Что такое катехоламины. И как влияют они на поведение и способности человека

💖 Нравится? Поделись с друзьями ссылкой

Гормоны надпочечников адреналин и норадреналин под общим названием катехоламины представляют собой производные аминокислоты тирозина.

Роль адреналина является гормональной, норадреналин преимущественно является нейромедиатором.

Синтез

Осуществляется в клетках мозгового слоя надпочечников (80% всего адреналина), синтез норадреналина (80%) происходит также в нервных синапсах.

Реакции синтеза катехоламинов

Регуляция синтеза и секреции

Активируют : стимуляция чревного нерва, стресс.

Уменьшают : гормоны щитовидной железы.

Механизм действия

Механизм действия гормонов разный в зависимости от рецептора. Степень активности рецептора может изменяться в зависимости от концентрации соответствующего лиганда.

Например, в жировой ткани при низких концентрациях адреналина более активны α 2 -адренорецепторы, при повышенных концентрациях (стресс) – стимулируются β 1 -, β 2 -, β 3 -адренорецепторы.

Адренорецепторы расположены на пре- и постсинаптических мембранах, на клеточной мембране вне синапса. Их типы неравномерно распределены по разным органам. При этом орган может иметь либо рецепторы только одного типа, либо нескольких типов.
Конечный адренергический эффект зависит

  • от преобладания типа рецепторов в органе/ткани,
  • от преобладания типа рецепторов на конкретной клетке,
  • от концентрации гормона в крови,
  • от состояния симпатической нервной системы.

Кальций-фосфолипидный механизм

  • при возбуждении α 1 -адренорецепторов .

Аденилатциклазный механизм

  • при задействовании α 2 -адренорецепторов аденилатциклаза ингибируется,
  • при задействовании β 1 - и β 2 -адренорецепторов аденилатциклаза активируется.

Мишени и эффекты

α1-Адренорецепторы

При возбуждении α1-адренорецепторов происходит:

1. Активация гликогенолиза и глюконеогенеза в печени.
2. Сокращение гладких мышц

  • мочеточников и сфинтера мочевого пузыря,
  • предстательной железы и беременной матки,
  • радиальной мышцы радужной оболочки,
  • поднимающих волос,
  • капсулы селезенки.

3. Расслабление гладких мышц ЖКТ и сокращение его сфинктеров,

α2-Адренорецепторы

При возбуждении α2-адренорецепторов происходит:

  • снижение липолиза в результате уменьшения стимуляции ТАГ-липазы,
  • подавление секреции инсулина и секреции ренина ,
  • спазм кровеносных сосудов в разных областях тела,
  • расслабление гладких мышц кишечника,
  • стимуляция агрегации тромбоцитов.

β 1-Адренорецепторы

Возбуждение β1-адренорецепторов (есть во всех тканях) проявляется в основном:

  • активация липолиза ,
  • расслабление гладких мышц трахеи и бронхов,
  • расслабление гладких мышц ЖКТ,
  • увеличение силы и частоты сокращений миокарда (ино - и хронотропный эффект).

β 2-Адренорецепторы

Возбуждение β2-адренорецепторов (есть во всех тканях) проявляется главным образом:

1. Стимуляция

  • гликогенолиза и глюконеогенеза в печени,
  • гликогенолиза в скелетных мышцах,

2. Усиление секреции

  • инсулина,
  • тиреоидных гормонов.

3. Расслабление гладких мышц

  • трахеи и бронхов,
  • желудочно-кишечного тракта,
  • беременной и небеременной матки,
  • кровеносных сосудов в разных областях тела,
  • мочеполовой системы,
  • капсулы селезенки,

4. Усиление сократительной активности скелетных мышц (тремор ),

5. Подавление выхода гистамина из тучных клеток.

В целом катехоламины отвечают за биохимические реакции адаптации к острому стрессу , эволюционно связанному с мышечной активностью"борьба или бегство" :

  • усиление продукции жирных кислот в жировой ткани для работы мышц,
  • мобилизация глюкозы из печени для повышения устойчивости ЦНС,
  • поддержание энергетических потребностей работающих мышц за счет поступающей глюкозы и жирных кислот,
  • снижение анаболических процессов через уменьшение секреции инсулина.

Адаптация также прослеживается в физиологических реакциях:

    мозг – усиление кровотока и стимуляция обмена глюкозы,

    мышцы – усиление сократимости,

    сердечно-сосудистая система – увеличение силы и частоты сокращений миокарда, увеличение артериального давления,

    легкие – расширение бронхов, улучшение вентиляции и потребления кислорода,

    кожа – снижение кровотока,

  • ЖКТ и почки – снижение деятельности органов, не помогающих задаче срочного выживания.

