Сходства и различия одноклеточных и многоклеточных. Чем многоклеточные отличаются от одноклеточных — основные отличия

💖 Нравится? Поделись с друзьями ссылкой

Глава 2

Явления и закономерности жизни на клеточном уровне

Изучив главу, вы сможете характеризовать :

Состав и строение клетки;

Свойства клеточных органоидов;

Процессы жизнедеятельности клетки.

Вы сумеете:

Определять различия в строении клеток эукариот и прокариот;

Оценивать роль автотрофов и гетеротрофов в природе;

Объяснять значение обмена веществ в жизнедеятельности клетки;

Сравнивать механизмы протекания процессов биосинтеза белка, фотосинтеза и дыхания.

Параграф 5. Многообразие клеток

Вспомните

Какой структурный уровень организации жизни характеризует клетка;

Что существуют одноклеточные и многоклеточные организмы.

Из истории изучения многообразия клеток. История изучения клетки неразрывно связана с развитием микроскопической техники. О существовании клеток стало известно лишь в XVII в. В 1665 г. английский естествоиспытатель Р. Гук, оценив значение увеличительного прибора, впервые применил его для исследования срезов некоторых растительных и животных тканей. Под микроскопом он обнаружил структуры, похожие по строению на пчелиные соты, и назвал их «ячейками», или «клетками». С тех пор этот термин прочно утвердился в биологии.

В 1674 г. голландский натуралист А. ван Левенгук впервые рассмотрел под самодельным микроскопом некоторых простейших и отдельные клетки животных (эритроциты, сперматозоиды).

В 30-х г. XIX в. шотландский учёный Р. Браун обнаружил в клетках растений круглое плотное образование, которое он назвал ядром.

В 1838 г., обобщая имевшиеся к тому времени сведения о клетке, немецкий ботаник М.Я. Шлейден первым пришёл к заключению о том, что ядро является обязательным структурным элементом всех растительных клеток. В 1839 г. немецкий физиолог Т. Шванн, основываясь на работах Шлейдена, изложил основы клеточной теории, согласно которой все ткани животных и растительных организмов состоят из клеток, клетки растений и животных имеют общий принцип строения, каждая отдельная клетка самостоятельна, а жизнедеятельность всего организма проявляется как совокупность жизнедеятельности отдельных групп клеток.

Появление клеточной теории Шлейдена и Шванна обусловило дальнейшее развитие учения о клетке. В 1858 г. немецкий патолог Р. Вирхов доказал, что клетки возникают только путём воспроизведения себе подобных. Ему принадлежит афористическое утверждение: «Каждая клетка - от клетки». В конце XIX в. была выдвинута гипотеза о том, что информация о наследственных свойствах организмов заключена в ядре.

Крупный вклад в развитие учения о клетке внесли русские учёные. В 1892 г. И.И. Мечников открыл явление фагоцитоза (от греч. phagos - «пожиратель», kytos - «клетка») - активного захватывания и поглощения различных частиц одноклеточными организмами и даже клетками многоклеточных организмов. В 1898 г. С.Г. Навашин описал особый тип оплодотворения - двойное оплодотворение, свойственное всем цветковым растениям.

В начале XX в. были разработаны методы культивирования клеток в пробирке и сконструирован первый электронный микроскоп. В результате наука обогатилась сведениями о мельчайших, ранее не известных клеточных структурах. Было доказано, что клетки всех организмов, несмотря на их разнообразие, сходны по строению, химическому составу и проявлениям своей жизнедеятельности.

Дальнейшие исследования показали, что ядерные структуры клетки служат основой передачи наследственных свойств организмов.

Мир клеток живой природы

Клетки чрезвычайно разнообразны. Они различаются по своим размерам, структуре, форме и функциям. Размеры клеток варьируют от 0,1-0,25 мкм (некоторые бактерии) до 15-21 см (яйцо страуса в скорлупе).

Есть свободноживущие клетки, которые ведут себя как особи популяций и видов. Их жизнедеятельность зависит не только от слаженной работы внутриклеточных структур, но и от особенностей существования клетки как самостоятельного организма (добывание пищи, способ питания, размножение, подвижность в окружающей среде, активное и неактивное переживание неблагоприятных условий и пр.).


Клетки свободноживущие (1) и образующие ткани (2)

Одноклеточных организмов чрезвычайно много. Их представители встречаются среди всех царств живой природы и населяют все среды жизни на нашей планете.

