического университета Чалмерса в Гетеборге (Швеция) совместно с коллегами из консорциума NEBIAS (проект нескольких европейских университетов) пошли другим путем. Вместо того чтобы располагать электроды на поверхности кожи, где полезный сигнал сильно зашумлен, ученые попытались уменьшить влияние помех, вшивая электроды под кожу. Но физиология каждого человека индивидуальна, и нельзя заранее сказать, где именно следует расположить электроды для максимального соотношения «сигнал-шум».

Самообучение роботов

В настоящее время самым перспективным методом управления бионическими протезами считается считывание электрических потенциалов с мышц культи — электромиография (ЭМГ). Такие высокотехнологические протезы уже вышли за пределы лабораторий и производятся серийно. Однако научить пациента правильно управлять протезом — все еще сложная проблема.

В лаборатории прикладных кибернетических систем Московского физико-технического института пытаются перевернуть эту проблему с головы на ноги, то есть «обучить» протез правильно понимать команды человеческого мозга. Команда GalvaniBionix, состоящая из студентов и аспирантов МФТИ во главе с заведующим лабораторией Тимуром Бергалиевым использует для считывания электрических потенциалов с мышц не одну пару электродов, а множество. Такой подход позволяет добиться значительного повышения уровня полезного сигнала и реализовать алгоритмы «самообучения». Каждая комбинация сигналов, пришедшая с разных электродов, соответствует определенному действию руки, а задача в том, чтобы составить библиотеку соответствий, к которой будет обращаться система при получении нового набора импульсов. «Программное обеспечение учится правильно распознавать команды мозга, подстраиваясь под конкретного человека, — объясняет Бергалиев. — Нам удалось продемонстрировать работоспособность прототипа системы: человек с ампутированной конечностью с помощью «мышечных сигналов» мог перемещать курсор по экрану. В дальнейшем мы планируем использовать алгоритмы машинного обучения для анализа частоты регистрации различных комбинаций сигналов и с помощью этих данных улучшить распознавание».

Тимур Бергалиев, заведующий лабораторией прикладных кибернетических систем Московского физико-технического института, руководитель проекта GalvaniBionix:

«Для управления протезами мы разрабатываем технологию, которая подстраивается под индивидуальность человека. На культе мы размещаем не одну пару электродов, как это обычно делается, а несколько. Чем больше электродов мы используем, тем б? льшую выборку сигналов для анализа получим. Да, таким образом мы сильно усложняем работу компьютера, поскольку процессору сложнее анализировать множество сигналов. Но зато значительно упрощается жизнь пациента».

Электрические руки

Протезирование начиналось с чисто косметических (пассивных) протезов, предназначенных сугубо для воссоздания естественного внешнего вида утерянных конечностей. Однако достижения технологии позволили разработать управляемые различными методами протезы.

Тяговое управление использует механические тяги для передачи движения протезу.

Электромиографическое управление основано на считывании биоэлектрических потенциалов, возникающих при сокращении мышц на уцелевшей части руки.

Электроэнцефалографическое управление использует считывание электрических потенциалов в мозгу посредством электроэнцефалографии (ЭЭГ). Сигналы с датчиков, размещенных на поверхности кожи головы, декодируются компьютером и преобразуются в команды, управляющие протезом.

Управление с помощью электронных имплантатов — вживленных в кору головного мозга электродов, с помощью которых регистрируется активность корковых нейронов.

Так что будущее уже рядом:

источники

В мае 2016 года 62-летний Крег Пол поднялся на вершину горы Эверест. Три года назад Пол страдал от артрита и не мог даже подняться по лестнице. «Я хочу показать всем, кто сомневается в своих возможностях или чувствует себя старым. Там, где есть воля, есть и победа. Восхождение на Эверест превратилось для меня в эпическое путешествие», - писал Пол в своём блоге. Пол смог стать альпинистом благодаря нескольким сложным операциям и двум искусственным коленным суставам. По прогнозам экспертов , объём рынка имплантов и протезов колен и бёдер достигнет $33 млрд к 2022 году. «Секрет» рассказывает о его развитии.

