Что входит в состав клетки прокариот. Прокариотические и эукариотические клетки

💖 Нравится? Поделись с друзьями ссылкой

По уровню организации клетки делят на прокариотические и эукариотические.

К прокариотам (от лат. pro – перед, вместо и греч. карион – ядро) относят организмы царства Дробянки: бактерии и сине-зеленые водоросли. Клетки прокариот имеют маленькие размеры и не превышают 30 мкм. Некоторые виды имеют клетки диаметром около 0,2 мкм.

Клетки прокариот не имеют ядра и клеточных органелл (кроме рибосом). Лишь у некоторых бактерий, которые живут в водоемах или капиллярах почвы, заполненных влагой, встречаются специфические газовые вакуоли. Благодаря изменениям объема газов в вакуолях бактерии могут двигаться в водной среде с минимальными затратами энергии.

Бактерии преимущественно одноклеточные организмы. Имеют клеточную стенку, в состав которой входит муреин . Муреин представляет собой единую молекулу. В состав клеточных стенок бактерий также входят белки, липополисахариды, фосфолипиды и т. п. Иногда извне клеточная стенка покрыта слизистой капсулой, которая состоит из полисахаридов. Она не очень крепко связана с клеткой и может легко разрушаться под действием определенных соединений. К клеточной стенке плотно прилегает плазматическая мембрана. Клеточная стенка бактерий имеет антигенные свойства, согласно которым лейкоциты синтезируют к ним антитела.

Клетки бактерий способны прилипать к разным субстратам и слипаться между собой благодаря липополисахаридам клеточной стенки.

В цитоплазме прокариот содержатся рибосомы, разнообразные включения, один или два ядерных участка – нуклеоиды – с наследственным материалом в виде кольцевой молекулы ДНК. Этот участок прикреплен к внутренней поверхности плазматической мембраны в определенном месте. ДНК не образует комплекса с белками.

Рибосомы прокариот по строению подобны рибосомам эукариотических клеток.

Плазматическая мембрана образует внутри клетки складки разной формы. На внутренних мембранах осуществляются основные процессы жизнедеятельности бактерий: дыхание, хемосинтез, фотосинтез. В клетках некоторых цианобактерий есть шарообразные мембранные структуры, в которых находятся фотосинтезирующие пигменты.

Могут иметь жгутик (один или несколько). Жгутики могут быть значительно длиннее самой клетки. Строение их более простое, чем строение жгутиков эукариот. Включают в свой состав белок флагеллин .

Бактерии преимущественно неподвижны – прикрепляются к поверхности субстрата или способствуют прикреплению клеток (во время полового процесса) с помощью специальных нитевидных наростов или трубчатых образований из белков или полисахаридов – пилей или фимбрий .

Скопления бактерий могут быть окружены общей слизистой капсулой. Скопления клеток могут иметь вид грозди, цепочки и т. п.

В клетке. Наследственная информация передается с помощью кольцевой ДНК , которая прикреплена к плазматической оболочке клетки . Кроме этого, в клетках прокариотов присутствуют рибосомы, а цитоплазма имеет гелевую консистенцию, которая обеспечивает устойчивость к высоким температурам. Размножаются прокариоты с помощью простейшего деления, без полового процесса. Многоклеточных форм у таких организмов не бывает.

Строение прокариотической и эукариотической клетки. Различия в строении.

Царство Дробянки - это упраздненное сегодня царство живых организмов, которым раньше называли прокариотов. Название образовано от способа размножения прокариотов - делением. Прокариоты появились на земле более 3,5 млрд.лет назад.

Подцарство Архебактерии - это самые древние прокариоты, которые отличаются от других видов прокариотов строением и отсутствием муреина (пептидогликана) в клеточных стенках бактерий. Кольцевая ДНК архебактерий построена по типу эукариотических организмов - по типу избыточного генома.

Архебактерии делятся на три типа :

1) Галобактерии ;

2) Метаногенные бактерии ;

3) Экстремальные термофилы .

Галобактерии практикуют фотосинтез без выделения кислорода с пигментом бактериородопсином.

Эубактерии - это самая многочисленная группа микроорганизмов, клеточная оболочка которых имеет муреин в своем составе. Делятся на граммотрицательные бактерии и граммположительные бактерии (определяют с помощью реакции на анилиновые красители). Эубактерии могут образовывать споры, а размножаются они с помощью некоего подобия полового процесса - конъюгацией , обмениваясь плазмидами. Плазмиды - это небольшые кольцевые ДНК, внехромосомные частицы, которые содержат не более одного гена.