У многоклеточных организмов разные клетки выполняют различные функции. Клетки, сходные по строению, расположенные рядом, объединённые межклеточным веществом и предназначенные для выполнения определённых (специализированных) функций в организме, образуют ткани. Ткани возникли в ходе эволюционного развития одновременно с появлением многоклеточности, так как специализация клеток и, следовательно, тканей способствовала лучшему обеспечению процессов жизнедеятельности целостного организма.

У животных различают четыре типа (группы) тканей: эпителиальную, соединительную, мышечную и нервную; у растений - пять типов (групп) тканей: образовательную, покровную, проводящую, механическую, основную.

Клетки всех организмов на Земле принципиально сходны по своему строению, химическому составу и основным проявлениям жизни. При этом процессы жизнедеятельности (дыхание, биосинтез, обмен веществ) происходят в клетках независимо от того, являются они одноклеточными организмами или составными частями многоклеточного организма.

Жизнь многоклеточного организма зависит от жизнедеятельности его отдельных клеток и их групп, выполняющих особые, специализированные функции.

Свойства клетки. Особенность клетки определяется специфичностью её составных компонентов, упорядоченностью происходящих в ней как в целостной системе процессов. Живая клетка осуществляет процессы, от которых зависит её жизнь: она поглощает пищу, извлекает из неё энергию, избавляется от отходов обмена веществ, поддерживает постоянство своего химического состава и воспроизводит саму себя. Всё это позволяет рассматривать клетку как особую единицу живой материи, как элементарную живую систему - биосистему клеточного уровня организации жизни.

Клетка - основная структурная и функциональная единица жизни.

Из клеток состоят все живые существа - от одноклеточных до крупных растений, животных и человека. У всех организмов клетки функционируют, с одной стороны, как самостоятельные биосистемы, а с другой - как взаимосвязанные части целого.

Два типа клеток.

В первой половине XX в. было обнаружено, что в клетках бактерий нет оформленного ядра, отделённого от цитоплазмы мембраной, хотя присутствует само ядерное вещество, несущее наследственную информацию. В клетках растений, животных и грибов ядро хорошо сформировано и отграничено от цитоплазмы.

Клетки, не имеющие оформленного ядра, называют прокариотическими (лат. pro - «перед», «раньше» и греч. karyon - «ядро»), а имеющие ядро - эукариотическими (лат. ей - «полностью» и греч. karyon - «ядро»). По этому признаку все организмы делят на две группы: доядерные (прокариоты) и ядерные (эукариоты).

Клетки прокариот имеют достаточно простое строение, так как сохраняют черты первых организмов, возникших на Земле. Эукариоты могут быть одноклеточными и многоклеточными, их клетки имеют более сложное строение, чем у прокариот, и отличаются большим разнообразием.



Определение 1

Одноклеточные (простейшие) - организмы, в которых все функции живого выполняет одна клетка.

Кроме прокариот, к ним относятся одноклеточные эукариоты, среди которых есть и растения, и животные, и грибы.

Особенности одноклеточных организмов

Размеры простейших микроскопически малы. К особенностям одноклеточных организмов относится то, что они выполняют все функции живого с помощью клеточных органелл и является отдельным самостоятельным организмом, представленным лишь одной клетки. По строению и набором органелл клетки одноклеточных организмов подобные клеткам многоклеточных организмов. Среди одноклеточных эукариот выделяют как просто построенные организмы (амеба, хлорелла), так и достаточно сложные (инфузории, ацетабулярии).

Если для клеток многоклеточных организмов характерно дифференцировка функций и невозможность выполнять сразу все функции живого, то одноклеточные организмы эту способность сохраняют. Высокий уровень их организации - клеточный. Клетка одноклеточных организмов - это целостный организм, которому присущи все свойства живого: обмен веществ, раздражимость, рост, размножение и тому подобное.

Их тело состоит из цитоплазмы, в которой различают внешний слой - эктоплазму, и внутренний - эндоплазму. В большинстве видов клетка снаружи покрыта оболочкой, которая предоставляет одноклеточной животному постоянную форму. У простейших проявляются органеллы, выполняющие различные функции:

  • пищеварения (пищеварительные вакуоли),
  • выделения (сократительные вакуоли),
  • движения (жгутики, реснички),
  • восприятия света (светочувствительный глазок)

и другие органеллы, обеспечивающие все процессы жизнедеятельности. По способу питания - это гетеротрофные организмы. Простейшим свойственна раздражительность, проявляющаяся в различных движениях - таксисе. Различают положительные таксисы - движения к раздражителю, и отрицательные таксисы - движения от раздражителя.