Бионические протезы

Бионика соединяет биологию и технику, изучает нервную систему и нервные клетки, а также исследует органы чувств человека для создания новых технологических устройств. Одно из главных направлений этой науки - исследования, связанные с созданием протезов и имплантов. Электронные устройства заменяют утраченные органы и конечности, взаимодействуя с нервными клетками. Их производят из искусственных материалов, но человек может управлять ими при помощи собственной нервной системы за счёт метода целевой мышечной реиннервации. Его суть состоит в том, что нервы, которые раньше управляли, например, ампутированной конечностью, соединяют с сохранившимися мышцами и те посылают сигналы на электронные датчики протеза.

После ампутации конечности в организме человека остаются двигательные нервы, их хирурги соединяют с участками крупной мышцы - например, грудной, если речь идёт об ампутированной руке. Когда человек думает, что нужно пошевелить пальцем, мозг отправляет сигнал грудной мышце. Сигнал фиксируется электродами, которые отправляют импульс по проводам в процессор внутри электрической руки к нужному участку. Протез совершает движение.

Чтобы человек мог чувствовать прикосновения, тепло и давление электронной конечностью, хирурги пришивают оставшийся чувствительный нерв к участку кожи на груди, этот метод называется целевой сенсорной реиннервацией. Сенсоры протеза передают сигнал этому участку кожи, а оттуда он поступает в мозг, и пациент может одёрнуть руку, если чувствует, например, высокую температуру. Сейчас компании активно работают над внедрением бионических конечностей. В 2013 году появилась первая бионическая нога, которая полностью контролировалась мозгом.

Бионическое колено

Над созданием бионического колена задумались ещё в 1990-х. Компания Blatchford начала производство микропроцессора для контроля протеза коленного сустава, его выпустили в 1993 году под названием Intelligent Prosthesis. В 1997 году немецкая компания Otto Bock представила микропроцессор искусственного колена C-leg. В 2005 году исландская компания Ossur сделала электронный коленный модуль - Rheo Knee, а спустя год - протез с двигателем Power Knee стоимостью от $60 000 до $80 000.

По статистике, 52,5 млн американцев страдают от болезней суставов. Количество операций по замене колена за последние годы увеличилось втрое среди людей в возрасте от 45 до 64 лет. При этом каждый пятый пациент недоволен результатом. Пациенты часто жалуются на боли и невозможность чувствовать себя так, как с натуральным коленом. Компании - производители протезов постоянно работают над улучшением технологий и стараются устанавливать импланты, которые по ощущениям не отличаются от натурального колена. Канадская компания ConforMIS предлагает напечатать новую коленку на 3D-принтере. Стоимость импланта, созданного таким образом, составит около $4000. Разработанная в компании платформа iFit Image-to-Implant позволяет каждый раз печатать персональные импланты, подходящие конкретному человеку, и внедрять их за 70 минут. Сейчас компания работает над тем, чтобы персонализировать бёдра, плечи и лодыжки - все части тела, которые начинают болеть с возрастом.

Бионические руки и ноги

В 2012 году американец Зак Воутер, которому ампутировали ногу после аварии, при помощи бионического протеза поднялся по лестницам на смотровую площадку чикагского небоскрёба. «Когда Зак хочет сделать движение, мозг посылает вниз по спинному мозгу импульс к неповреждённой мышце. В протезе установлены электроды, которые контролируют эти импульсы. Специальная компьютерная программа декодирует полученные данные и передаёт их протезу для выполнения, будь то сгибание или выпрямление колена, сгибание лодыжки или приём сидячего положения», - объяснял профессор Чикагского университета Леви Харгрув.

Микрокомпьютер протеза собирал данные от 11 электродов, закреплённых на бедре Воутера. Роботизированная нога получала электрические импульсы от нервных волокон, пришитых к подколенному сухожилию американца во время ампутации, - они сохранили способность передавать импульсы в нижнюю часть конечности.

