Биологическое значение и строение углеводов. Углеводы

💖 Нравится? Поделись с друзьями ссылкой

Федеральное агентство по образованию

Контрольная работа

по дисциплине "Физиологические и санитарно-гигиенические основы питания"

тема: "Биологическая роль углеводов"

Введение

2. Виды углеводов

Заключение

Введение

Гигиена питания - наука о закономерностях и принципах организации рационального (оптимального) питания здорового и больного человека. В ее рамках разрабатывают научные основы и практические мероприятия по оптимизации питания различных групп населения и санитарной охране пищевых ресурсов, сырья и продуктов на всех этапах их производства и оборота.

Фундаментальные аспекты гигиены питания связаны с изучением физиологических процессов, биохимических механизмов переваривания, усвоения пищи и клеточной метаболизации нутриентов и других компонентов пищевых продуктов, а также нутриогеномики, т.е. основ алиментарной регуляции экспрессии генов.

Гигиена питания, с одной стороны, определяет нормы физиологических потребностей в пищевых веществах и энергии, разрабатывает требования к качеству пищевой продукции и рекомендации по употреблению различных групп пищевых продуктов в зависимости от возрастных, социальных, географических и экологических факторов, режиму и условиям питания, а с другой стороны, регламентирует мероприятия по санитарно-эпидемиологической (гигиенической) экспертизе качества и безопасности пищевых продуктов и контактирующих с ними материалов и по контролю соответствия пищевых объектов на этапе их строительства и во время эксплуатации.

Гигиена питания как наука развивается с использованием общей методологии научных исследований в области физиологии, биохимии, токсикологии, микробиологии, эпидемиологии, внутренних болезней, а также собственных уникальных подходов и методик, включающих в себя оценку состояния питания, параметров пищевого статуса и алиментарной адаптации, показателей пищевой и биологической ценности продуктов.

Современный период развития гигиены питания связан с реализацией следующих научно-практических направлений:

разработка основ государственной политики в области здорового питания населения России;

фундаментальные исследования физиолого-биохимических основ питания;

постоянный мониторинг состояния питания населения России;

организация профилактики алиментарно-зависимых заболеваний;

исследования по проблеме безопасности пищевых продуктов;

разработка научно-методических подходов к оценке нетрадиционных и новых пищевых источников;

разработка и совершенствование научных основ и практики детского, диетического и профилактического питания;

научное обоснование и практическое осуществление системы алиментарной адаптации в современных экологических условиях;

широкое внедрение образовательных и просветительских программ и проектов как в системе профессионального образования и обучения, так и в обществе в целом.

В настоящее время гигиена питания в третий раз за последние 100 лет приобретает мощный общественный характер, обеспечивая выработку государственных подходов в области питания населения.

Питание является одним из важнейших факторов, определяющих здоровье населения. Правильное питание обеспечивает нормальный рост и развитие детей, способствует профилактике заболеваний, продлению жизни людей, повышению работоспособности и создает условия для адекватной адаптации их к окружающей среде.

Вместе с тем в последнее десятилетие состояние здоровья населения характеризуется негативными тенденциями. Продолжительность жизни населения в России значительно меньше, чем в большинстве развитых стран. Увеличение частоты сердечно-сосудистых, онкологических и других хронических неинфекционных заболеваний в определенной степени связано с питанием. У большинства населения России выявлены нарушения полноценного питания, обусловленные как недостаточным потреблением пищевых веществ, в первую очередь витаминов, макро - и микроэлементов (кальция, йода, железа, фтора, цинка и др.), полноценных белков, так и их нерациональным соотношением.

Одним из важных элементов являются углеводы. Они служат основным источником энергии. Свыше 56% энергии организм получает за счет углеводов, остальную часть - за счет белков и жиров.

Мир углеводов представляется нам очень неоднозначным. Иногда углеводы обвиняют в том, что именно они являются причиной лишнего веса. А иногда, наоборот, говорят, что углеводы - это идеальный источник энергии для организма.

1. Углеводы и их значение в питании

Впервые термин "углеводы" был предложен профессором Дерптского (ныне Тартуского) университета К.Г. Шмидтом в 1844 г. В то время предполагали, что все углеводы имеют общую формулу Cm (H2O) n, т.е. углевод + вода. Отсюда название "углеводы". В дальнейшем оказалось, что ряд соединений, по своим свойствам относящихся к классу углеводов, содержат водород и кислород в несколько иной пропорции, чем указано в общей формуле.

В 1927 г. Международная комиссия по реформе химической номенклатуры предложила термин "углеводы" заменить термином "глициды", однако старое название "углеводы" укоренилось и является общепризнанным.

Углеводы образуются в растениях при фотосинтезе и поступают в организм главным образом с растительными продуктами. Однако все большее значение в питании приобретают добавленные углеводы, которые чаще всего представлены сахарозой (или смесями других сахаров), получаемой промышленным способом и вводимой затем в пищевые рецептуры.

Величина потребности в углеводах для человека определяется их ведущей ролью в обеспечении организма энергией и нежелательностью синтеза глюкозы из жиров (а тем более из белков) и находится в прямой зависимости от энергозатрат. Средняя потребность в углеводах для тех, кто не занят тяжелым физическим трудом, 400 - 500 г. в сутки.

Способность углеводов быть высокоэффективным источником энергии лежит в основе их сберегающего белок действия. При поступлении с пищей достаточного количества углеводов аминокислоты лишь в незначительной степени используются в организме как энергетический материал. Хотя углеводы не принадлежат к числу незаменимых факторов питания и могут образовываться в организме из аминокислот и глицерина, минимальное количество углеводов суточного рациона не должно быть ниже 50 - 60 г.

Дальнейшее снижение количества углеводов ведет к резким нарушениям метаболических процессов. Избыточное потребление углеводов ведет к ожирению. При поступлении с пищей значительных количеств сахаров они не могут полностью откладываться в виде гликогена, и их избыток превращается в триглицериды, способствуя усиленному развитию жировой ткани. Повышенное содержание в крови инсулина способствует ускорению этого процесса, поскольку инсулин оказывает мощное стимулирующее действие на жироотложение.

При построении пищевых рационов чрезвычайно важно не только удовлетворить потребности человека в необходимом количестве углеводов, но и подобрать оптимальные соотношения качественно различных типов углеводов. Наиболее важно учитывать соотношение в рационе легкоусвояемых углеводов (сахаров) и медленно всасывающихся (крахмал, гликоген).

В отличие от сахаров крахмал и гликоген медленно расщепляются в кишечнике. Содержание сахара в крови при этом нарастает постепенно. В связи с этим целесообразно удовлетворять потребности в углеводах в основном за счет медленно всасывающихся углеводов. На их долю должно приходиться 80 - 90% от общего количества потребляемых углеводов. Ограничение легкоусвояемых углеводов приобретает особое значение для тех, кто страдает атеросклерозом, сердечно-сосудистыми заболеваниями, сахарным диабетом, ожирением.

Углеводы являются основными энергонесущими элементами в питании человека, обеспечивая 50-70% общей энергетической ценности рациона.

Наряду с основной энергетической функцией углеводы участвуют в пластическом обмене. Углеводы оказывают антикетогенное действие, стимулируя окисление ацетилкоэнзима А, образующегося при окислении жирных кислот. Основным источником углеводов в питании человека является растительная пища, и только лактоза и гликоген содержатся в продуктах животного происхождения.

Основная функция углеводов - обеспечение энергией всех процессов в организме. Клетки способны получать из углеводов энергию, как при их окислении, т.е. "сгорании", так и в анаэробных условиях (без доступа кислорода). В результате метаболизации 1 г углеводов организм получает энергию, эквивалентную 4 ккал. Обмен углеводов тесно связан с обменом жиров и белков, что обеспечивает их взаимные превращения. При умеренном недостатке углеводов в питании депонированные жиры, а при глубоком дефиците (менее 50 г/сут) и аминокислоты (как свободные, так и из состава мышечных белков) вовлекаются в процесс глюконеогенеза, приводящий к получению необходимой организму энергии. Боль в мышцах после тяжелой работы - результат действия на клетки молочной кислоты, которая образуется при анаэробном распаде углеводов, когда для обеспечения работы мышечных клеток не хватает кислорода, поступающего с кровью.

Часто резкое ограничение углеводов в диете ведет к значительным нарушениям обмена веществ. Особенно страдает при этом белковый обмен. Белки при дефиците углеводов используются не по назначению: они становятся источником энергии и участниками некоторых важных химических реакций. Это приводит к повышенному образованию азотистых веществ и, как следствие, к повышенной нагрузке на почки, нарушениям солевого обмена и другим, вредным для здоровья, последствиям.

При дефиците углеводов в пище организм использует для синтеза энергии не только белки, но и жиры. При усиленном распаде жиров могут возникнуть нарушения обменных процессов, связанные с ускоренным образованием кетонов (к этому классу веществ относится известный всем ацетон) и накоплением их в организме. Избыточное образование кетонов при усиленном окислении жиров и частично белков может привести к "закислению" внутренней среды организма и отравлению тканей мозга вплоть до развития ацидотической комы с потерей сознания. При достаточном поступлении углеводов с пищей белки используются, главным образом, для пластического обмена, а не для производства энергии. Таким образом, углеводы необходимы для рационального использования белков. Они также способны стимулировать окисление промежуточных продуктов обмена жирных кислот.