Патология

Гиперфункция

Опухоль мозгового вещества надпочечников феохромоцитома . Ее диагностируют только после проявления гипертензии и лечат удалением опухоли.

Мозговой слой надпочечников продуцирует соединение далекой от стероидов структуры. Они содержат 3,4-диоксифенильное (катехоловое) ядро и называются катехоламинами. К ним относятся адреналин, норадреналин и дофамин бета-окситирамин.

Последовательность синтеза катехоламинов достаточно проста: тирозин → диоксифенилаланин (ДОФА) → дофамин → норадреналин → адреналин. Тирозин поступает в организм с пищей, но может и образовываться из фенилаланина в печени под действием фенилаланингидроксилазы. Конечные продукты превращения тирозина в тканях различны. В мозговом слое надпочечников процесс протекает до стадии образования адреналина, в окончаниях симпатических нервов - норадреналина, в некоторых нейронах центральной нервной системы синтез катехоламинов завершается образованием дофамина.

Превращение тирозина в ДОФА катализируется тирозингидроксилазой, кофакторами которой служат тетрагидро-биоптерин и кислород. Считается, что именно этот фермент лимитирует скорость всего процесса биосинтеза катехоламинов и ингибируется конечными продуктами процесса. Тирозингидроксилаза является главным объектом регуляторных воздействий на биосинтез катехоламинов.

Превращение ДОФА в дофамин катализируется ферментом ДОФА-декарбоксилазой (кофактор - пиридоксальфосфат), который относительно неспецифичен и декарбоксилирует и другие ароматические L-аминокислоты. Однако имеются указания на возможность модификации синтеза катехоламинов за счет изменения активности и этого фермента. В некоторых нейронах отсутствуют ферменты дальнейшего превращения дофамина, и именно он является конечным продуктом. Другие ткани содержат дофамин-бета-гидроксилазу (кофакторы - медь, аскорбиновая кислота и кислород), которая превращает дофамин в норадреналин. В мозговом слое надпочечников (но не в окончаниях симпатических нервов) присутствует фенилэтаноламин - метилтрансфераза, образующая из норадреналина адреналин. Донором метальных групп в этом случае служит S-аденозилметионин.

Важно помнить, что синтез фенилэтаноламин-N-Meтилтрансферазы индуцируется глюкокортикоидами, попадающими в мозговой слой из коркового по портальной венозной системе. В этом, возможно, и кроется объяснение факта объединения двух различных желез внутренней секреции в одном органе. Значение глюкокортикоидов для синтеза адреналина подчеркивается тем, что клетки мозгового слоя надпочечников, продуцирующие норадреналин, располагаются вокруг артериальных сосудов, тогда как адреналинпродуцирующие клетки получают кровь в основном из венозных синусов, локализованных в корковом слое надпочечников.

Распад катехоламинов протекает главным образом под влиянием двух ферментных систем: катехол-О-метилтрансферазы (КОМТ) и моноаминоксидазы (МАО). Главные пути распада адреналина и норадреналина схематически представлены на рис. 54. Под действием КОМТ в присутствии донора метиловых групп S-адренозилметионина катехоламины превращаются в норметанефрин и метанефрин (3-О-метил-производные норадреналина и адреналина), которые под влиянием МАО переходят в альдегиды и далее (в присутствии альдегидоксидазы) в ванилил-миндальную кислоту (ВМК) - основной продукт распада норадреналина и адреналина. В том же случае, когда катехоламины вначале подвергаются действию МАО, а не КОМТ, они превращаются в 3,4-диоксиминдалевый альдегид, а затем под влиянием альдегидоксидазы и КОМТ - в 3,4-диоксиминдальную кислоту и ВМК. В присутствии алкогольдегидрогеназы из катехоламинов может образовываться 3-метокси-4-оксифенилгликоль, являющийся основным конечным продуктом деградации адреналина и норадреналина в ЦНС.

Распад дофамина протекает аналогично, за тем исключением, что его метаболиты лишены гидроксильной группы у бета-углеродного атома, и поэтому вместо ванилил-миндальной кислоты образуется гомованилиновая (ГВК) или 3-метокси-4-оксифенилуксусная кислота.

Постулируется также существование хиноидного пути окисления молекулы катехоламинов, на котором могут возникать промежуточные продукты, обладающие выраженной биологической активностью.

Образующиеся под действием цитозольных ферментов норадреналин и адреналин в окончаниях симпатических нервов и мозговом слое надпочечников поступают в секреторные гранулы, что предохраняет их от действия ферментов деградации. Захват катехоламинов гранулами требует энергетических затрат. В хромаффинных гранулах мозгового слоя надпочечников катехоламины прочно связаны с АТФ (в отношении 4:1) и специфическими белками - хромогранинами, что предотвращает диффузию гормонов из гранул в цитоплазму.