Проекты по созданию технологичных протезов часто поддерживают силовые ведомства разных стран, которым нужно возвращать к нормальной жизни ветеранов военных действий. В 2013 году специалисты Реабилитационного института Чикаго создали первую ногу, напрямую управляемую мозгом. Разработчики привлекли $8 млн от Минобороны США, а в ближайшие пять лет протез будет доступен для тестирования бесплатно. Тестировать бионические протезы могут не только люди с ампутированными конечностями - в 2013 году актёр и писатель Брент Роуз носил искусственную ногу для репортажа на сайте Gizmodo, и ему понравилось. Создатели хотят, чтобы их протез стоил как можно дешевле - около $20 000. В этом году учёные Университета Джона Хопкинса представили протезированную руку, пальцы которой контролируются мозгом, разработка велась при поддержке агентства Минобороны США DARPA.

Канадская компания Spring Loaded Technology, создатель бионического бандажа Levitation для колена, заключила контракт с Министерством национальной обороны Канады на $1 млн на поставку гидравлических наколенников. Устройство будут использовать военные для испытаний в боевых условиях. Позже компания привлекла $1,9 млн в посевном раунде от венчурного фонда Build Ventures. Компания собирается сделать продукт массовым, его смогут покупать спортсмены и любители фитнеса, чтобы защищать колени от травм и лишних нагрузок. В первый день краудфандинговой кампании на Indiegogo Spring Loaded Technology привлекла больше половины нужной суммы из $75 000. Предзаказ коленного бандажа обходился в $1200, в будущем цена поднимется до $2500.

Канадский наколенник можно назвать экзоскелетом - устройством, предназначенным для восполнения утраченных функций, увеличения силы мышц и расширения амплитуды движений. Портал SnapMunk писал в этом году: «Экзоскелеты сделали переход от научной фантастики к осязаемой технологии в военной и промышленной индустрии. Они помогут тем, кто болен параплегией, расстройствами мышц, имеет двигательные нарушения в повседневной жизни».

Наиболее прогрессивный экзоскелет Phoenix разрабатывает компания SuitX. Он будет стоить порядка $40 000, в то время как его конкурент ReWalk стоит $77 000. Phoenix весит 27 фунтов, это один из самых лёгких экзоскелетов. Параметры работы протеза можно установить в приложении для Android.

В прошлом году российская компания «ЭкзоАтлет», которая занимается производством экзоскелетов для людей с параличом нижних конечностей, привлекла 16 млн рублей от фондов Moscow Seed Fund и «Биофонд РВК». Пока компания распространяет бесплатные пилотные версии и планирует, что её экзоскелеты станут значительно дешевле зарубежных аналогов.

Эксперты прогнозируют, что объём рынка роботов для реабилитации, в том числе экзоскелетов, вырастет до $1,1 млрд к 2021 году.

Эксперименты

На конференции Code Conference 2016 предприниматель Илон Маск заявил: «Людям необходимо создать компьютеры, связанные с корой головного мозга. В противном случае мы будем настолько ниже роботов в интеллектуальном плане, что станем их домашними питомцами. Они будут относиться к нам, как сейчас люди относятся к домашней кошке».

Помимо создания протезов и имплантов биотехнологические компании ведут эксперименты по печати органов на 3D-принтере. Уже удалось напечатать сердечные и сосудистые ткани из стволовых клеток взрослых людей в рамках экспериментов. В 2015 году российская компания 3D Bioprinting Solutions напечатала щитовидную железу мыши, которая была успешно имплантирована. Человеческие 3D-органы сейчас всё чаще используют для предварительного планирования сложных хирургических операций. Так, несколько месяцев назад китайские врачи спасли девятимесячного ребёнка благодаря распечатанной заранее модели сердца. Американская Organovo уже производит ткани печени, используемые в качестве образцов для тестирования новых лекарственных препаратов на эффективность, токсичность и побочные эффекты.

Скептики утверждают, что полноценные органы напечатать невозможно, потому что они имеют сложную структуру. Наиболее вероятно воссоздание щитовидной железы, у которой нет сложной системы протоков для выведения продуктов деятельности. Однако и там возникает много вопросов, связанных с тем, как минимизировать риски.