Этим, однако, не исчерпывается роль углеводов. Они являются составной частью молекул некоторых аминокислот, участвуют в построении ферментов, образовании нуклеиновых кислот, являются предшественниками образования жиров, иммуноглобулинов, играющих важную роль в системе иммунитета, и гликопротеидов - комплексов углеводов и белков, которые являются важнейшими компонентами клеточных оболочек. Гиалуроновые кислоты и другие мукополисахариды образуют защитную прослойку между всеми клетками, из которых состоит организм.

Интерес к углеводам сдерживался чрезвычайной сложностью их структуры. В отличие от мономеров нуклеиновых кислот (нуклеотидов) и белков (аминокислот), которые способны связываться между собой только одним определенным путем, моносахаридные единицы в олигосахаридах и полисахаридах могут соединяться между собой несколькими путями по множеству разных положений.

Со второй половины XX в. происходит стремительное развитие химии и биохимии углеводов, обусловленное их важным биологическим значением.

Углеводы наряду с белками и липидами являются важнейшими химическими соединениями, входящими в состав живых организмов. У человека и животных углеводы выполняют важные функции: энергетическую (главный вид клеточного топлива), структурную (обязательный компонент большинства внутриклеточных структур) и защитную (участие углеводных компонентов иммуноглобулинов в поддержании иммунитета).

Углеводы (рибоза, дезоксирибоза) используются для синтеза нуклеиновых кислот, они являются составными компонентами нуклеотидных ко-ферментов, играющих исключительно важную роль в метаболизме живых существ. В последнее время все большее внимание к себе привлекают смешанные биополимеры, содержащие углеводы: гликопептиды и глико-протеины, гликолипиды и липополисахариды, гликолипопротеины и т.д. Эти вещества выполняют в организме сложные и важные функции.

Итак, выделю б иологическое значение углеводов:

  • Углеводы выполняют пластическую функцию, то есть участвуют в построении костей, клеток, ферментов. Они составляют 2-3 % от веса.
  • Углеводы являются основным энергетическим материалом. При окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды.
  • В крови содержится 100-110 мг глюкозы. От концентрации глюкозы зависит осмотическое давление крови.
  • Пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ.
  • Углеводы выполняют защитную роль в растениях.

2. Виды углеводов

Различают две основные группы углеводов: простые и сложные. К простым углеводам относятся глюкоза, фруктоза, галактоза, сахароза, лактоза и мальтоза. К сложным - крахмал, гликоген, клетчатка и пектиновые вещества.

Углеводы подразделяются на моносахариды (простые), олигосахариды и полисахариды (сложные).

1. Моносахариды

  • глюкоза
  • фруктоза
  • галактоза
  • манноза

2. Олигосахариды

  • Дисахариды
  • сахароза (обычный сахар, тростниковый или свекловичный)
  • мальтоза
  • изомальтоза
  • лактоза
  • лактулоза

3.Полисахариды

  • декстран
  • гликоген
  • крахмал
  • целлюлоза
  • галактоманнаны

Моносахариды (простые углеводы) являются наиболее простыми представителями углеводов и при гидролизе не расщепляются до более простых соединений. Простые углеводы легко растворяются в воде и быстро усваиваются. Они обладают выраженным сладким вкусом и относятся к сахарам.

В зависимости от числа углеродных атомов в молекулах моносахариды делятся на триозы, тетрозы, пентозы и гексозы. Для человека наиболее важны гексозы (глюкоза, фруктоза, галактоза и др.) и пентозы (рибоза, дезоксирибоза и др.).

При соединении двух молекул моносахаридов образуются дисахариды.

Наиболее важной из всех моносахаридов является глюкоза, так как она является структурной единицей (кирпичиком) для построения большинства пищевых ди - и полисахаридов. Транспорт глюкозы в клетки регулируется во многих тканях гормоном поджелудочной железы - инсулином.

У человека излишки глюкозы в первую очередь превращаются именно в гликоген - единственный резервный углевод животных тканей. В организме человека общее содержание гликогена составляет около 500 г - это суточный запас углеводов, используемый при их глубоком дефиците в питании. Длительный дефицит гликогена в печени ведет к дисфункции гепатоцитов и ее жировой инфильтрации.

Олигосахариды - более сложные соединения, построенные из нескольких (от 2 до 10) остатков моносахаридов. Они делятся на дисахариды, трисахариды и т.д. Наиболее важны для человека дисахариды - сахароза, мальтоза и лактоза. Олигосахариды, к которым относятся рафиноза, стахиоза, вербаскоза, в основном содержатся в бобовых и продуктах их технологической переработки, например в соевой муке, а также в незначительных количествах во многих овощах. Фрукто-олигосахариды встречаются в зерновых (пшенице, ржи), овощах (луке, чесноке, артишоках, спарже, ревене, цикории), а также в бананах и меде.

К группе олигосахаридов также относятся мальто-декстрины, являющиеся основными компонентами промышленно производимых из полисахаридного сырья сиропов, паток. Одним из представителей олигосахаридов является лактулоза, образующаяся из лактозы в процессе тепловой обработки молока, например при выработке топленого и стерилизованного молока.

Олигосахариды практически не расщепляются в тонком кишечнике человека из-за отсутствия соответствующих ферментов. По этой причине они обладают свойствами пищевых волокон. Некоторые олигосахариды играют существенную роль в жизнедеятельности нормальной микрофлоры толстого кишечника, что позволяет отнести их к пребиотикам - веществам, частично ферментирующимся некоторыми кишечными микроорганизмами и обеспечивающим поддержание нормального микробиоценоза кишечника.

Полисахариды - высокомолекулярные соединения-полимеры, образованные из большого числа мономеров, в качестве которых выступают остатки моносахаридов. Полисахариды делятся на перевариваемые и неперевариваемые в желудочно-кишечном тракте человека. В первую подгруппу входят крахмал и гликоген, во вторую - разнообразные соединения, из которых наиболее важны для человека целлюлоза (клетчатка), гемицсллюлоза и пектиновые вещества.

Олиго - и полисахариды объединяют термином "сложные углеводы". Моно - и дисахариды обладают сладким вкусом, в связи с чем их называют также "сахарами". Полисахариды сладким вкусом не обладают. Сладость сахароз различна. Если сладость раствора сахарозы принять за 100 %, то сладость эквимолярных растворов других Сахаров составит: фруктозы - 173 %, глюкозы - 81 %, мальтозы и галактозы - 32 % и лактозы - 16 %.

Основным усваиваемым полисахаридом является крахмал - пищевая основа зерновых, бобовых и картофеля. На его долю приходится до 80% потребляемых с пищей углеводов. Он представляет из себя сложный полимер, состоящий из двух фракций: амилозы - линейного полимера и амило-пектина - разветвленного полимера. Именно соотношение этих двух фракций в различных сырьевых источниках крахмала и определяет его различные физико-химические и технологические характеристики, в частности растворимость в воде при разной температуре. Источником крахмала служат растительные продукты, в основном злаковые: крупы, мука, хлеб, а также картофель.

Для облегчения усвоения крахмала организмом продукт, содержащий его, должен быть подвергнут тепловой обработке. При этом образуется крахмальный клейстер в явной форме, например кисель, или скрытом виде в составе пищевой композиции: каше, хлебе, макаронах, блюд из бобовых. Крахмальные полисахариды, поступившие с пищей в организм, подвергаются последовательной, начиная с ротовой полости, ферментации до мальтодекстринов, мальтозы и глюкозы с последующим практически полным усвоением.

Вторым перевариваемым полисахаридом является гликоген. Его пищевое значение невелико - с рационом поступает не более 10-15 г гликогена в составе печени, мяса и рыбы. При созревании мяса гликоген превращается в молочную кислоту.

Некоторые сложные углеводы (клетчатка, целлюлоза и др.) в организме человека не перевариваются вовсе. Тем не менее, это необходимый компонент питания: они стимулируют перистальтику кишечника, формируют каловые массы, способствуя тем самым выведению шлаков и очистке организма. Кроме того, клетчатка хоть и не переваривается человеком, но служит источником питания для полезной кишечной микрофлоры.

Заключение

Значение углеводов в питании человека весьма велико. Они служат важнейшим источником энергии, обеспечивая до 50-70 % общей калорийности рациона.

Способность углеводов быть высокоэффективным источником энергии лежит в основе их "сберегающего белок" действия. Хотя углеводы не принадлежат к числу незаменимых факторов питания и могут образовываться в организме из аминокислот и глицерина, минимальное количество углеводов суточного рациона не должно быть ниже 50-60 г.

С нарушением обмена углеводов тесно связан ряд заболеваний: сахарный диабет, галактоземия, нарушение в системе депо гликогена, нетолерантность к молоку и т.д. Следует отметить, что в организме человека и животного углеводы присутствуют в меньшем количестве (не более 2% от сухой массы тела), чем белки и липиды; в растительных организмах за счет целлюлозы на долю углеводов приходится до 80% от сухой массы, поэтому в целом в биосфере углеводов больше, чем всех других органических соединений вместе взятых.