Попадая в неблагоприятные условия, простейшие образуют цисты. Инцистирование - важная биологическая особенность простейших. Оно не только обеспечивает переживания неблагоприятных условий, но и способствует широкому расселению.

Водные одноклеточные

Морские одноклеточные животные, например фораминиферы и радиолярии, имеют внешний скелет в виде известковой раковины. К высокоорганизованных одноклеточных животных относятся инфузории. Органоидами движения в них выступают реснички, тело покрыто прочной эластичной оболочкой, которая предоставляет ему постоянной формы. Большинство инфузорий имеет два ядра: большое и малое. Большое вегетативное ядро - регулирует процессы движения, питания, выделения, а также бесполое размножение, осуществляемое поперечным делением клетки пополам. Малое ядро - генеративное, оно выполняет важную функцию в половом процессе.

Среди водных одноклеточных организмов также выделяют миксотрофы - организмы, которые могут питаться как с помощью фотосинтеза, так и гетеротрофно. Например, эвглена зеленая.

Живет эвглена в пресноводных водоемах и плавает с помощью единого жгутика, расположенного на переднем конце тела. В цитоплазме эвглены имеются хлоропласты, содержащие хлорофилл, позволяет эвглену питаться фототрофные. Если нет света, она переходит на гетеротрофное питания. Благодаря этому свойству эвглена сочетает в себе признаки растения и животного, что свидетельствует об эволюционном единстве растительного и животного мира.

Одноклеточные растения и грибы

Замечание 1

В природе много не только одноклеточных животных, но и одноклеточных растений и грибов. Например, среди зеленых водорослей к представителям одноклеточных принадлежат хламидомонада и хлорелла, а среди грибов одноклеточными являются дрожжи.

Одноклеточные растения и животные являются типичными эукариотическими клетками, имеющими соответствующие органеллы:

  • поверхностную мембрану,
  • ядро,
  • митохондрии,
  • аппарат Гольджи,
  • эндоплазматическую сеть,
  • рибосомы.

Различия строения одноклеточных животных и одноклеточных растений связаны с различиями способа их питания. Для растительных клеток характерно наличие пластид, вакуоли, клеточной стенки и других особенностей, связанных с фотосинтезом. Для животных клеток характерно наличие гликокаликса, пищеварительных вакуолей и других особенностей, связанных с гетеротрофным питанием.

У грибов клетка имеет клеточную стенку, в этом проявляется сходство грибов с бактериями и растениями. Но грибы являются гетеротрофами, и это роднит их с животными.

Одноклеточные эукариоты размножаются преимущественно бесполым путем, но у некоторых из них (например, у инфузории-туфельки) наблюдается половой процесс - обмен генетической информацией, а в других (например, в хламидомонады) происходит половое размножение. Бесполое размножение происходит путем деления клетки пополам с помощью митоза. При половом размножении образуются гаметы, которые затем сливаются с образованием зиготы.

Замечание 2

Одноклеточные и Многоклеточные организмы – это внесестиматические единицы биосферы. Именно они населяют нашу планету. Выявление отличий между обеими группами позволит человеку лучше понять эволюционные процессы, контролировать болезни или увеличивать урожайность сельскохозяйственных культур.

Одноклеточные организмы состоят всего из одной клетки. В эту группу могут быть отнесены – ядерные. Самыми известными представителями ядерных индивидуумов являются амеба обычная, эвглена зеленая, инфузория-туфелька. Из безъядерных организмов наиболее распространены и археи. Одноклеточные индивидуумы объединяются в колонии, которые усиливают способность вида к выживаемости. Одноклеточные были открыты Антонием Левенгуком после создания им светового микроскопа.

Одноклеточные имеют оболочку, которая удерживает внутреннее содержимое клетки. У ядерных есть четко оформленное ядро, защищенное ядерной оболочкой. У безъядерных – крупная молекула ДНК, которая содержит генетическую информацию.

Практически все одноклеточные имеют «средства передвижения» — жгутики, ложноножки, реснички или газовые вакуоли. У каждого организма есть специфические структуры, с помощью которых они могут проводить фото- или хемо-синтез. В середине каждой клетки содержатся митохондрии. Они окисляют органические соединения и используют освобожденную энергию для синтеза молекул адезинтрифосфата, источника энергии для всех процессов, проистекающих в клетке. В цитоплазме находится пара вакуолей. Они предназначены для переваривания пищи, выделения или движения. Аппарат Гольджи контролирует белки, а в везикулах запасаются питательные вещества.