Непосредственным стимулом к секреции катехоламинов является, по-видимому, проникновение в клетку кальция, стимулирующего экзоцитоз (слияние мембраны гранул с клеточной поверхностью и их разрыв с полным выходом растворимого содержимого - катехоламинов, дофамин-бета-гидроксилазы, АТФ и хромогранинов - во внеклеточную жидкость).

Физиологические эффекты катехоламинов и механизм их действия

Эффекты катехоламинов начинаются с взаимодействия со специфическими рецепторами клеток-«мишеней». Если рецепторы тиреоидных и стероидных гормонов локализуются внутри клеток, то рецепторы катехоламинов (равно как и ацетилхолина и пептидных гормонов) присутствуют на наружной клеточной поверхности.

Уже давно было установлено, что в отношении одних реакций адреналин или норадреналин оказываются более эффективными, чем синтетический катехоламин изопротеренол, тогда как в отношении других эффект изопротеренола превосходит действия адреналина или норадреналина. На этом основании была разработана концепция о наличии в тканях двух типов адренорецепторов: альфа и бета, причем в отдельных из них может присутствовать только какой-либо один из этих двух типов. Изопротеренол является наиболее сильным агонистом бета-адренорецепторов, тогда как синтетическое соединение фенилефрин - наиболее сильным агонистом альфа-адренорецепторов. Природные катехоламины - адреналин и норадреналин - способны взаимодействовать с рецепторами обоих типов, однако адреналин проявляет большее сродство к бета-, а норадреналин - к альфа-рецепторам.

Катехоламины сильнее активируют сердечные бета-адренорецепторы, нежели бета-рецепторы гладких мышц, что позволило подразделить бета-тип на подтипы: бета1-рецепторы (сердце, жировые клетки) и бета2-рецепторы (бронхи, кровеносные сосуды и т. д.). Действие изопротеренола на бета1-рецепторы превосходит действие адреналина и норадреналина лишь в 10 раз, тогда как на бета2-рецепторы он действует в 100-1000 раз сильнее, чем природные катехоламины.

Применение специфических антагонистов (фентоламин и феноксибензамин в отношении альфа- и пропранолола в отношении бета-рецепторов) подтвердило адекватность классификации адренорецепторов. Дофамин способен взаимодействовать как с альфа-, так и с бета-рецепторами, но в различных тканях (мозг, гипофиз, сосуды) найдены и собственные дофаминергические рецепторы, специфическим блокатором которых является галоперидол. Количество бета-рецепторов колеблется от 1000 до 2000 на клетку. Биологические эффекты катехоламинов, опосредуемые бета-рецепторами, связаны, как правило, с активацией аденилатциклазы и повышением внутриклеточного содержания цАМФ. Рецептор и фермент хотя и соединены функционально, но представляют собой разные макромолекулы. В модуляции аденилатциклазной активности под влиянием гормон-рецепторного комплекса принимают участие гуанозинтрифосфат (ГТФ) и другие пуриновые нуклеотиды. Повышая активность фермента, они, по-видимому, снижают сродство бета-рецепторов к агонистам.

Давно известен феномен повышения чувствительности денервированных структур. Наоборот, длительное воздействие агонистов снижает чувствительность тканей-«мишеней». Изучение бета-рецепторов позволило объяснить эти явления. Показано, что длительное воздействие изопротеренола приводит к потере чувствительности аденилатциклазы за счет уменьшения числа бета-рецепторов.

Процесс десенситизации не требует активации синтеза белка и обусловлен, вероятно, постепенным образованием необратимых гормон-рецепторных комплексов. Напротив, введение 6-оксидофамина, разрушающего симпатические окончания, сопровождается увеличением числа реагирующих бета-рецепторов в тканях. Не исключено, что повышение симпатической нервной активности обусловливает и возрастную десенситизацию сосудов и жировой ткани по отношению к катехоламинам.

Число адренорецепторов в разных органах может контролироваться и другими гормонами. Так, эстрадиол увеличивает, а прогестерон уменьшает число альфа-адренорецепторов в матке, что сопровождается соответственным повышением и снижением ее сократительной реакции на катехоламины. Если внутриклеточным «вторым мессенджером», образующимся при действии агонистов бета-рецепторов, наверняка является цАМФ, то в отношении передатчика альфа-адренергических влияний дело обстоит сложнее. Предполагается существование различных механизмов: снижение уровня цАМФ, повышение содержания цАМФ, модуляция клеточной динамики кальция и др.