Список используемой литературы

1. Справочник по диетологии/под ред. А.А. Покровского, М.А. Самсонова. - М.: Медицина, 1981

2. Популярно о питании. Под ред. А.И. Столмаковой, И.О. Мартынюка, Киев, "Здоровье", 1990

3. Королев А.А. Гигиена питания - 2-е изд. Перераб. и доп. - М.: "Академия", 2007

4. Ауреден Л. Как стать красивой. - М.: Топикал, 1995

5. http://hudeemtut.ru

6. Ленинджер А. Основы биохимии // М.: Мир, 1985.

Реферат: Биологическая роль углеводов

Федеральное агентство по образованию

Контрольная работа

по дисциплине "Физиологические и санитарно-гигиенические основы питания"

тема: "Биологическая роль углеводов"


Введение

1. Углеводы и их значение в питании

2. Виды углеводов

Заключение

Список используемой литературы


Введение

Гигиена питания - наука о закономерностях и принципах организации рационального (оптимального) питания здорового и больного человека. В ее рамках разрабатывают научные основы и практические мероприятия по оптимизации питания различных групп населения и санитарной охране пищевых ресурсов, сырья и продуктов на всех этапах их производства и оборота.

Фундаментальные аспекты гигиены питания связаны с изучением физиологических процессов, биохимических механизмов переваривания, усвоения пищи и клеточной метаболизации нутриентов и других компонентов пищевых продуктов, а также нутриогеномики, т.е. основ алиментарной регуляции экспрессии генов.

Гигиена питания, с одной стороны, определяет нормы физиологических потребностей в пищевых веществах и энергии, разрабатывает требования к качеству пищевой продукции и рекомендации по употреблению различных групп пищевых продуктов в зависимости от возрастных, социальных, географических и экологических факторов, режиму и условиям питания, а с другой стороны, регламентирует мероприятия по санитарно-эпидемиологической (гигиенической) экспертизе качества и безопасности пищевых продуктов и контактирующих с ними материалов и по контролю соответствия пищевых объектов на этапе их строительства и во время эксплуатации.

Гигиена питания как наука развивается с использованием общей методологии научных исследований в области физиологии, биохимии, токсикологии, микробиологии, эпидемиологии, внутренних болезней, а также собственных уникальных подходов и методик, включающих в себя оценку состояния питания, параметров пищевого статуса и алиментарной адаптации, показателей пищевой и биологической ценности продуктов.

Современный период развития гигиены питания связан с реализацией следующих научно-практических направлений:

разработка основ государственной политики в области здорового питания населения России;

фундаментальные исследования физиолого-биохимических основ питания;

постоянный мониторинг состояния питания населения России;

организация профилактики алиментарно-зависимых заболеваний;

исследования по проблеме безопасности пищевых продуктов;

разработка научно-методических подходов к оценке нетрадиционных и новых пищевых источников;

разработка и совершенствование научных основ и практики детского, диетического и профилактического питания;

научное обоснование и практическое осуществление системы алиментарной адаптации в современных экологических условиях;

широкое внедрение образовательных и просветительских программ и проектов как в системе профессионального образования и обучения, так и в обществе в целом.

В настоящее время гигиена питания в третий раз за последние 100 лет приобретает мощный общественный характер, обеспечивая выработку государственных подходов в области питания населения.

Питание является одним из важнейших факторов, определяющих здоровье населения. Правильное питание обеспечивает нормальный рост и развитие детей, способствует профилактике заболеваний, продлению жизни людей, повышению работоспособности и создает условия для адекватной адаптации их к окружающей среде.

Вместе с тем в последнее десятилетие состояние здоровья населения характеризуется негативными тенденциями. Продолжительность жизни населения в России значительно меньше, чем в большинстве развитых стран. Увеличение частоты сердечно-сосудистых, онкологических и других хронических неинфекционных заболеваний в определенной степени связано с питанием. У большинства населения России выявлены нарушения полноценного питания, обусловленные как недостаточным потреблением пищевых веществ, в первую очередь витаминов, макро - и микроэлементов (кальция, йода, железа, фтора, цинка и др.), полноценных белков, так и их нерациональным соотношением.

Одним из важных элементов являются углеводы. Они служат основным источником энергии. Свыше 56% энергии организм получает за счет углеводов, остальную часть - за счет белков и жиров.

Мир углеводов представляется нам очень неоднозначным. Иногда углеводы обвиняют в том, что именно они являются причиной лишнего веса. А иногда, наоборот, говорят, что углеводы - это идеальный источник энергии для организма.


1. Углеводы и их значение в питании

Впервые термин "углеводы" был предложен профессором Дерптского (ныне Тартуского) университета К.Г. Шмидтом в 1844 г. В то время предполагали, что все углеводы имеют общую формулу Cm (H 2O ) n , т.е. углевод + вода. Отсюда название "углеводы". В дальнейшем оказалось, что ряд соединений, по своим свойствам относящихся к классу углеводов, содержат водород и кислород в несколько иной пропорции, чем указано в общей формуле.

В 1927 г. Международная комиссия по реформе химической номенклатуры предложила термин "углеводы" заменить термином "глициды", однако старое название "углеводы" укоренилось и является общепризнанным.

Углеводы образуются в растениях при фотосинтезе и поступают в организм главным образом с растительными продуктами. Однако все большее значение в питании приобретают добавленные углеводы, которые чаще всего представлены сахарозой (или смесями других сахаров), получаемой промышленным способом и вводимой затем в пищевые рецептуры.

Величина потребности в углеводах для человека определяется их ведущей ролью в обеспечении организма энергией и нежелательностью синтеза глюкозы из жиров (а тем более из белков) и находится в прямой зависимости от энергозатрат. Средняя потребность в углеводах для тех, кто не занят тяжелым физическим трудом, 400 - 500 г. в сутки.

Способность углеводов быть высокоэффективным источником энергии лежит в основе их сберегающего белок действия. При поступлении с пищей достаточного количества углеводов аминокислоты лишь в незначительной степени используются в организме как энергетический материал. Хотя углеводы не принадлежат к числу незаменимых факторов питания и могут образовываться в организме из аминокислот и глицерина, минимальное количество углеводов суточного рациона не должно быть ниже 50 - 60 г.

Дальнейшее снижение количества углеводов ведет к резким нарушениям метаболических процессов. Избыточное потребление углеводов ведет к ожирению. При поступлении с пищей значительных количеств сахаров они не могут полностью откладываться в виде гликогена, и их избыток превращается в триглицериды, способствуя усиленному развитию жировой ткани. Повышенное содержание в крови инсулина способствует ускорению этого процесса, поскольку инсулин оказывает мощное стимулирующее действие на жироотложение.

При построении пищевых рационов чрезвычайно важно не только удовлетворить потребности человека в необходимом количестве углеводов, но и подобрать оптимальные соотношения качественно различных типов углеводов. Наиболее важно учитывать соотношение в рационе легкоусвояемых углеводов (сахаров) и медленно всасывающихся (крахмал, гликоген).

В отличие от сахаров крахмал и гликоген медленно расщепляются в кишечнике. Содержание сахара в крови при этом нарастает постепенно. В связи с этим целесообразно удовлетворять потребности в углеводах в основном за счет медленно всасывающихся углеводов. На их долю должно приходиться 80 - 90% от общего количества потребляе мых углеводов. Ограничение легкоусвояемых углеводов приобретает особое значение для тех, кто страдает атеросклерозом, сердечно-сосудистыми заболеваниями, сахарным диабетом, ожирением.

Углеводы являются основными энергонесущими элементами в питании человека, обеспечивая 50-70% общей энергетической ценности рациона.

Наряду с основной энергетической функцией углеводы участвуют в пластическом обмене. Углеводы оказывают антикетогенное действие, стимулируя окисление ацетилкоэнзима А, образующегося при окислении жирных кислот. Основным источником углеводов в питании человека является растительная пища, и только лактоза и гликоген содержатся в продуктах животного происхождения.

Основная функция углеводов - обеспечение энергией всех процессов в организме. Клетки способны получать из углеводов энергию, как при их окислении, т.е. "сгорании", так и в анаэробных условиях (без доступа кислорода). В результате метаболизации 1 г углеводов организм получает энергию, эквивалентную 4 ккал. Обмен углеводов тесно связан с обменом жиров и белков, что обеспечивает их взаимные превращения. При умеренном недостатке углеводов в питании депонированные жиры, а при глубоком дефиците (менее 50 г/сут) и аминокислоты (как свободные, так и из состава мышечных белков) вовлекаются в процесс глюконеогенеза, приводящий к получению необходимой организму энергии. Боль в мышцах после тяжелой работы - результат действия на клетки молочной кислоты, которая образуется при анаэробном распаде углеводов, когда для обеспечения работы мышечных клеток не хватает кислорода, поступающего с кровью.

Часто резкое ограничение углеводов в диете ведет к значительным нарушениям обмена веществ. Особенно страдает при этом белковый обмен. Белки при дефиците углеводов используются не по назначению: они становятся источником энергии и участниками некоторых важных химических реакций. Это приводит к повышенному образованию азотистых веществ и, как следствие, к повышенной нагрузке на почки, нарушениям солевого обмена и другим, вредным для здоровья, последствиям.