В июне главный учёный в компании Techshot, давний партнёр NASA по части биотехнологий, заявил , что компания готова напечатать сердце со стволовыми клетками к 2024 году. В конце 2015-го Techshot разработала метод производства кровеносных сосудов из собственных стволовых клеток пациента и рассчитывает, что он поможет биологам в будущих экспериментах.

Фотография на обложке: Peter Endig / EPA

  • Медгаджеты ,
  • Актриса Angel Giuffria (Голодные игры: Сойка-пересмешница)

    У 15% людей на планете есть нарушения функций и структур организма, которые препятствуют физической активности и мешают социальной жизни, и больше 50 миллионов человек в год становятся инвалидами. Прямые и косвенные потери из-за этой проблемы составляют около 6% - в 2015 году это примерно 4,4 триллиона долларов. Это сравнимо с годовыми потерями мировой экономики от «великой рецессии» 2008 года. И это втрое больше годового ВВП России.

    Качественные и функциональные протезы могли бы существенно уменьшить эти потери, но доступные протезы конечностей в большинстве своём, пишут «Известия» со ссылкой на исследование Высшей школы экономики, - это «примитивные малофункциональные изделия с плохим дизайном».

    Благодаря современным материалам, сбалансированному размещению двигателей, датчикам силы прикосновения и вместительным аккумуляторам разработчики протезов смогли создать бионические руки, которые способны на большую часть повседневных действий. Одни модели приближены к реальной кисти - гибкий блок лучезапястного шарнира позволяет Michelangelo сгибаться в запястье, а другие - к роботам из научной фантастики, как BeBionic, которой из-за беспроводного управления смогли добавить функцию вращения на 360 градусов. Главным недостатком современных протезов пока остается цена.

    BeBionic (компания RSLSteeper)

    Компания RSLSteeper занимается протезированием более 90 лет. Она известна широкой общественности благодаря линейке бионических рук BeBionic. Выход на рынок первой версии протеза анонсировали в 2010 году на International Society for Prosthetics and Orthotics в Германии. Протез имел четыре функциональных хвата. Большой палец выполняет роль «переключателя» между их группами.

    Вторая версия руки BeBionic получила интересный дизайн и большее количество хватов. Появился специальный хват для компьютерной мыши - разработчики предусмотрели двойной клик. Сенсоры позволяют руке подстраиваться под форму объекта в руке пользователя.

    BeBionic 3 появилась уже в 2012 году. В видео ниже Найджел Экленд показывает различные хваты, на которые способна рука.

    На 30% меньше по размеру, чем BeBionic 3, и весит бионическая рука 390 граммов. На кончиках пальцев руки есть подушечки для работы с мелкими предметами. Первым пользователем BeBionic Small стала Ники Эшвелл из Великобритании.

    «На полном заряде протезы проработают в течение дня. Вечером перед сном их нужно снимать и ставить батарею на зарядку», - рассказали в BeBionic. Это один из минусов - людям приходится снимать устройства при отходе ко сну. Гарантия на такую бионическую руку - один год, но можно расширить её до пяти лет.

    Каждый палец руки имеет собственный мотор, расположенный так, чтобы уравновесить само устройство. Микропроцессор следит за положением каждого пальца. Всего есть 14 хватов для ежедневных дел. Пользователь может контролировать скорость и силу хвата, чтобы, например, не разбить яйцо или не сломать одноразовый стаканчик. В руке есть функция «автозахвата» - если процессор понимает, что предмет сейчас выпадет из протеза, он усиливает хват автоматически.

    Облегчить протез позволяют материалы: это алюминиевые детали и углепластиковый корпус BeBionic. При этом рука BeBionic 3 выдерживает нагрузку до 45 килограммов. Благодаря беспроводной передаче данных разработчикам удалось добавить интересную функцию: рука крутится на 360 градусов.

    Touch Bionics

    BeBionics благодаря своей работе со СМИ и на различных мероприятиях сейчас, возможно, наиболее узнаваемый бренд. Но рука от RSLSteeper не была первой бионической рукой. Touch Bionics ещё в 2007 году начала устанавливать первую в мире руку такого типа. Миоэлектрический протез i-Limb уже тогда позволял с помощью датчиков, установленных всего у двух мышц, работать с различными хватами.