Для воспроизведения разнообразных эффектов в организме обычно требуются дозы адреналина, в 5-10 раз меньшие, чем норадреналина. Хотя последний является более эффективным в отношении а- и бета1-адренорецепторов, важно помнить, что оба эндогенных катехоламина способны взаимодействовать как с альфа-, так и с бета-рецепторами. Поэтому биологическая реакция данного органа на адренергическую активацию во многом зависит от типа присутствующих в нем рецепторов. Однако это не означает, что избирательная активация нервного или гуморального звена симпатико-адреналовой системы невозможна. В большинстве случаев наблюдается усиленная деятельность различных ее звеньев. Так, принято считать, что гипогликемия рефлекторно активирует именно мозговой слой надпочечников, тогда как снижение артериального давления (постуральная гипотензия) сопровождается в основном выбросом норадреналина из окончаний симпатических нервов.

Адренорецепторы и эффекты их активации в различных тканях

Система, орган

Тип адрено-рецепторов

Сердечно-сосудистая система:

Повышение частоты сокращений, проводимости и сократимости

Артериолы:

кожи и слизистых оболочек

Сокращение

скелетных мышц

Расширение Сокращение

органов брюшной полости

альфа (больше)

Сокращение

Расширение

Сокращение

Дыхательная система:

мышцы бронхов

Расширение

Пищеварительная система:

Снижение моторики

кишечник

Сокращение сфинктеров

Селезенка

Сокращение

Расслабление

Внешнесекреторная часть поджелудочной железы

Снижение секреции

Мочеполовая система:

Сокращение сфинктера

мочевой пузырь

Расслабление изгоняющей мышцы

Мужские половые органы

Эякуляция

Расширение зрачка

Повышение потоотделения

Слюнные железы

Выделение калия и воды

Секреция амилазы

Эндокринные железы:

островки поджелудочной железы

бета-клетки

альфа (больше)

Снижение секреции инсулина

Повышение секреции инсулина

альфа-клетки

Повышение секреции глюкагона

Повышение секреции соматостатина

Гипоталамус и гипофиз:

соматотрофы

Повышение секреции СТГ

Снижение секреции СТГ

лактотрофы

Снижение секреции пролактина

тиреотрофы

Снижение секреции ТТГ

кортикотрофы

Повышение секреции АКТГ

бета Снижение секреции АКТГ

Щитовидная железа:

фолликулярные клетки

Снижение секреции тироксина

Повышение секреции тироксина

парафолликулярные (К) клетки

Повышение секреции кальцитонина

Околощитовидные железы

Повышение секреции ПТГ

Повышение секреции ренина

Повышение секреции гастрина

Основной обмен

Повышение потребления кислорода

Повышение гликогенолиза и глюконеогенеза с выходш глюкозы; повышение кетогенеза с выходом кетоновых тел

Жировая ткань

Повышение липолиза с выходом свободных жирных кислот и глицерина

Скелетные мышцы

Повышение гликолиза с выходом пирувата и лактата; снижение протеолиза с уменьшением выхода аланина, глутамина

Важно учитывать, что результаты внутривенного введения катехоламинов не всегда адекватно отражают эффекты эндогенных соединений. Это относится в основном к норадреналину, так как в организме он выделяется главным образом не в кровь, а непосредственно в синаптические щели. Поэтому эндогенный норадреналин активирует, например, не только сосудистые альфа-рецепторы (повышение артериального давления), но и бета-рецепторы сердца (учащение сердцебиений), тогда как введение норадреналина извне приводит преимущественно к активации сосудистых альфа-рецепторов и рефлекторному (через вагус) замедлению сердцебиений.

Низкие дозы адреналина активируют в основном бета-рецепторы мышечных сосудов и сердца, в результате чего падает периферическое сосудистое сопротивление и увеличивается минутный объем сердца. В некоторых случаях первый эффект может преобладать, и после введения адреналина развивается гипотензия. В более высоких дозах адреналин активирует и альфа-рецепторы, что сопровождается повышением периферического сосудистого сопротивления и на фоне роста минутного объема сердца приводит к повышению артериального давления. Однако сохраняется и его влияние на сосудистые бета-рецепторы. В результате прирост систолического давления превышает аналогичный показатель диастолического (увеличение пульсового давления). При введении еще больших доз начинают преобладать альфа-миметические эффекты адреналина: систолическое и диастолическое давление возрастают параллельно, как под влиянием норадреналина.

Воздействие катехоламинов на обмен веществ складывается из их прямых и опосредованных эффектов. Первые реализуются главным образом через бета-рецепторы. Более сложные процессы связаны с печенью. Хотя усиление печеночного гликогенолиза традиционно считается результатом активации бета-рецепторов, но имеются данные и об участии в этом альфа-рецепторов. Опосредованные эффекты катехоламинов связаны с модуляцией секреции многих других гормонов, например инсулина. В действии адреналина на его секрецию явно преобладает альфа-адренергический компонент, поскольку показано, что любой стресс сопровождается торможением инсулиновой секреции.