При дефиците углеводов в пище организм использует для синтеза энергии не только белки, но и жиры. При усиленном распаде жиров могут возникнуть нарушения обменных процессов, связанные с ускоренным образованием кетонов (к этому классу веществ относится известный всем ацетон) и накоплением их в организме. Избыточное образование кетонов при усиленном окислении жиров и частично белков может привести к "закислению" внутренней среды организма и отравлению тканей мозга вплоть до развития ацидотической комы с потерей сознания. При достаточном поступлении углеводов с пищей белки используются, главным образом, для пластического обмена, а не для производства энергии. Таким образом, углеводы необходимы для рационального использования белков. Они также способны стимулировать окисление промежуточных продуктов обмена жирных кислот.

Этим, однако, не исчерпывается роль углеводов. Они являются составной частью молекул некоторых аминокислот, участвуют в построении ферментов, образовании нуклеиновых кислот, являются предшественниками образования жиров, иммуноглобулинов, играющих важную роль в системе иммунитета, и гликопротеидов - комплексов углеводов и белков, которые являются важнейшими компонентами клеточных оболочек. Гиалуроновые кислоты и другие мукополисахариды образуют защитную прослойку между всеми клетками, из которых состоит организм.

Интерес к углеводам сдерживался чрезвычайной сложностью их структуры. В отличие от мономеров нуклеиновых кислот (нуклеотидов) и белков (аминокислот), которые способны связываться между собой только одним определенным путем, моносахаридные единицы в олигосахаридах и полисахаридах могут соединяться между собой несколькими путями по множеству разных положений.

Со второй половины XX в. происходит стремительное развитие химии и биохимии углеводов, обусловленное их важным биологическим значением.

Углеводы наряду с белками и липидами являются важнейшими химическими соединениями, входящими в состав живых организмов. У человека и животных углеводы выполняют важные функции: энергетическую (главный вид клеточного топлива), структурную (обязательный компонент большинства внутриклеточных структур) и защитную (участие углеводных компонентов иммуноглобулинов в поддержании иммунитета).

Углеводы (рибоза, дезоксирибоза) используются для синтеза нуклеиновых кислот, они являются составными компонентами нуклеотидных ко-ферментов, играющих исключительно важную роль в метаболизме живых существ. В последнее время все большее внимание к себе привлекают смешанные биополимеры, содержащие углеводы: гликопептиды и глико-протеины, гликолипиды и липополисахариды, гликолипопротеины и т.д. Эти вещества выполняют в организме сложные и важные функции.

Итак, выделю б иологическое значение углеводов:

· Углеводы выполняют пластическую функцию, то есть участвуют в построении костей, клеток, ферментов. Они составляют 2-3 % от веса.

· Углеводы являются основным энергетическим материалом. При окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды.

· В крови содержится 100-110 мг глюкозы. От концентрации глюкозы зависит осмотическое давление крови.

· Пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ.

· Углеводы выполняют защитную роль в растениях.


2. Виды углеводов

Различают две основные группы углеводов: простые и сложные. К простым углеводам относятся глюкоза, фруктоза, галактоза, сахароза, лактоза и мальтоза. К сложным - крахмал, гликоген, клетчатка и пектиновые вещества.

Углеводы подразделяются на моносахариды (простые), олигосахариды и полисахариды (сложные).

1. Моносахариды

· глюкоза

· фруктоза

· галактоза

· манноза

2. Олигосахариды

· Дисахариды

· сахароза (обычный сахар, тростниковый или свекловичный)

· мальтоза

· изомальтоза

· лактоза

· лактулоза

3.Полисахариды

· декстран

· гликоген

· крахмал

· целлюлоза

· галактоманнаны

Моносахариды (простые углеводы) являются наиболее простыми представителями углеводов и при гидролизе не расщепляются до более простых соединений. Простые углеводы легко растворяются в воде и быстро усваиваются. Они обладают выраженным сладким вкусом и относятся к сахарам.

В зависимости от числа углеродных атомов в молекулах моносахариды делятся на триозы, тетрозы, пентозы и гексозы. Для человека наиболее важны гексозы (глюкоза, фруктоза, галактоза и др.) и пентозы (рибоза, дезоксирибоза и др.).

При соединении двух молекул моносахаридов образуются дисахариды.

Наиболее важной из всех моносахаридов является глюкоза, так как она является структурной единицей (кирпичиком) для построения большинства пищевых ди - и полисахаридов. Транспорт глюкозы в клетки регулируется во многих тканях гормоном поджелудочной железы - инсулином.

У человека излишки глюкозы в первую очередь превращаются именно в гликоген - единственный резервный углевод животных тканей. В организме человека общее содержание гликогена составляет около 500 г - это суточный запас углеводов, используемый при их глубоком дефиците в питании. Длительный дефицит гликогена в печени ведет к дисфункции гепатоцитов и ее жировой инфильтрации.

Олигосахариды - более сложные соединения, построенные из нескольких (от 2 до 10) остатков моносахаридов. Они делятся на дисахариды, трисахариды и т.д. Наиболее важны для человека дисахариды - сахароза, мальтоза и лактоза. Олигосахариды, к которым относятся рафиноза, стахиоза, вербаскоза, в основном содержатся в бобовых и продуктах их технологической переработки, например в соевой муке, а также в незначительных количествах во многих овощах. Фрукто-олигосахариды встречаются в зерновых (пшенице, ржи), овощах (луке, чесноке, артишоках, спарже, ревене, цикории), а также в бананах и меде.

К группе олигосахаридов также относятся мальто-декстрины, являющиеся основными компонентами промышленно производимых из полисахаридного сырья сиропов, паток. Одним из представителей олигосахаридов является лактулоза, образующаяся из лактозы в процессе тепловой обработки молока, например при выработке топленого и стерилизованного молока.

Олигосахариды практически не расщепляются в тонком кишечнике человека из-за отсутствия соответствующих ферментов. По этой причине они обладают свойствами пищевых волокон. Некоторые олигосахариды играют существенную роль в жизнедеятельности нормальной микрофлоры толстого кишечника, что позволяет отнести их к пребиотикам - веществам, частично ферментирующимся некоторыми кишечными микроорганизмами и обеспечивающим поддержание нормального микробиоценоза кишечника.

Полисахариды - высокомолекулярные соединения-полимеры, образованные из большого числа мономеров, в качестве которых выступают остатки моносахаридов. Полисахариды делятся на перевариваемые и неперевариваемые в желудочно-кишечном тракте человека. В первую подгруппу входят крахмал и гликоген, во вторую - разнообразные соединения, из которых наиболее важны для человека целлюлоза (клетчатка), гемицсллюлоза и пектиновые вещества.

Олиго - и полисахариды объединяют термином "сложные углеводы". Моно - и дисахариды обладают сладким вкусом, в связи с чем их называют также "сахарами". Полисахариды сладким вкусом не обладают. Сладость сахароз различна. Если сладость раствора сахарозы принять за 100 %, то сладость эквимолярных растворов друг их Сахаров составит: фруктозы - 173 %, глюкозы - 81 %, мальтозы и галактозы - 32 % и лактозы - 16 %.

Основным усваиваемым полисахаридом является крахмал - пищевая основа зерновых, бобовых и картофеля. На его долю приходится до 80% потребляемых с пищей углеводов. Он представляет из себя сложный полимер, состоящий из двух фракций: амилозы - линейного полимера и амило-пектина - разветвленного полимера. Именно соотношение этих двух фракций в различных сырьевых источниках крахмала и определяет его различные физико-химические и технологические характеристики, в частности растворимость в воде при разной температуре. Источником крахмала служат растительные продукты, в основном злаковые: крупы, мука, хлеб, а также картофель.

Для облегчения усвоения крахмала организмом продукт, содержащий его, должен быть подвергнут тепловой обработке. При этом образуется крахмальный клейстер в явной форме, например кисель, или скрытом виде в составе пищевой композиции: каше, хлебе, макаронах, блюд из бобовых. Крахмальные полисахариды, поступившие с пищей в организм, подвергаются последовательной, начиная с ротовой полости, ферментации до мальтодекстринов, мальтозы и глюкозы с последующим практически полным усвоением.

Вторым перевариваемым полисахаридом является гликоген. Его пищевое значение невелико - с рационом поступает не более 10-15 г гликогена в составе печени, мяса и рыбы. При созревании мяса гликоген превращается в молочную кислоту.

Некоторые сложные углеводы (клетчатка, целлюлоза и др.) в организме человека не перевариваются вовсе. Тем не менее, это необходимый компонент питания: они стимулируют перистальтику кишечника, формируют каловые массы, способствуя тем самым выведению шлаков и очистке организма. Кроме того, клетчатка хоть и не переваривается человеком, но служит источником питания для полезной кишечной микрофлоры.


Заключение

Значение углеводов в питании человека весьма велико. Они служат важнейшим источником энергии, обеспечивая до 50-70 % общей калорийности рациона.

Способность углеводов быть высокоэффективным источником энергии лежит в основе их "сберегающего белок" действия. Хотя углеводы не принадлежат к числу незаменимых факторов питания и могут образовываться в организме из аминокислот и глицерина, минимальное количество углеводов суточного рациона не должно быть ниже 50-60 г.

С нарушением обмена углеводов тесно связан ряд заболеваний: сахарный диабет, галактоземия, нарушение в системе депо гликогена, нетолерантность к молоку и т.д. Следует отметить, что в организме человека и животного углеводы присутствуют в меньшем количестве (не более 2% от сухой массы тела), чем белки и липиды; в растительных организмах за счет целлюлозы на долю углеводов приходится до 80% от сухой массы, поэтому в целом в биосфереуглеводов больше, чем всех других органических соединений вместе взятых.