    В 2014 году появилась версия i-Limb Revolution. Протезы такого типа позволяют делать множество вещей, которые для людей с двумя руками кажутся абсолютно обычными, простыми: складывать вещи в чемодан и витамины в таблетницу, держать пакет с продуктами и открывать ящик комода, собирать Lego двумя руками и завязывать шнурки.

    Когда мы делаем что-то руками, мы часто используем запястья. Часто протезы не дают возможности повторять этот трюк с искусственной рукой. В Touch Bionics эту проблему попытались решить с помощью мобильного запястья протеза, позволяющего двигать кисть на 40 градусов относительно стандартного положения в обе стороны.

    В 2015 году Touch Bionics представили i-Limb Quantum, более футуристическую и одновременно более функциональную руку. Устройство получило 24 предустановленных хвата и возможность настроить ещё 12 хватов под владельца.

    Владельцы протезов из линейки i-Limb могут использовать мобильное приложение для выбора хватов, настройки их силы и программирования новых движений. Важно заметить, что этот протез имеет наибольшее количество хватов из всех, что представлены в этой статье. Только у этой бионической руки есть функция смены хватов с помощью жестов: запрограммированный хват включается при движении руки в одном из четырёх направлений.

    Touch Bionics на YouTube выкладывает интересные ролики с различными вещами, которые люди делают без протезов и с ними. Например - приготовление еды с i-Digits - протезом ладони и пальцев.

    У Touch Bionics, основанной в Шотландии 2003 году, выручка к 2015 году составила 15 миллионов долларов. Особенно высокими были продажи в Германии и Франции. Исландская Ossur в 2016 году купила эту компанию за 27,5 миллиона фунтов. По мнению экспертов, это может быть связано с не самой удачной бизнес-моделью, по которой компания делала дорогие сверхсложные устройства.

    Ossur является серьёзным игроком на рынке бионических протезов нижних конечностей - рынка гораздо большего объёма. С помощью Touch Bionics она расширила свои компетенции в области протезирования.

    Ottobock

    Один из лидеров мирового рынка протезов - немецкий концерн Ottobock . В России доступны несколько разработок от этого концерна.

    Линейка MyoFacil - миолектрические устройства со скромным набором функций. Они предназначены для людей с ампутированными ниже локтя руками. На видео ниже - человек без обеих кистей с такими протезами, делающий обычные повседневные дела - он бреется, чистит зубы, заправляет кровать, завтракает со своей девушкой, гладит одежду и водит автомобиль.

    «Протез MyoFacil стоит порядка 400-500 тысяч рублей, это зависит от предприятия, которое устанавливает протез, и от расходников. Это простое устройство начального уровня», - говорят в компании.

    Скорость схватывания такой рукой достигает 300 мм в секунду. Протез позволяет держать мелкие и крупные детали.

    Минус в том, что хват всего один. По сути это просто миоэлектрический «крюк» с перчаткой.

    Передовая разработка компании - Michelangelo. На видео ниже кто-то сравнил протез кисти Michelangelo с i-Limb не в пользу последнего. У Michelangelo есть семь основных хватов, позволяющих в том числе держать мелкие и плоские предметы.

    «Готовый протез стоит около 2-2,5 миллиона рублей, это зависит от комплектации. Ведь период службы изделия - 3 года, а перчатку на нём необходимо менять раз в полгода. Можно приобрести комплект с одной перчаткой, но этого мало. Такие расходники увеличивают стоимость. Кроме этого, на стоимость влияет и сложность работы – она зависит от культи пациента», - рассказывают в компании.

    Рука построена на системе Axon-Bus, технологическая основа которой создавалась для аэрокосмической и автомобильной промышленности, позже адаптированной Ottobock к протезированию. Запястье благодаря шарнирному соединению по технологии AxonWrist можно сгибать и поворачивать.

    Использование протеза помогает пациенту держать правильную осанку, избежать искривления позвоночника в одну сторону. Это важно и во время выполнения повседневных действий, и во время ходьбы. В расслабленном состоянии во время ходьбы бионическая рука ведёт себя подобно естественной - покачиваясь. Это позволяет снизить эффект ампутации на осанку, вызываемый неестественными компенсирующими движениями.