Сочетание прямых и опосредованных эффектов катехоламинов обусловливает гипергликемию, сопряженную не только с повышением печеночной продукции глюкозы, но и с торможением ее утилизации периферическими тканями. Ускорение липолиза вызывает гиперлипацидемию с повышенной доставкой жирных кислот в печень и интенсификацией продукции кетоновых тел. Усиление гликолиза в мышцах приводит к повышению выхода в кровь лактата и пирувата, которые вместе с глицерином, высвобождающимся из жировой ткани, служат предшественниками печеночного глюконеогенеза.

Регуляция секреции катехоламинов. Сходство продуктов и способов реагирования симпатической нервной системы и мозгового слоя надпочечников явилось основанием для объединения этих структур в единую симпатико-адреналовую систему организма с выделением нервного и гормонального ее звена. Различные афферентные сигналы концентрируются в гипоталамусе и центрах спинного и продолговатого мозга, откуда исходят эфферентные посылки, переключающиеся на клеточные тела преганглионарных нейронов, расположенных в боковых рогах спинного мозга на уровне VIII шейного - II-III поясничных сегментов.

Преганглионарные аксоны этих клеток покидают спинной мозг и образуют синаптические соединения с нейронами, локализующимися в ганглиях симпатической цепочки, или с клетками мозгового слоя надпочечников. Эти преганглионарные волокна являются холинергическими. Первое принципиальное отличие симпатических постганглионарных нейронов и хромаффинных клеток мозгового слоя надпочечников заключается в том, что последние передают поступающий к ним холинергический сигнал не нервно-проводниковым (постганглионарные адренергические нервы), а гуморальным путем, выделяя адренергические соединения в кровь. Второе различие сводится к тому, что постганглионарные нервы продуцируют норадреналин, тогда как клетки мозгового слоя надпочечников - преимущественно адреналин. Эти два вещества оказывают различное действие на ткани.

Основные гормоноидные катехоламины (адреналин и норадреналин) в значительной степени продуцируются хромаффинной тканью животного организма (название этой специализированной ткани обусловлено окрашиванием ее солями хрома в буро-коричневый цвет). Из хромаффинных клеток состоят мозговой слой надпочечников, параганглии, расположенные возле симпатических узлов, и цепочки особых образований около брюшной аорты и в районе отхождения от нее нижней брыжеечной артерии.

Другим важным местом образования этих катехоламинов являются органные синапсы симпатической нервной системы и некоторых отделов мозга. Дофамин — катехоламиновый гормоноид гипоталамуса (лактостатин).

В 1939 г. Блашко предположил, что исходные субстраты биосинтеза катехоламинов — фенилаланин или тирозин. В соответствии с гипотезой они превращаются сначала в диоксифенилаланин (ДОФА), затем ДОФА — в дофамин, из дофамина синтезируется норадреналин, а из него — адреналин. Впоследствии гипотеза была полностью подтверждена экспериментально. Были выявлены также ферменты, принимающие участие в биосинтезе катехоламинов:


Как показано выше, фенилаланин, окисляясь в 4-м положении бензольного кольца, может легко превращаться в тирозин (оксифенилаланин). Образовавшийся из фенилаланина или предсуществующий в клетке тирозин подвергается в растворимой части цитоплазмы гидроксилированию у 3-го углеродного атома кольца с образованием ДОФА. Эта стадия биосинтеза является узким (лимитирующим) звеном процесса и контролируется специальным ферментом тирозингидроксилазой в присутствии НАДФН, О2 и тетрагидроптеридина в качестве кофактора. Тирозингидроксилаза активируется ионами Fe2+ и сульфатом аммония. Следующая стадия образования катехоламинов — декарбоксилирование ДОФА, в результате которого образуется диоксифенилаланинамин (дофамин).

Данный этап контролируется цитоплазматическим ферментом ДОФА-декарбоксилазой, действующим, по-видимому, в присутствии кофактора пиридоксаль-5"-фосфата. Синтезированный в растворимой части цитоплазмы дофамин переходит далее в секреторные гранулы хромаффинных или симпатэргических клеток, где присоединяет энзиматически к боковой цепи в в-положении гидроксильную группу, превращаясь в норадреналин.

Превращение дофамина в норадреналин происходит в присутствии кислорода воздуха и аскорбиновой кислоты под действием фермента дофамин-в-гидроксилазы (фенилэтиламин-в-оксидаза), активируемого Си2+. Этот фермент обладает широкими пределами субстратной специфичности и способен гидроксилировать ряд биогенных аминов. Если биосинтез норадреналина осуществляется в специальных норадреналиновых гранулах, то процесс останавливается на данной стадии, и образовавшийся гормон может секретироваться.