Список используемой литературы

1. Справочник по диетологии/под ред. А.А. Покровского, М.А. Самсонова. - М.: Медицина, 1981

2. Популярно о питании. Под ред. А.И. Столмаковой, И.О. Мартынюка, Киев, "Здоровье", 1990

3. Королев А.А. Гигиена питания - 2-е изд. Перераб. и доп. - М.: "Академия", 2007

4. Ауреден Л. Как стать красивой. - М.: Топикал, 1995

5. http ://hudeemtut .ru

6. Ленинджер А. Основы биохимии // М.: Мир, 1985.

Введение

углеводы гликолипиды биологический

Углеводы - обширный наиболее распространенный на Земле класс органических соединений, входящих в состав всех организмов и необходимых для жизнедеятельности человека и животных, растений и микроорганизмов. Углеводы являются первичными продуктами фотосинтеза, в кругообороте углерода они служат своеобразным мостом между неорганическими и органическими соединениями. Углеводы и их производные во всех живых клетках играют роль пластического и структурного материала, поставщика энергии, субстратов и регуляторов для специфических биохимических процессов. Углеводы выполняют не только питательную функцию в живых организмах, они также выполняют опорную и структурную функции. Во всех тканях и органах обнаружены углеводы или их производные. Они входят в состав оболочек клеток и субклеточных образований. Принимают участие в синтезе многих важнейших веществ.

Актуальность

В настоящее время данная тема актуальна, потому что углеводы необходимы организму, так как входят в состав его тканей и выполняют важные функции: - являются главным поставщиком энергии для всех процессов в организме (они могут расщепляться и давать энергию даже в отсутствии кислорода); - необходимы для рационального использования белков (белки при дефиците Углеводов используются не по назначению: они становятся источником энергии и участниками некоторых важных химических реакций); - тесно связаны с обменом жиров (если вы употребляете слишком много Углеводов, больше, чем может преобразоваться в глюкозу или гликоген (который откладывается в печени и мышцах), то в результате образуется жир. Когда телу нужно больше топлива, жир преобразуется обратно в глюкозу, и вес тела снижается); - особенно необходимы мозгу для нормальной жизнедеятельности (если мышечные ткани могут накапливать энергию в виде жировых отложений, то мозг не может так делать, он всецело зависит от регулярного поступления в организм углеводов); - являются составной частью молекул некоторых аминокислот, участвуют в построении ферментов, образовании нуклеиновых кислот и т.д.

Понятие и классификация углеводов

Углеводами называют вещества с общей формулой Cn(H2O)m, где n и m могут иметь разные значения. Название «углеводы» отражает тот факт, что водород и кислород присутствуют в молекулах этих веществ в том же соотношении, что и в молекуле воды. Кроме углерода, водорода и кислорода, производные углеводов могут содержать и другие элементы, например азот.

Углеводы - одна из основных групп органических веществ клеток. Они представляют собой первичные продукты фотосинтеза и исходные продукты биосинтеза других органических веществ в растениях (органические кислоты, спирты, аминокислоты и др.), а также содержатся в клетках всех других организмов. В животной клетке содержание углеводов находится в пределах 1-2 %, в растительных оно может достигать в некоторых случаях 85-90 % массы сухого вещества.

Выделяют три группы углеводов:

·моносахариды или простые сахара;

·олигосахариды - соединения, состоящие из 2-10 последовательно соединенных молекул простых сахаров (например, дисахариды, трисахариды и т. д.).

·полисахариды состоят более чем из 10 молекул простых сахаров или их производных (крахмал, гликоген, целлюлоза, хитин).

Моносахариды (простые сахара)

В зависимости от длины углеродного скелета (количества атомов углерода) моносахариды разделяют на триозы (C3), тетрозы (C4), пентозы (C5), гексозы (C6), гептозы (C7).

Молекулы моносахаридов являются либо альдегидоспиртами (альдозами), либо кетоспиртами (кетозами). Химические, свойства этих веществ определяются, прежде всего, альдегидными или кетонными группировками, входящими в состав их молекул.

Моносахариды хорошо растворяются в воде, сладкие на вкус.

При растворении в воде моносахариды, начиная с пентоз, приобретают кольцевую форму.

Циклические структуры пентоз и гексоз - обычные их формы: в любой данный момент лишь небольшая часть молекул существует в виде «открытой цепи». В состав олиго- и полисахаридов также входят циклические формы моносахаридов.

Кроме сахаров, у которых все атомы углерода связаны с атомами кислорода, есть частично восстановленные сахара, важнейшим из которых является дезоксирибоза.

Олигосахариды

При гидролизе олигосахариды образуют несколько молекул простых сахаров. В олигосахаридах молекулы простых сахаров соединены так называемыми гликозидными связями, соединяющими атом углерода одной молекулы через кислород с атомом углерода другой молекулы.

К наиболее важным олигосахаридам относятся мальтоза (солодовый сахар), лактоза (молочный сахар) и сахароза (тростниковый или свекловичный сахар). Эти сахара называют также дисахаридами. По своим свойствам дисахариды блоки к моносахаридам. Они хорошо растворяются в воде и имеют сладкий вкус.

Полисахариды

Это высокомолекулярные (до 10 000 000 Да) полимерные биомолекулы, состоящие из большого числа мономеров - простых сахаров и их производных.

Полисахариды могут состоять из моносахаридов одного или разных типов. В первом случае они называются гомополисахариды (крахмал, целлюлоза, хитин и др.), во втором - гетерополисахариды (гепарин). Все полисахариды не растворимы в воде и не имеют сладкого вкуса. Некоторые из них способны набухать и ослизняться.

Наиболее важными полисахаридами являются следующие.

Целлюлоза - линейный полисахарид, состоящий из нескольких прямых параллельных цепей, соединенных между собой водородными связями. Каждая цепь образована остатками в-D-глюкозы. Такая структура препятствует проникновению воды, очень прочна на разрыв, что обеспечивает устойчивость оболочек клеток растений, в составе которых 26-40 % целлюлозы.

Целлюлоза служит пищей для многих животных, бактерий и грибов. Однако большинство животных, в том числе и человек, не могут усваивать целлюлозу, поскольку в их желудочно-кишечном тракте отсутствует фермент целлюлаза, расщепляющий целлюлозу до глюкозы. В то же время целлюлозные волокна играют важную роль в питании, поскольку они придают пище объемность и грубую консистенцию, стимулируют перистальтику кишечника.

Крахмал и гликоген . Эти полисахариды являются основными формами запасания глюкозы у растений (крахмал), животных, человека и грибов (гликоген). При их гидролизе в организмах образуется глюкоза, необходимая для процессов жизнедеятельности.

Хитин образован молекулами в-глюкозы, в которой спиртовая группа при втором атоме углерода замещена азотсодержащей группой NHCOCH3. Его длинные параллельные цепи так же, как и цепи целлюлозы, собраны в пучки. Хитин - основной структурный элемент покровов членистоногих и клеточных стенок грибов.

Краткая характеристика эколого-биологической роли углеводов

Обобщая рассмотренный выше материал, относящийся к характеристике углеводов, можно сделать следующие выводы об их эколого-биологической роли.

1. Они выполняют строительную функцию, как в клетках, так и в организме в целом за счет того, что входят в состав структур, образующих клетки и ткани (особенно это характерно для растений и грибов), например, клеточные оболочки, различные мембраны и т. д., кроме того, углеводы участвуют в образовании биологически необходимых веществ, образующих ряд структур, например в образовании нуклеиновых кислот, составляющих основу хромосом; углеводы входят в состав сложных белков - гликопротеидов, имеющих определенное значение в формировании клеточных структур и межклеточного вещества.

2. Важнейшей функцией углеводов является трофическая функция, состоящая в том, что многие из них являются продуктами питания гетеротрофных организмов (глюкоза, фруктоза, крахмал, сахароза, мальтоза, лактоза и др.). Эти вещества в комплексе с другими соединениями образуют пищевые продукты, используемые человеком (различные крупы; плоды и семена отдельных растений, включающие в свой состав углеводы, являются кормом для птиц, а моносахара, вступая в цикл различных превращений, способствуют образованию как собственных углеводов, характерных для данного организма, так и других органо-биохимических соединений (жиров, аминокислот (но не их белков), нуклеиновых кислот и т. д.).

3. Для углеводов характерна и энергетическая функция, состоящая в том, что моносахара (в частности глюкоза) в организмах легко окисляются (конечным продуктом окисления является СO2 и Н2O), при этом происходит выделение большого количества энергии, сопровождающееся синтезом АТФ.

4. Им присуща и защитная функция, состоящая в том, что из углеводов возникают структуры (и определенные органоиды в клетке), защищающие или клетку, или организм в целом от различных повреждений, в том числе и механических (например, хитиновые покровы насекомых, образующие внешний скелет, оболочки клеток растений и многих грибов, включающих целлюлозу и т. д.).

5. Большую роль играют механическая и формообразующая функции углеводов, представляющие собой способность структур, образованных либо углеводами, либо в сочетании их с другими соединениями, придавать организму определенную форму и делать их механически прочными; так, клеточные оболочки механической ткани и сосудов ксилемы создают каркас (внутренний скелет) древесных, кустарниковых и травянистых растений, хитином образован внешний скелет насекомых и т. д.