Размножение организмов происходит делением или же псевдосексуально, когда индивидуумы лишь обмениваются фрагментами своего генетического багажа, при этом, не увеличивая число особей.

Одноклеточные организмы первыми сформировались на планете, если следовать эволюционной теории Дарвина. В этой группе роль пионеров пространства принадлежит безъядерным и лишь 1,5-2 миллиарда лет тому назад появились ядерные клетки.

Многоклеточные организмы – это индивидуумы, тела которых состоят из множества клеток. К ним относятся , большинство растений и животных. Их организмы состоят из специализированных клеток, которые объединены в ткани, органы или системы органов. При этом каждая отдельная клетка, входящая в систему, обладает обычным набором органелл: ядром, комплексом Гольджи, митохондриями, вакуолями, цитоскилетом, ядерной оболочкой.

Жизнь любого многоклеточного существа начинается с одной клетки, зиготы. Она образовалась при слиянии двух родительских клеток. Такое начало онтогенеза или индивидуального развития организма является одним из доказательств того, что одноклеточные стали базовым организмом для появления многоклеточных.

Выводы сайт

  1. Ключевым отличием является количество клеток, из которых сложен организм.
  2. Первыми на Земле появились одноклеточные, а уже из них образовались, эволюционировали многоклеточные существа.
  3. Уровень организаций одноклеточных примитивный. Многоклеточные – более сложно организованные существа.

Развитие живой природы на земле привело к образованию двух основных групп организмов - растений и животных. Между животными и растениями, несмотря на внешние различия, существует много общего. Сходство растительных и животных клеток обнаруживается на элементарном химическом уровне. Современными методами химического анализа в составе живых организмов обнаружено около 90 элементов периодической системы. На молекулярном уровне сходство проявляется в том, что во всех клетках найдены белки, жиры, углеводы, нуклеиновые кислоты, витамины и т. д.

Особенность молекулярной организации растительных клеток состоит в том, что в них находится фотосинтезирующий пигмент - хлорофилл. Благодаря фотосинтезу в атмосфере Земли накапливается - кислород и ежегодно образуются сотни миллиардов тонн органических веществ. Растениям, как и животным, присущи такие свойства живого, как рост (деление клеток за счет митоза - прим. biofile.ru), развитие, обмен веществ, раздражимость, движение, размножение, причем половые клетки животных и растений формируются путем мейоза и в отличие от соматических имеют гаплоидный (n) набор хромосом. Клетки и растений, и животных окружены тонкой цитоплазматической мембраной. Однако у растений имеется еще толстая целлюлозная клеточная стенка. Клетки, окруженные твердой оболочкой, могут воспринимать из окружающей среды необходимые им вещества только в растворенном состоянии. Поэтому растения питаются осмотически. Интенсивность же питания зависит от величины поверхности тела растения, соприкасающейся с окружающей средой. Вследствие этого у большинства растений наблюдается значительно более высокая степень расчлененности, чем у животных, за счет ветвления побегов и корней. Существование у растений твердых клеточных оболочек обусловливает еще одну особенность растительных организмов - их неподвижность, в то время как у животных мало форм, ведущих прикрепленный образ жизни. Именно поэтому распространение животных и растений происходит в разные периоды онтогенеза: животные расселяются в личиночном или во взрослом состоянии; растения осваивают новые местообитания путем переноса ветром или животными зачатков (спор, семян), находящихся в состоянии покоя. Растительные клетки отличаются от клеток животных особыми органоидами-пластидами, а также развитой сетью вакуолей, в значительной мере обусловливающих осмотические свойства клеток. Животные клетки изолированы друг от друга, а у клеток растений каналы эндоплазматической сети через поры в клеточной стенке сообщаются друг с другом. В качестве запасных питательных веществ в клетках животных накапливается гликоген, а в растительных - крахмал. Форма раздражимости у многоклеточных животных - рефлекс, у растений – тропизмы и настии. У растений встречается как половое, так и бесполое размножение и у подавляющего большинства их существует чередование полового и бесполого поколений. У животных определяющей формой воспроизводства потомков служит половое размножение.

Низшие одноклеточные растения и одноклеточные простейшие животные трудно различимы не только внешне. Например, у эвглены зеленой – организма, стоящего как бы на границе растительного и животного мира, питание смешанное: на свету она синтезирует органические вещества с помощью хлоропластов, а в темноте питается гетеротрофно, как животное. Рост растений почти непрерывен, а у большинства животных он ограничен определенным периодом онтогенеза, после прохождения которого рост прекращается. Бесспорно то, что у современных растений и животных были общие предки. Именно они и послужили общим корнем для эволюционного развития и дивергенции растений и животных.