    В случае с этим протезом, существующий «баг» человеческой руки с пальцами остаётся: два мотора обеспечивают движение большого, указательного и среднего пальцев, а безымянный и мизинец движутся за ними. На кончиках пальцев - мягкий материал, позволяющий работать с мелкими предметами.

    Протез обеспечивает семь хватов, включая открытую ладонь.

    «Как правило все наши изделия при активном использовании работают не менее суток на одном заряде. Рынок верхних конечностей безусловно меньше рынка нижних конечностей. В России это, возможно, 5-7 тысяч протезов в год. Какое количество биоэлектрики – сложно сказать. Под него попадает и MyoFacil с минимальным набором функций», - рассказали в российском представительстве компании.

    На вопрос о положении дел в России представитель Ottobock ответил, что «рынок не так сильно развит не из-за отсутствия комплектующих, а из-за ограниченного количества специалистов, которые умеют делать такие продукты».

    Недостатки бионической руки

    Батарея
    Недолгое время работы на одном заряде аккумулятора - это недостаток большей части современных гаджетов. Бионические руки при активном использовании могут проработать в течение дня, но этого мало. Как большая часть людей привязана к розеткам необходимостью подзаряжать смартфоны и ноутбуки, так и у людей с протезами возникают дополнительные неудобства при, например, путешествиях. Можно использовать второй-третий аккумуляторы.

    Отсутствие защиты от воды
    Ещё один недостаток - как правило, такие устройства не работают в воде. С ними нельзя купаться, принимать душ. Их важно защищать с помощью специальных перчаток, чтобы грязь не попала внутрь устройства. Возможно, в будущем появятся бионические руки с полностью герметичным корпусом, позволяющим снимать руку очень редко - только для планового обслуживания.

    Лаги при управлении
    Нельзя сказать, что протезы работают медленно. Иногда они способны на высокую скорость, они могут быть сильнее, чем вторая рука человека, который носит один бионический протез. Но при управлении с помощью миоэлектрических датчиков пользователи имеют лаг: сначала мозг передаёт команду в мышцу у датчика, затем датчик передаёт команду двигателю, и после этого меняется жест. Так что реакция - далеко не самая высокая.

    Эту проблему, но с протезами ног, успешно

    Современная наука и медицина позволяют существенно облегчить жизнь больным, которым ранее не давалось никаких перспектив на улучшение самочувствия и реализацию в социуме. В этой статье мы ознакомим вас с 6 удивительными техническими достижениями современной медицины. Возможно, эта информация будет полезна для вас, и вы сможете воспользоваться предложенными новинками технического прогресса, делающими жизнь больных более насыщенной, позитивной и свободной.

    Бионические протезы

    Упоминание о бионических протезах вызывает у многих ассоциации с фильмом «Звездные войны». Искусственная рука может функционировать как настоящая, глаз «видит» и мозг «считывает» полученную информацию, ухо воспринимает все звуки – это далеко не весь перечень таких протезов.

    Слово «бионический» произошло от слова «бионика», и оно обозначает использование технических устройств, способных воспроизводить структуры живой природы. Одним из направлений этой отрасли является создание протезов и имплантатов, созданных на основе множества наук – химии, физики, биологии, кибернетики, электроники, навигации и др. Они способны воссоздавать функции утраченных органов и конечностей.

    Бионические руки

    Создание этих протезов заняло много времени и сил, т. к. при создании искусственной конечности трудно воспроизвести такие деликатные движения, которые способна выполнять кисть человека. Это объясняется тем, что на кончиках пальцев расположены самые чувствительные нервные окончания, обеспечивающие предельную точность движений.

    Пока ученые не смогли на все 100% повторить естественные возможности руки человека, но существует несколько интересных попыток, максимально приближающих функции протеза к обычной верхней конечности. Такие бионические устройства разрабатываются различными компаниями.