Краткая характеристика обмена углеводов в гетеротрофном организме (на примере организма человека)

Важную роль в понимании процессов обмена веществ играет знание о превращениях, которым подвергаются углеводы в гетеротрофных организмах. В организме человека этот процесс характеризуется приведенным ниже схематическим описанием.

Углеводы в составе пищи попадают в организм через ротовую полость. Моносахара в пищеварительной системе практически не подвергаются превращениям, дисахариды - гидролизуются до моносахаридов, а полисахариды подвергаются достаточно значительным превращениям (это относится к тем полисахаридам, которые организмом употребляются в пищу, а углеводы, не являющиеся пищевыми веществами, например, целлюлоза, некоторые пектины, удаляются из организма с каловыми массами).

В ротовой полости пища измельчается и гомогенизируется (становится более однородной, чем до попадания в нее). На пищу воздействует слюна, выделяемая слюнными железами. Она содержит фермент птиалин и имеет щелочную реакцию среды, за счет чего начинается первичный гидролиз полисахаридов, приводящий к образованию олигосахаридов (углеводов с небольшой величиной n).

Часть крахмала может превращаться даже в дисахариды, что можно заметить при длительном пережевывании хлеба (кислый черный хлеб становится сладким).

Пережеванная пища, обильно обработанная слюной и размельченная зубами, через пищевод в виде пищевого комка поступает в желудок, где подвергается воздействию желудочного сока с кислой реакцией среды, содержащего ферменты, воздействующие на белки и нуклеиновые кислоты. В желудке с углеводами практически ничего не происходит.

Затем пищевая кашица поступает в первый отдел кишечника (тонкий кишечник), начинающийся двенадцатиперстной кишкой. В нее поступает панкреатический сок (секрет поджелудочной железы), содержащий комплекс ферментов, способствующих и перевариванию углеводов. Углеводы превращаются в моносахариды, которые растворимы в воде и способны к всасыванию. Пищевые углеводы окончательно перевариваются в тонком кишечнике, а в той его части, где содержатся ворсинки, они всасываются в кровь и поступают в кровеносную систему.

С током крови моносахара разносятся к различным тканям и клеткам организма, но предварительно вся кровь проходит через печень (там она очищается от вредных продуктов обмена). В крови моносахара присутствуют преимущественно в виде альфа-глюкозы (но возможно наличие и других изомеров гексоз, например фруктозы).

Если глюкозы в крови меньше нормы, то часть гликогена, содержащегося в печени, гидролизуется до глюкозы. Избыточное содержание углеводов характеризует тяжелое заболевание человека - диабет.

Из крови моносахариды поступают в клетки, где большая их часть расходуется на окисление (в митохондриях), при котором синтезируется АТФ, содержащая энергию в «удобном» для организма виде. АТФ расходуется на различные процессы, которые требуют энергии (синтез нужных организму веществ, реализация физиологических и других процессов).

Часть углеводов пищи используется для синтеза углеводов данного организма, требующихся для формирования структур клетки, или соединений, необходимых для образования веществ других классов соединений (так из углеводов могут получиться жиры, нуклеиновые кислоты и т. д.). Способность углеводов превращаться в жиры является одной из причин возникновения ожирения - заболевания, влекущего за собой комплекс других заболеваний.

Следовательно, потребление избыточного количества углеводов вредно для человеческого организма, что необходимо учитывать при организации рационального питания.

В растительных организмах, являющихся автотрофами, обмен углеводов несколько иной. Углеводы (моносахара) синтезируются самим организмом из углекислого газа и воды с использованием солнечной энергии. Ди-, олиго- и полисахариды синтезируются из моносахаридов. Часть моносахаридов включается в синтез нуклеиновых кислот. Определенное количество моносахаридов (глюкозы) растительные организмы используют в процессах дыхания на окисление, при котором (как и в гетеротрофных организмах) синтезируется АТФ.

Гликолипиды и гликопротеины как структурно-функциональные компоненты клетки углеводов

Гликопротеины - это белки, содержащие олигосахаридные (гликановые) цепи, ковалентно присоединенные к полипептидной основе. Гликозаминогликаны представляют собой полисахариды, построенные из повторяющихся дисахаридных компонентов, которые обычно содержат аминосахара (глюкоза-мин или галактозамин в сульфированном или несульфированном виде) и уроновую кислоту (глюкуро-новую или идуроновую). Раньше гликозаминогликаны называли мукополисахаридами. Они обычно ковалентно связаны с белком; комплекс одного или более гликозаминогликанов с белком носит название протеогликана. Гликоконъюгаты и сложные углеводы-эквивалентные термины, обозначающие молекулы, которые содержат углеводные цепи (одну или более), ковалентно связанные с белком или липидом. К этому классу соединений относятся гликопротеины, протеогликаны и гликолипиды.

Биомедицинское значение

Почти все белки плазмы человека, кроме альбумина, представляют собой гликопротеины. Многие белки клеточных мембран содержат значительные количества углеводов. Вещества групп крови в ряде случаев оказываются гликопротеинами, иногда в этой роли выступают гликосфинголипиды. Некоторые гормоны (например, хорионический гонадотропин) имеют гликопротеиновую природу. В последнее время рак все чаще характеризуется как результат аномальной генной регуляции. Главная проблема онкологических заболеваний, метастазы, - феномен, при котором раковые клетки покидают место своего происхождения (например, молочную железу), переносятся с кровотоком в отдаленные части тела (например, в мозг) и неограниченно растут с катастрофическими последствиями для больного. Многие онкологи полагают, что метастазирование, по крайней мере частично, обусловлено изменениями в структуре гликоконъюгатов на поверности раковых клеток. В основе целого ряда заболевений (мукополисахаридозы) лежит недостаточная активность различных лизосомных ферментов, разрушающих отдельные гликоза-миногликаны; в результате один или несколько из них накапливаются в тканях, вызывая различные патологические признаки и симптомы. Одним из примеров таких состояний является синдром Хурлера.

Распространение и функции

Гликопротеины имеются у большинства организмов - от бактерий до человека. Многие вирусы животных также содержат гликопротеины, некоторые из этих вирусов интенсивно изучались, отчасти в силу удобства их использования для исследований.

Гликопротеины-это многочисленная группа белков с разнообразными функциями содержание в них углеводов варьирует от 1 до 85% и более (в единицах массы). Роль олигосахаридных цепей в функции гликопротеинов до сих пор точно не определена, несмотря на интенсивное изучение этого вопроса

Гликолипиды - сложные липиды, образующиеся в результате соединения липидов с углеводами. В молекулах гликолипидов есть полярные «головы» (углевод) и неполярные «хвосты» (остатки жирных кислот). Благодаря этому гликолипиды (вместе с фосфолипидами) входят в состав клеточных мембран.

Гликолипиды широко представлены в тканях, особенно в нервной ткани, в частности в ткани мозга. Они локализованы преимущественно на наружной поверхности плазматической мембраны, где их углеводные компоненты входят в число других углеводов клеточной поверхности.

Гликосфинголипиды, являющиеся компонентами наружного слоя плазматической мембраны, могут участвовать в межклеточных взаимодействиях и контактах. Некоторые из них являются антигенами, например антиген Форссмана и вещества, определяющие группы крови системы АВ0. Сходные олигосахаридные цепи обнаружены и у других гликопротеинов плазматической мембраны. Ряд ганглиозидов функционирует в качестве рецепторов бактериальных токсинов (например, холерного токсина, который запускает процесс активации аденилатциклазы).

Гликолипиды в отличие от фосфолипидов не содержат остатков ортофосфорной кислоты. В их молекулах к диацилглицерину гликозидной связью присоединяются остатки галактозы или сульфоглюкозы