Однако норадреналин может также транспортироваться в особые адреналиновые гранулы, где превращается в адреналин. Процесс превращения норадреналина в адреналин сводится к замещению атома водорода аминогруппы метильным радикалом и осуществляется с помощью фермента фенилэтаноламин-N-метилтрансферазы. Этот фермент содержится преимущественно в особых адреналиновых гранулах катехоламинпродуцирующих клеток. Для осуществления процесса метилирования норадреналина необходимы также аминокислота метионин в качестве донора метильного радикала и АТФ в качестве активатора его транспорта.

При этом вначале АТФ в присутствии ионов Mg2+ взаимодействует с метионином, образуя активированную форму аминокислоты S-аденозилметионин, после чего метальный радикал переносится N-метилтрансферазой с молекулы S-аденозилметионина на молекулу норадреналина. Таким образом, интенсивность образования адреналина зависит, с одной стороны, от уровня биосинтеза норадреналина, с другой — от запасов метильных групп метионина. Система, обеспечивающая метилирование норадреналина, а следовательно, и интенсивность биосинтеза адреналина, представлена по-разному в неодинаковых катехоламинпродуцирующих клетках.

Так, симпатэргические нервные клетки имеют низкий уровень активности метилирующей системы и образуют преимущественно норадреналин главный симпатический медиатор (Эйлер, 1956). В качестве нервного медиатора некоторых клеток головного мозга может выступать также дофамин. Вместе с тем надпочечники у многих видов имеют большое количество клеток, которые содержат адреналиновые гранулы, богатые метилирующей системой. Вследствие этого надпочечники образуют большие количества адреналина, служащего у ряда животных главным гормоноидом желез.

Так, в надпочечниках человека адреналин составляет в среднем 83% всех катехоламинов, в надпочечниках кроликов и морских свинок — более 95%, коровы — 80%. У кошек отмечено равное количество адреналина и норадреналина в железе, а у китов и домашних птиц значительно преобладает норадреналин, достигая 80% всех катехоламинов. Величины соотношения адреналина и норадреналина в хромаффинных клетках могут иметь существенное физиологическое значение, так как их биологические эффекты в значительной степени различны.

Биосинтез катехоламинов в мозговом слое надпочечников непосредственно регулируется нервными импульсами, поступающими по чревному нерву (Чебоксаров, 1910). Можно думать, что нервная регуляция биосинтетических процессов осуществляется главным образом на тирозингидроксилазной стадии (лимитирующее звено биосинтеза), а также на этапах декарбоксилирования дофамина и метилирования норадреналина.

В регуляции биосинтетических процесссов принимают определенное участие кортикостероиды, инсулин. Сами катехоламины угнетают активность тирозингидроксилазы и тем самым участвуют в саморегуляции биосинтетических процессов.

Мозговой слой надпочечников продуцирует соединение далекой от стероидов структуры. Они содержат 3,4-диоксифенильное (катехоловое) ядро и называются катехоламинами. К ним относятся адреналин, норадреналин и дофамин (3-окситирамин).

Последовательность синтеза катехоламинов достаточно проста: тирозин -> диоксифенилаланин (ДОФА) —>дофамин —> норадреналин —> адреналин. Тирозин поступает в организм с пищей, но может и образовываться из фенилаланина в печени под действием фенилаланингидроксилазы. Конечные продукты превращения тирозина в тканях различны. В мозговом слое надпочечников процесс протекает до стадии образования адреналина, в окончаниях симпатических нервов — норадреналина, в некоторых нейронах центральной нервной системы синтез катехоламинов завершается образованием дофамина.

Превращение тирозина в ДОФА катализируется тирозингидроксилазой, кофакторами которой служат тетрагидробиоптерин и кислород. Считается, что именно этот фермент лимитирует скорость всего процесса биосинтеза катехоламинов и ингибируется конечными продуктами процесса. Тирозингидроксилаза является главным объектом регуляторных воздействий на биосинтез катехоламинов. Превращение ДОФА в дофамин катализируется ферментом ДОФА-декарбоксилазой (кофактор — пиридоксальфосфат), который относительно неспецифичен и декарбоксилирует и другие ароматические L-аминокислоты.

Однако имеются указания на возможность модификации синтеза катехоламинов за счет изменения активности и этого фермента. В некоторых нейронах отсутствуют ферменты дальнейшего превращения дофамина, и именно он является конечным продуктом. Другие ткани содержат дофамин-в-гидроксилазу (кофакторы — медь, аскорбиновая кислота и кислород), которая превращает дофамин в норадреналин. В мозговом слое надпочечников (но не в окончаниях симпатических нервов) присутствует фенилэтаноламин — метилтрансфераза, образующая из норадреналина адреналин.