    Протезы i-LIMB

    Эти бионические руки выпускаются компанией Touch Bionics и изначально разрабатывались для ветеранов войны. Они способны брать и удерживать предметы, пальцы могут двигаться по-отдельности, воспроизводя несколько записанных стандартных движений, сила сжатия предметов может быть различной.

    Работа протеза основана на свойствах микроэлектрического устройства, которое считывает биоэлектрические потенциалы с уцелевшей области руки и передает их на программное устройство, обеспечивающее дальнейшее функционирование бионической верхней конечности. В компьютерной системе содержится целый ряд стандартных движений и захватов.

    Протезы Bebionic3

    Эта разновидность миоэлектрического протеза аналогична бионической руке i-LIMB. Она способна выполнять 14 разных захватов и движений для воспроизведения разных действий. Как и протез i-LIMB, эта бионическая рука в процессе доработок, и после них может стать полноценной заменой настоящих верхних конечностей.

    Проект биоруки ученых Технического университета Чалмерса

    Ученым удалось создать биопротез, способный работать частично от миоэлектрики и частично от нервной системы инвалида. В руку пациента могут имплантироваться электроды, способные считывать производимые головным мозгом биоэлектрические сигналы. После этого сигналы поступают в компьютерное устройство, и система перенаправляет их в импульсы, управляющие моторами. В результате обладатель биоруки может управлять и всеми пальцами одновременно, и двигать отдельные пальцы.

    Разработчики этой модели бионических протезов проводят работу над совершенствованием этой биоруки. Их стремления направлены на создание искусственной верхней конечности, которая будет управляться исключительно нервными сигналами, вырабатываемыми головным мозгом.

    Разработка нейробиолога Эндрю Швартца

    Благодаря этой разработке удалось провести операцию, которая была направлена на восстановление движений рукой парализованной женщины, страдающей от тяжелого нейродегенеративного заболевания, приведшего у полной утрате движений во всем теле. В ее мозг были имплантированы электроды, способные управлять биорукой.

    Тактильные сигналы прототипа нового биопротеза руки передаются специальными сенсорами, встроенными в кончики искусственных пальцев, запястья и ладони. Такое нововведение позволяет человеку чувствовать не только расположение протеза, но и сжимаемые им предметы. Пока эти ощущения не могут в полной мере сравниваться с естественными ощущениями человека, а материал имплантата может находиться в организме человека не более месяца. Однако первые шаги к созданию идеальной бионической руки уже сделаны.

    Бионические ноги

    Несмотря на тот факт, что создание бионической ноги более легкая задача, чем разработка искусственной руки, пока ученые не смогли полностью приблизиться к естественному аналогу. Такие работы активно проводятся, и на протяжении нескольких лет ученым удалось создать ряд удачных бионических протезов нижних конечностей.

    Университет Вандербильта проводит усиленную работу над созданием двигателей для ступни и колена. Первым человеком, испытавшим возможности такой бионической ноги, стал 23 летний студент Крейг Хатто, который лишился конечности в результате контакта с акулой. Анализ видеоматериалов о его походке позволяет делать выводы, что молодой человек может вполне хорошо передвигаться по различным поверхностям. Его хромота заметна лишь слегка, и Крейг смог пройти самостоятельно расстояние в 14 км. Протез может реагировать на самые минимальные изменения в условиях движения, т. к. он оснащен внушительным компьютерным и программным обеспечением.

    Еще одной удачной разработкой ученых из Университета Вандербилта и Реабилитационного центра института Чикаго стала бионическая нога для Зака Воутера. Благодаря ее техническим возможностям он смог самостоятельно подняться на 103-этажный небоскреб. Секрет характеристик этой модели бионической ноги кроется в том, что протез может управляться сигналами, посылаемыми из головного мозга, и соединен с нервными окончаниями ноги.

    Кроме вышеперечисленных бионических протезов существуют и другие достойные разработки искусственных нижних конечностей. Одной из них является бионога Tibion. Ее конструкция максимально приближена к параметрам скелета естественной ноги. Эта разработка была создана для пожилых больных с обездвиженными нижними конечностями (например, после кровоизлияния в мозг в результате ).