Растения

Животные

1 Клетки имеют целлюлозную оболочку и пластиды, вакуоли наполнены клеточным соком.

1. Клетки лишены твердых оболочек, пластид, вакуолей.

2 Растения автотрофы, способные к фотосинтезу (из неорганических веществ создавать органические вещества).

2 Животные - гетеротрофы, способны питаться готовыми органическими веществами (но это не абсолютно - эвглена зеленая может фотосинтезировать на свету).

3 Растения неподвижны (исключение: росянка, мимоза - свойственно движение отдельных частей организма).

3 Животные передвигаются с помощью специальных органов: жгутиков, ресничек, конечностей. (Но некоторые ведут неподвижный образ жизни - это вторичное явление).

4 Растения растут в течение всей своей жизни.

4 У животных рост происходит только на определенных стадиях развития.

5 Таких органов и систем органов, как у животных, у растений нет.

5 В ходе эволюции возникли разнообразные органы и системы органов: движения, пищеварения, выделения, дыхания, кровообращения, нервная система и органы чувств.

Различия в строении клеток растений и животных

В процессе эволюции, в связи с неодинаковыми условиями существования клеток представителей различных царств живых существ, возникло множество отличий. Сравним строение и жизнедеятельность клеток растений и животных.

Главное отличие между клетками этих двух царств заключается в способе их питания. Клетки растений, содержащие хлоропласты, являются автотрофами, т. е. сами синтезируют необходимые для жизнедеятельности органические вещества за счет энергии света в процессе фотосинтеза. Клетки животных - гетеротрофы, т. е. источником углерода для синтеза собственных органических веществ для них являются органические вещества, поступающие с пищей. Эти же пищевые вещества, например углеводы, служат для животных источником энергии.

Есть и исключения, такие как зеленые жгутиконосцы, которые на свету способны к фотосинтезу, а в темноте питаются готовыми органическими веществами. Для обеспечения фотосинтеза в клетках растений содержатся пластиды, несущие хлорофилл и другие пигменты.

Так как растительная клетка имеет клеточную стенку, защищающую ее содержимое и обеспечивающую постоянную ее форму, то при делении между дочерними клетками образуется перегородка, а животная клетка, не имеющая такой стенки, делится с образованием перетяжки.

Резкую границу между животными и растениями провести нельзя. Если высшие, сложно организованные животные и растения всегда резко отличаются друг от друга многими признаками, то их низшие формы, особенно одноклеточные животные и растения, нередко имеют черты сходства. Это свидетельствует об общности происхождения животных и растений.

    Какие свойства характерны для высших растений?

Первое и, пожалуй, самое главное свойство растений - это способность к фотосинтезу. Организмы, использующие для питания синтезируемые ими же вещества, называются автотрофами, т.е. питание у растений автотрофное. Однако, как все в мире природы, подобное свойство есть не только у растений, но и у некоторых бактерий и протистов. Тем не менее, именно растения являются самыми главными фотосинтезирующими организмами на Земле. Благодаря сложным биохимическим процессам в зелёных клетках растений из воды и углекислого газа образуются органические соединения - углеводы (глюкоза). При этом от воды отщепляется кислород и выделяется в атмосферу. Второй , вытекающий отсюда признак - это свойственные только растениям пигменты: хлорофилл (зелёный), присутствующий во всех зеленых частях растений и выполняющий основную долю фотосинтеза, различные каратиноиды (красный, оранжевый, желтый), также фотосинтезирующие, благодаря которым листья осенью приобретают соответствующую окраску. Кроме того, существует множество других пигментов, обуславливающих разнообразие окраски цветков плодов и прочих частей растений.

Третий признак - это неограниченный рост. Растения, в отличие от животных, способны расти в течение всей своей жизни (с перерывами на зимний период). Здесь опять же нужно сказать о том, что расти в течение всей жизни способны и грибы.

Четвертый признак - особенность клеточного строения. У растений клетка снаружи помимо мембраны покрыта так называемой клеточной стенкой, состоящей из целлюлозы, которая является своеобразным каркасом клетки. У животных подобной клеточной стенки нет, а у грибов она состоит из хитина. В совокупности клеточные стенки придают тканям растений большую прочность.



Рассказать друзьям