Донором метальных групп в этом случае служит S-аденозилметионин. Важно помнить, что синтез фенилэтаноламин-N-мeтилтрансферазы индуцируется глюкокортикоидами, попадающими в мозговой слой из коркового по портальной венозной системе. В этом, возможно, и кроется объяснение факта объединения двух различных желез внутренней секреции в одном органе. Значение глюкокортикоидов для синтеза адреналина подчеркивается тем, что клетки мозгового слоя надпочечников, продуцирующие норадреналин, располагаются вокруг артериальных сосудов, тогда как адреналинпродуцирующие клетки получают кровь в основном из венозных синусов, локализованных в корковом слое надпочечников.

Распад катехоламинов протекает главным образом под влиянием двух ферментных систем: катехол-О-метилтрансферазы (КОМТ) и моноаминоксидазы (МАО). Главные пути распада адреналина и норадреналина схематически представлены на рис. 54. Под действием КОМТ в присутствии донора метиловых групп S-адренозилметионина катехоламины превращаются в норметанефрин и метанефрин (З-О-метил-производные норадреналина и адреналина), которые под влиянием МАО переходят в альдегиды и далее (в присутствии альдегидоксидазы) в ванилилминдальную кислоту (ВМК) — основной продукт распада норадреналина и адреналина. В том же случае, когда катехоламины вначале подвергаются действию МАО, а не КОМТ, они превращаются в 3,4-диоксиминдалевый альдегид, а затем под влиянием альдегидоксидазы и КОМТ — в 3,4-диоксиминдальную кислоту и ВМК. В присутствии алкогольдегидрогеназы из катехоламинов может образовываться З-метокси-4-оксифенилгликоль, являющийся основным конечным продуктом деградации адреналина и норадреналина в ЦНС.


Рис. 54. Метаболизм катехоламинов.
КОМТ — катехол-О-метилтрансфераза; МАО — моноаминоксидаза; АО — альдегидоксидаза; АД — алкогольдегидрогеназа.


Распад дофамина протекает аналогично, за тем исключением, что его метаболиты лишены гидроксильной группы у в-углеродного атома, и поэтому вместо ВМК образуется гомованилиновая (ГВК) или З-метокси-4-оксифенилуксусная кислота.

Постулируется также существование хиноидного пути окисления молекулы катехоламинов, на котором могут возникать промежуточные продукты, обладающие выраженной биологической активностью.

Образующиеся под действием цитозольных ферментов норадреналин и адреналин в окончаниях симпатических нервов и мозговом слое надпочечников поступают в секреторные гранулы, что предохраняет их от действия ферментов деградации.

Захват катехоламинов гранулами требует энергетических затрат. В хромаффинных гранулах мозгового слоя надпочечников катехоламины прочно связаны с АТФ (в отношении 4:1) и специфическими белками — хромогранинами, что предотвращает диффузию гормонов из гранул в цитоплазму. Непосредственным стимулом к секреции катехоламинов является, по-видимому, проникновение в клетку кальция, стимулирующего экзоцитоз (слияние мембраны гранул с клеточной поверхностью и их разрыв с полным выходом растворимого содержимого — катехоламинов, дофамин-р-гидроксилазы, АТФ и хромогранинов — во внеклеточную жидкость).

3. Физиологическая роль катехоламинов. Влияние на секрецию

Продукция этих гормонов резко усиливается при возбуждении симпатической части автономной нервной системы. В свою очередь выделение этих гормонов в кровь приводит к развитию эффектов, аналогичных действию стимуляции симпатических нервов. Разница состоит лишь в том, что гормональный эффект является более длительным. К наиболее важным эффектам катехоламинов относятся стимуляция деятельности сердца, вазоконстрикция, торможение перестальтики и секреции кишечника, расширение зрачка, уменьшение потоотделения, усиление процессов катаболизма и образования энергии.

Адреналин имеет большое сродство к b-адренорецепторам, локализующимся в миокарде, вследствие чего вызывает положительные инотропный и хронотропный эффекты в сердце. С другой стороны, норадреналин имеет более высокое сродство к сосудистым a-адренорецепторам. Поэтому, вызываемые катехоламинами вазоконстрикция и увеличение периферического сосудистого сопротивления, в большей степени обусловлены действием норадреналина.

При стрессе содержание катехоламинов повышается в 4 – 8 раз. Развивается тахикардия, обильное потоотделение, тремор, головная боль, повышенное чувство тревоги. При опухоли мозгового слоя надпочечников ко всем этим симптомам присоединяется артериальная гипертензия. Поскольку адреналин подавляет секрецию инсулина, активирует гликогенолиз и липолиз, у таких больных наблюдается гипергликемия, глюкозурия, а так же быстрое снижение массы тела.