    Слуховые аппараты


    С помощью кохлеарных имплантов можно вернуть слух многим пациентам с тугоухостью.

    Бионическими протезами можно считать и кохлеарные имплантаты, вживляемые в органы слуха. Они представляют собой устройства, состоящие из микрофона, звукового процессора и передатчика звукового сигнала, который может фиксироваться путем прикрепления к волосам или на кожу. Приемник, входящий в состав этого устройства, имплантируется под кожу пациента, а ряд электродов вводится во время хирургической операции внутрь слуховой улитки.

    Аппараты этого типа изобретены уже давно: впервые они устанавливались уже в 1951 году. Первый кохлеарный имплантат был установлен в 1978 году. Он был разработан в Мельбурне и устанавливался людям с тяжелыми нарушениями слуха сенсоневрального происхождения. К 2000 году благодаря этой разработке ученых частично вернуть слух удалось тысячам больных, в т. ч. и детям до года. Сейчас такие операции могут проводиться и в России.

    Искусственное сердце

    С 1950 года начали проводиться первые эксперименты по созданию искусственного сердца. Первые имплантации такого бионического протеза были проведены в 1982 году. Jarvik-7 – результат научных исследований доктора Ярвикова – был пересажен двум пациентам. Тогда они считались успешными, т. к. могли продлевать жизнь больных даже на непродолжительные сроки. Один из них смог прожить после выполнения пересадки 112 дней, а второй – 620 дней.

    Множество попыток заместить естественное сердце искусственным привело ученых к тому, что они смогли создавать модели, способные стать временным вариантом для поддержания жизни людей, нуждающихся в пересадке сердца от донора. Сейчас к числу таких бионических сердец относят такие два устройства: SynCardia temporary Total Artificial и AbioCor Replacement Heart. Лидером среди этих разработок стало искусственное сердце SynCardia temporary Total Artificial, т. к. первая имплантация второго варианта потерпела фиаско.

    При выполнении пересадки искусственного сердца возможно появление такого риска для больного как отторжение устройства. Оно вызывается кардиопротезным психопатологическим синдромом и заключается в чрезмерной фиксации внимания больного на работе клапана, сопровождающейся характерным слышимым звуком. В результате пациенты пугаются такого сочетания звука и осознания того, что внутри них находится инородный механизм.

    Бионический глаз

    Одним из самых удивительных бионических протезов можно по праву считать искусственный глаз. Сложность его работы оправдывается тонким устройством естественного органа зрения.

    Argus II

    Принцип работы такого устройства как Argus II заключается в установке антенны в область глазного яблока и на специальные очки, снабженные камерой и соединенные с компьютером. Полученный визуальный сигнал фиксируется камерой и поступает в обработку на компьютерное устройство. После обработки он переводится на приемник и направляется к электродам, стимулирующим уцелевшие клетки зрительного нерва и сетчатки.

    Argus II включает в себя 60 электродов, и они позволяют больному различать формы, очертания и цвет предметов и воспринимать шрифт больших размеров. Полностью восстановить зрение такое устройство пока не способно, но его использование позволяет человеку получать ориентацию в пространстве и социализироваться в более полной мере.


    Bio-Retina

    Этот искусственный глаз включает в себя сенсор, разрешение которого составляет 576 пикселей, его имплантируют в функционирующую сетчатку и соединяют с глазным нервом. Бионический протез преобразовывает данные пикселей в электрические импульсы и головной мозг. Bio-Retina работает через специальные очки, проекцирующие инфракрасное изображение на сенсорное устройство, подпитывающееся от солнечной батарейки.

    Бионический миокард

    Этот бионический протез создан израильскими учеными, и он может помочь множеству людей, страдающих от , избежать наступления смерти в ожидании трансплантации сердца от донора. Разработчикам удалось воссоединить ткань живого миокарда с наноэлектроникой и полимерными материалами. В результате полученные «заплатки для сердца» позволяют заменять существенно поврежденные участки этого жизненно важного органа. Ученые добились того, что такие биопротезы позволяют не только готовить больного к необходимой трансплантации, но и лечат сердце.



    Рассказать друзьям