Наследственные нарушения обмена моносахаридов и дисахаридов

Галактоземия - наследственная патология обмена веществ, обусловленная недостаточностью активности ферментов, принимающих участие в метаболизме галактозы. Неспособность организма утилизировать галактозу приводит к тяжелым поражениям пищеварительной, зрительной и нервной системы детей в самом раннем возрасте. В педиатрии и генетике галактоземия относится к редким генетическим заболеваниям, встречающимся с частотой один случай на 10 000 - 50 000 новорожденных. Впервые клиника галактоземии была описана в 1908 году уребенка, страдавшего сильным истощением, гепато- и спленомегалией, галактозурией; при этом заболевание исчезло сразу после отмены молочного питания. Позднее, в 1956 г. ученый Герман Келкер определил, что в основе заболевания лежит нарушение метаболизма галактозы. Причины болезни Галактоземия является врожденной патологией, наследуемой по аутосомно-рецессивному типу, т. е. заболевание проявляется только в том случае, если ребенок наследует две копии дефектного гена от каждого из родителей. Лица, гетерозиготные по мутантному гену, являются носителями заболевания, однако у них тоже могут развиваться отдельные признаки галактоземии в легкой степени. Превращение галактозы в глюкозу (метаболический путь Лелуара) происходит при участии 3-х ферментов: галактоза-1-фосфатуридилтрансферазы (GALT), галактокиназы (GALK) и уридиндифосфат-галактозо-4-эпимеразы (GALE). В соответствии с дефицитом этих ферментов различают 1 (классический вариант), 2 и 3 тип галактоземии.Выделение трех типов галактоземии не совпадает с порядком действия ферментов в процессе метаболического пути Лелуара. Галактоза поступает в организм с пищей, а также образуется в кишечнике в процессе гидролиза дисахарида лактозы. Путь метаболизма галактозы начинается с ее превращения под действием фермента GALK в галактозо-1-фосфат. Затем при участии фермента GALT галактозо-1-фосфат преобразуется в УДФ-галактозу (уридилдифосфогалактозу). После этого с помощью GALE метаболит превращается в УДФ - глюкозу (уридилдифосфоглюкозу).При недостаточности одного из названных ферментов (GALK, GALT или GALE) концентрация галактозы в крови значительно повышается, в организме накапливаются промежуточные метаболиты галактозы, которые вызывают токсическое поражение различных органов: ЦНС, печени, почек, селезенки, кишечника, глаз и др. Нарушение метаболизма галактозы и составляет суть галактоземии. Наиболее часто в клинической практике встречается классический (1 тип) галактоземии, обусловленный дефектом фермента GALT и нарушением его активности. Ген, кодирующий синтез галактоза-1-фосфатуридилтрансферазы, находится воколоцентромерном участке 2-ой хромосомы. По тяжести клинического течения выделяют тяжелую, среднюю и легкую степени галактоземии. Первые клинические признаки галактоземии тяжелой степени развиваются очень рано, в первые дни жизни ребенка. Вскоре после кормления новорожденного грудным молоком или молочной смесью возникает рвота и расстройство стула (водянистый понос), нарастает интоксикация. Ребенок становится вялым, отказывается от груди или бутылочки; у него быстро прогрессируют гипотрофия и кахексия. Ребенка могут беспокоить метеоризм, кишечные колики, обильное отхождение газов.В процессе обследования ребенка с галактоземией неонатологом выявляется угасание рефлексов периода новорожденности. При галактоземии рано появляется стойкая желтуха различной степени выраженности и гепатомегалия, прогрессирует печеночная недостаточность. К 2-3 месяцу жизни возникают спленомегалия, цирроз печени, асцит. Нарушения процессов свертывания крови приводит к появлению кровоизлияний на коже и слизистых оболочках. Дети рано начинают отставать в психомоторном развитии, однако степень интеллектуальных нарушений при галактоземии не достигает такой тяжести, как при фенилкетонурии. К 1-2 месяцам у детей с галактоземией выявляется двусторонняя катаракта. Поражение почек при галактоземии сопровождается глюкозурией, протеинурией, гипераминоацидурией. В терминальной фазе галактоземии ребенок погибает от глубокого истощения, тяжелой печеночной недостаточности и наслоения вторичных инфекций. При галактоземии средней тяжести также отмечается рвота, желтуха, анемия, отставание в психомоторном развитии, гепатомегалия, катаракта, гипотрофия. Галактоземия легкой степени характеризуется отказом от груди, рвотой после приема молока, задержкой речевого развития, отставанием ребенка в массе и росте. Однако даже при легком течении галактоземии продукты обмена галактозы токсическим образом воздействуют на печень, приводя к ее хроническим заболеваниям.

Фруктоземия

Фруктоземия - это наследственное генетическое заболевание, заключающееся в непереносимости фруктозы (фруктового сахара, содержащегося во всех фруктах, ягодах и некоторых овощах, а также в мёде). При фруктоземии в организме человека мало или практически нет ферментов(энзимов, органических веществ белковой природы, ускоряющих химические реакции, происходящие в организме), принимающих участие в ращеплении и усвоении фруктозы. Заболевание, как правило, обнаруживается в первые недели и месяцы жизни ребенка или с того момента, когда ребенок начинает получать соки и пищу, содержащую фруктозу: сладкий чай, фруктовые соки, овощные и фруктовые пюре. Фруктоземия передается по аутосомно-рецессивному типу наследования (заболевание проявляется, если у обоих родителей есть заболевание). Мальчики и девочки болеют одинаково часто.

Причины болезни

В печени имеется недостаточное количество специального фермента (фруктозо-1-фосфат-альдолазы), который преобразовывает фруктозу. В результате продукты обмена (фруктозо-1-фосфат) накапливаются в организме (печени, почках, слизистых оболочках кишечника) и оказывают повреждающее действие. При этом установлено, что фруктозо-1-фосфат никогда не откладывается в клетках мозга и хрусталике глаза. Симптомы заболевания проявляются после употребления в пищу фруктов, овощей или ягод в любом виде (соки, нектары, пюре, свежие, замороженные или сушеные), а также мёда. Тяжесть проявления зависит от количества употребления продуктов.

Вялость, бледность кожных покровов. Повышенное потоотделение. Сонливость. Рвота. Диарея (частый объемный (большие порции) жидкий стул). Отвращение к сладкой пище. Гипотрофия (дефицит (недостаточность) массы тела) развивается постепенно. Увеличение размеров печени. Асцит (скопление жидкости в брюшной полости). Желтуха (пожелтение кожных покровов) - развивается иногда. Острая гипогликемия (состояние, при котором значительно снижается уровень глюкозы (сахара) в крови) может развиться при одномоментном употреблении большого количества продуктов, содержащих фруктозу. Характеризуется: Дрожанием конечностей; судорогами (приступообразными непроизвольными сокращениями мышц и крайней степенью их напряжения); Потерей сознания вплоть до комы (отсутствия сознания и реакции на любые раздражители; состояние представляет опасность для жизни человека).

Заключение


Значение углеводов в питании человека весьма велико. Они служат важнейшим источником энергии, обеспечивая до 50-70 % общей калорийности рациона.

Способность углеводов быть высокоэффективным источником энергии лежит в основе их "сберегающего белок" действия. Хотя углеводы не принадлежат к числу незаменимых факторов питания и могут образовываться в организме из аминокислот и глицерина, минимальное количество углеводов суточного рациона не должно быть ниже 50-60 г.

С нарушением обмена углеводов тесно связан ряд заболеваний: сахарный диабет, галактоземия, нарушение в системе депо гликогена, нетолерантность к молоку и т.д. Следует отметить, что в организме человека и животного углеводы присутствуют в меньшем количестве (не более 2% от сухой массы тела), чем белки и липиды; в растительных организмах за счет целлюлозы на долю углеводов приходится до 80% от сухой массы, поэтому в целом в биосфере углеводов больше, чем всех других органических соединений вместе взятых Таким образом: углеводы играют огромную роль в жизни живых организмов на планете ученые считают, что примерно когда появилось первое соединение углевода, появилась и первая живая клетка.


Литература


1. Биохимия: учебник для вузов/ под ред. Е.С.Северина - 5-е изд., - 2009. - 768 с.

2. Т.Т. Березов, Б.Ф. Коровкин «Биологическая химия».

3. П.А. Верболович «Практикум по органической, физической, коллоидной и биологической химии».

4. Ленинджер А. Основы биохимии // М.: Мир, 1985

5. Клиническая эндокринология. Руководство / Н. Т. Старкова. - издание 3-е, переработанное и дополненное. - Санкт-Петербург: Питер, 2002. - С. 209-213. - 576 с.

6. Детские болезни (том 2) - Шабалов Н.П. - учебник, Питер, 2011

Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Углеводы - это источники энергии для человека. Причем, в отличие от жиров, данные вещества могут высвобождать энергию значительно быстрее, это делает их практически незаменимыми для спортсменов и для тех, кто ведет активный образ жизни.

Классификация углеводов

Все сахариды, в зависимости от сложности молекулы, можно разделить на две всеобъемлющие категории: простые и сложные. Представители первой группы, в свою очередь, делятся на моносахариды и олигосахариды.

Моносахариды

Судя из названия, химическая структура данных веществ формируется только одной молекулой. Именно поэтому они легче всего усваиваются нашим организмом. Наибольшую ценность для человека представляют следующие представители данной группы: глюкоза, галактоза, фруктоза, рибоза, дезоксирибоза.

Глюкоза является, наверное, наиболее известным представителем моносахаридов. Она в большом количестве содержится в плодах многих растений, ягодах: винограде, черешне, вишне, малине, земляники и в самой большой ягоде - арбузе. К тому же данный сахарид является конечным продуктом гидролиза более сложных углеводов.

Попадая в организм, глюкоза очень быстро усваивается, что вполне понятно, так как для этого не требуются длительные химические реакции. Эта особенность выглядит весьма привлекательной, для тех из нас кто усиленно занимается спортом. После тяжёлой, изнурительной тренировки, ни что так не восстановит силы, как сладкий энергетический напиток.

Олигосахариды

Молекулы данных веществ состоят из нескольких, двух или трех, простых составляющих. К этой группе относятся: сахароза, мальтоза, лактоза, изомальтоза, лактулоза. Наиболее известным представителем олигосахаридов можно назвать сахарозу, в состав которой входит глюкоза в сочетании с фруктозой.

Лактоза это второй по популярности представитель данной группы. В основе этого вещества находятся два компонента: известная всем глюкоза и галактоза. Именно этот сахарид является основным составляющим молока.

Некоторые учёные считают, что наш организм с годами утрачивает способность ферментировать молоко, так как происходит снижение биосинтеза специфических ферментов. Многие знают, что после употребления в пищу молочных продуктов, возникает чувство тяжести в животе. Именно отсутствие ферментов является виной этому.

Полисахариды

Группа полисахаридов включает в себя такие вещества как крахмал, гликоген, растительная клетчатка, пектин. Данные вещества значительно труднее усваиваются организмом, так как требуют тщательной гидролизной обработки.