Снижение уровня адреналина наблюдается при недоразвитии мозгового вещества надпочечников, олигофрении, депрессии, миопатиях и мигрени.

Основными конечными продуктами обмена катехоламинов являются ванилил-миндальная кислота и адренохром. Суточное выделение ванилил-миндальной кислоты в норме составляет от 2,5 до 38 мкмоль/сут., или 0,5 – 7 мг/сут. Экскреция с мочой адреналина, норадреналина, дофамина и основных продуктов разрушения катехоламинов при различных патологиях может изменяться в сторону уменьшения или увеличения. Так выделение их с мочой увеличивается при феохромацитоме (опухоли мозгового вещества надпочечников). Это происходит по причине того, что опухоль усиленно продуцирует адреналин, норадреналин, ванилил-миндальную кислоту. Симпатоганглиобластома так же активно вырабатывает норадреналин, дофамин, гомованилиновую кислоту. Кроме того, усиленная выработка и выведение этих веществ происходит вследствие реакции симпатоадреналовой системы на боль и коллапс в острый период инфаркта миокарда, при приступах стенокардии, обострении язвенной болезни желудка и двенадцатиперстной кишки. В результате нарушения катаболизма катехоламинов усиливается их экскреция с мочой при гепатитах и циррозе печени. Из-за нарушения в звене управления активностью симпатоадреналовой системы повышается уровень катехоламинов при гипоталамическом или дианцефальном синдроме, гипертонической болезни в период кризов. Курение, физические нагрузки и эмоциональный стресс так же стимулируют высвобождение катехоламинов в кровь из мозгового вещества надпочечников.

При некоторых заболеваниях уровень экскреции катехоламинов с мочой снижается в результате того, что деятельность хромаффинных клеток мозгового вещества надпочечников подавляется под действием интоксикации. Это происходит при аддисоновой болезни, коллагенозах, остром лейкозе, а так же остро протекающих инфекционных заболеваниях (различной этиологии токсических диспепсиях и др.)


Таким образом, функции катехоламинов разнообразны. Они вызывают мобилизацию защитных сил организма в условиях стрессового воздействия посредством активации системы гипоталамус – гипофиз – кора надпочечников; улучшают кровоснабжение сердечной и скелетной мышц, повышают их работоспособность. Кроме того, катехоламины содействуют утилизации запасов углеводов за счёт стимуляции процессов распада гликогена, активируют липолиз, усиливают окисление метаболитов, участвуют в механизмах осуществления нервной проводимости, стимулируют функциональную деятельность органов и систем. Катехоламины имеют неоценимое значение в регуляции деятельности организма, процессах метаболизма и обеспечении гемостаза. В настоящее время в кардиологической практике широко используются и их синтетические аналоги: допексамина гидрохлорид, структурно близкий к допамину и изопротеренол, избирательно активирующий b-адренорецепторы миокарда и сосудов.


Список использованной литературы

1. Анатомия человека. В двух томах. Т.2/Авт.: М.Р.Сапин, В.Я. Бочаров, Д.Б. Никитюк и др. /Под ред.М.Р. Сапина. – Изд 5-е, перераб. И доп. – М.: Медицина. – 2001. – 64 с.: ил.

2. Биологическая химия. Учеб. для хим., биол. и мед. спец. вузов / Д.Г. Кнорре, С.Д. Мызина, 3-е изд., испр. М: Высш. шк. 2002. – 479 с.: ил. .

3. Камышников В.С. О чём говорят медицинские анализы: Справ. пособие. – Мн.: Беларусская навука, 1998. – 189 с.

4. Физиология человека: Учебник/ Под ред. В.М. Покровского, Г.Ф. Коротько. – 2-е изд. перераб и доп. – М.: Медицина, 2003. – 656 с: ил. – (Учеб. лит. для студ. мед. вузов).



Гензеляйт в 1932 г. вывели уравнения реакций синтеза мочевины, которые представлены в виде цикла, получившего в литературе название орнитинового цикла мочевинообразования Кребса. Следует указать, что в биохимии это была первая циклическая система метаболизма, описание которой почти на 5 лет опеределило открытие Г. Кребсом другого метаболического процесса – цикла трикарбоновых кислот. Дальнейшие...

Названные общим адаптационным синдромом (Г.Селье). В развитии адаптационного синдрома основную роль играет гипофизарно-надпочечниковая система. Поджелудочная железа Поджелудочная железа относится к железам со смешанной функцией. Эндокринная функция осуществляется за счет продукции гормонов панкреатическими островками (островками Лангерганса). Островки расположены преимущественно в хвостовой...



Рассказать друзьям