Наиболее известный полисахарид - крахмал. Он содержится в больших количествах в таких продуктах как: картофель, хлеб, мучные изделия, крупы. Попадая в наш пищеварительный тракт, он очень медленно усваивается, что приводит к отсроченному, но достаточно продолжительному повышению уровня глюкозы в кровяном русле. Недаром многие специалисты - диетологи рекомендуют начинать свой день с завтрака, состоящего из каши.

Такая пища не приведёт к резкому скачку сахара в крови, а будет служить источником его на протяжении длительного периода времени. Насыщение от правильного утреннего приёма пищи наступает не сразу, но длится в течение нескольких часов.

Вторым по известности полисахаридом является гликоген. Данное вещество синтезируется печенью из продуктов гидролиза других углеводов. Именно его «выбрасывает» в кровь печень, когда нам очень нужна энергия.

Многим спортсменам известна ситуация: после длительного перерыва в тренировках, достаточно сложно адаптироваться к нагрузкам. Вина этому - длительность утилизации эндогенного гликогена.

Упомянутый выше углевод, в ограниченных количествах поступает в организм с пищей, и содержится в продуктах животного происхождения, прежде всего в печени.

Особенности углеводов

Моно и олигосахариды являются так называемыми источниками пустых калорий. Это продиктовано, прежде всего, тем, что данные вещества не содержат в составе ничего, кроме углеводов. Вследствие этого избыточное поступление сахаридов неизбежно выражается в накоплении жировых отложений. Вот почему следует быть умеренным в приеме углеводов.

Заключение

Классификация и биологическая роль углеводов мной рассмотрены. Основное биологическое предназначение рассмотренных мной веществ, заключается в питании тела энергией. При поступлении достаточного количества углеводов, потеря калорий, например, в результате изнурительной тренировки, компенсируется за счет поступивших с пищей сахаров. При этом мышечная ткань, состоящая преимущественно из белков, увеличивается в объеме, а не идёт на восполнение энергозатрат.

Напротив, если вы потребляете большое количество углеводов, особенно моно и дисахаридов, эти вещества будет депонироваться в виде жировых отложений.
Конечно же, не стоит отказываться от углеводов вовсе. Это очень важные и ценные вещества. Существует значительное количество диет, «краеугольным камнем» которых являются именно рассмотренные мной вещества.

Правильным можно назвать только сбалансированное питание, в котором присутствуют как белки, так и жиры и углеводы. Применительно к последним, можно сказать, что акцент стоит сделать на полисахаридах, а это значит, что предпочтительно употреблять в пищу продукты богатые грубой растительной клетчаткой, чем всевозможные сладкие напитки или пирожные. Именно они смогут «зарядить» вас энергией на целый день.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Углеводы (сахара, сахариды) -- органические вещества, содержащие карбонильную группу и несколько гидроксильных групп. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой C x (H 2 O) y , формально являясь соединениями углерода и воды.

Углеводы -- весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2--3 % массы животных.

Моносахаримды (от греческого monos -- единственный, sacchar -- сахар) -- простейшие углеводы, не гидролизующиеся с образованием более простых углеводов. углевод организм биосинтез органический

Дисахаримды (от di -- два, sacchar -- сахар) -- сложные органические соединения, одна из основных групп углеводов, при гидролизекаждая молекула распадается на две молекулы моносахаридов

Омлигосахаримды (от греч. ?лЯгпт -- немногий) -- углеводы, молекулы которых синтезированы из 2 -- 10 остатков моносахаридов, соединённых гликозидными связями.

Полисахаримды -- общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров -- моносахаридов.

Моносахариды:

Глюкоза

Фруктоза

Галактоза

Манноза

Олигосахариды

Дисахариды:

Сахароза (обычный сахар, тростниковый или свекловичный)

Мальтоза

Изомальтоза

Лактоза

Лактулоза

Полисахариды:

Декстрин

Гликоген

Крахмал

Целлюлоза

Галактоманнаны

Глюкоманнан

Гликозаминогликаны (мукополисахариды):

Гепарин

Хондроитин-сульфат

Гиалуроновая кислота

Гепаран-сульфат

Дерматан-сульфат

Кератан-сульфат

В живых организмах углеводы выполняют следующие функции:

1. Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так целлюлоза является основным структурным компонентом клеточных стенокрастений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих.

2. Защитная роль у растений. У некоторых растений есть защитные образования (шипы, колючки и др.), состоящие из клеточных стенок мёртвых клеток.

3. Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК).

4. Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды.

5. Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин -- у растений .

6. Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100--110 мг/% глюкозы, от концентрации глюкозы зависит осмотическое давление крови.

7. Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандов.

В суточном рационе человека и животных преобладают углеводы. Травоядные получают крахмал, клетчатку, сахарозу. Хищники получают гликоген с мясом.

Организмы животных не способны синтезировать углеводы из неорганических веществ. Они получают их от растений с пищей и используют в качестве главного источника энергии, получаемой в процессе окисления:

C x (H 2 O) y + xO 2 > xCO 2 + yH 2 O + энергия.

В зеленых листьях растений углеводы образуются в процессе фотосинтеза -- уникального биологического процесса превращения в сахара неорганических веществ -- оксида углерода (IV) и воды, происходящего при участии хлорофилла за счёт солнечной энергии:

CO 2 + yH 2 O > C x (H 2 O) y + xO 2

Обмен углеводов в организме человека и высших животных складывается из нескольких процессов:

1. Гидролиз (расщепление) в желудочно-кишечном тракте полисахаридов и дисахаридов пищи до моносахаридов, с последующим всасыванием из просвета кишки в кровеносное русло.

2. Гликогеногенез (синтез) и гликогенолиз (распад) гликогена в тканях, в основном в печени.

3. Аэробный (пентозофосфатный путь окисления глюкозы или пентозный цикл) и анаэробный (без потребления кислорода) гликолиз -- пути расщепления глюкозы в организме.

4. Взаимопревращение гексоз.

5. Аэробное окисление продукта гликолиза -- пирувата (завершающая стадия углеводного обмена).

6. Глюконеогенез -- синтез углеводов из неуглеводистого сырья (пировиноградная, молочная кислота, глицерин, аминокислоты и другие органические соединения).

Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 70--80% глюкозы и фруктозы.

Для обозначения количества углеводов в пище используется специальная хлебная единица.

К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины.

Размещено на Allbest.ru

...

Подобные документы

    Специфические свойства, структура и основные функции, продукты распада жиров, белков и углеводов. Переваривание и всасывание жиров в организме. Расщепление сложных углеводов пищи. Параметры регулирования углеводного обмена. Роль печени в обмене веществ.

    курсовая работа , добавлен 12.11.2014

    Энергетическая, запасающая и опорно-строительная функции углеводов. Свойства моносахаридов как основного источника энергии в организме человека; глюкоза. Основные представители дисахаридов; сахароза. Полисахариды, образование крахмала, углеводный обмен.

    доклад , добавлен 30.04.2010

    Углеводы – группа органических соединений. Строение и функции углеводов. Химический состав клетки. Примеры углеводов, их содержание в клетках. Получение углеводов из двуокиси углерода и воды в процессе реакции фотосинтеза, особенности классификации.

    презентация , добавлен 04.04.2012

    Результат расщепления и функции белков, жиров и углеводов. Состав белков и их содержание в пищевых продуктах. Механизмы регулирования белкового и жирового обмена. Роль углеводов в организме. Соотношение белков, жиров и углеводов в полноценном рационе.

    презентация , добавлен 28.11.2013

    Роль и значение белков, жиров и углеводов для нормального протекания всех жизненно важных процессов. Состав, структура и ключевые свойства белков, жиров и углеводов, их важнейшие задачи и функции в организме. Основные источники данных пищевых веществ.

    презентация , добавлен 11.04.2013

    Обмен веществ и энергии как основная функция организма, его основные фазы и протекающие процессы - ассимиляции и диссимиляции. Роль белков в организме, механизм их обмена. Обмен воды, витаминов, жиров, углеводов. Регуляция теплообразования и теплоотдачи.

    реферат , добавлен 08.08.2009

    Понятие и классификация углеводов, основные функции в организме. Краткая характеристика эколого-биологической роли. Гликолипиды и гликопротеины как структурно-функциональные компоненты клетки. Наследственные нарушения обмена моносахаридов и дисахаридов.

    контрольная работа , добавлен 03.12.2014

    Значение для организма белков, жиров и углеводов, воды и минеральных солей. Белковый, углеводный, жировой обмен организма человека. Нормы питания. Витамины, их роль в обмене веществ. Основные авитаминозы. Роль минеральных веществ в питании человека.

    контрольная работа , добавлен 24.01.2009

    Функции обмена веществ в организме: обеспечение органов и систем энергией, вырабатываемой при расщеплении пищевых веществ; превращение молекул пищевых продуктов в строительные блоки; образование нуклеиновых кислот, липидов, углеводов и других компонентов.

    реферат , добавлен 20.01.2009

    Обмен белков, липидов и углеводов. Типы питания человека: всеядность, раздельное и низкоуглеводное питание, вегетарианство, сыроедение. Роль белков в обмене веществ. Недостаток жиров в организме. Изменения в организме в результате изменения типа питания.



Рассказать друзьям