По форме клеток различают следующие виды эубактерий:

  • Бактерии;
  • Кокки;
  • Вибрионы;
  • Бациллы;
  • Спирохеты;
  • Спириллы.

По типу питания эубактерии бывают фотоавтотрофами (без выделения кислорода), хемотрофами и гетеротрофами . Бывают аэробные бактерии и анаэробные бактерии .

Эубактерии играют важную роль в общей биосистеме:

1) Выполняют геологическую роль (железобактерии , серные бактерии и др.);

2) Принимают непосредственное участие в круговороте веществ (сапротрофы );

3) Являются возбудителями различных заболеваний у других живых организмов, в том числе и людей;

4) Используются человеком для своих целей - в виноделии, сыроделании, образовании аминокислот, кормового белка, витаминов и др.

Подцарство Оксифотобактерии . Это подцарство делится на два отдела: хлороксибактерии и цианобактерии (сине-зеленые водоросли). К хлороксибактериям относятся прокариоты рода прохлорон, которые были открыты во второй половине 20-го века. Ученые до сих пор дискутируют насчет их происхождения. Они обитают в симбиозе с асцидиями в морях тропиков и субтропиков. Их набор фотосинтетических элементов является таким же, как у зеленых водорослей и высших растений.

Клетка прокариот устроена значительно проще клеток животных и растений. Снаружи она покрыта клеточной стенкой, выполняющей защитные, формирующие и транспортные функции. Жёсткость клеточной стенки обеспечивает муреин. Иногда бактериальная клетка покрыта сверху капсулой или слизистым слоем.

Протоплазма бактерий, как и у эукариот, окружена плазматической мембраной . В мешковидных, трубчатых или пластинчатых впячиваниях мембраны находятся мезосомы, участвующие в процессе дыхания, бактериохлорофилл и другие пигменты. Генетический материал прокариот не образует ядра, а находится непосредственно в цитоплазме. ДНК бактерий – одиночные кольцевые молекулы, каждая из которых состоит из тысяч и миллионов пар нуклеотидов. Геном бактериальной клетки намного проше, чем у клеток более развитых существ: в среднем ДНК бактерий содержит несколько тысяч генов.

В прокариотических клетках отсутствует эндоплазматическая сеть , а рибосомы свободно плавают в цитоплазме. Нет у прокариот и митохондрий ; частично их функции выполняет клеточная мембрана.

Прокариоты

Бактерии – мельчайшие из организмов, обладающих клеточным строением; их размеры составляют от 0,1 до 10 мкм. На обычной типографской точке можно разместить сотни тысяч бактерий среднего размера. Бактерии можно увидеть только в микроскоп, поэтому их называют микроорганизмами или микробами; микроорганизмы изучаются микробиологией . Часть микробиологии, изучающая бактерии, называется бактериологией . Начало этой науке положил Антони ван Левенгук в XVII веке.

Бактерии – древнейшие из известных организмов. Следы жизнедеятельности бактерий и сине-зелёных водорослей (строматолиты) относятся к архею и датируются возрастом 3,5 млрд. лет.

Из-за возможности обмена генами между представителями различных видов и даже родов систематизировать прокариот довольно сложно. Удовлетворительная систематика прокариот не построена до сих пор; все существующие системы являются искусственными и классифицируют бактерии по какой-либо группе признаков, не учитывая их филогенетического родства. Ранее бактерии вместе с грибами и водорослями включались в подцарство низших растений. В настоящее время бактерии выделены в отдельное надцарство прокариот. Наиболее распространённой системой классификации является система Берги , в основу которой положено строение клеточной стенки.

В конце XX века учёные обнаружили, что клетки сравнительно малоизученной группы бактерий – архебактерий – содержат р-РНК , отличные по своему строению и от р-РНК прокариот, и от р-РНК эукариот. Строение генетического аппарата архебактерий (наличие интронов и повторяющихся последовательностей, процессинг , форма рибосом ) сближает их с эукариотами; с другой стороны, архебактерии имеют и типичные признаки прокариот (отсутствие ядра в клетке, наличие жгутиков, плазмид и газовых вакуолей, размер р-РНК, азотфиксация). Наконец, архебактерии отличаются от всех остальных организмов строением клеточной стенки, типом фотосинтеза и некоторыми другими признаками. Архебактерии способны существовать в экстремальных условиях (например, в горячих источниках при температуре свыше 100 °С, в океанских глубинах при давлении 260 атм, в насыщенных солевых растворах (30 % NaCl)). Некоторые архебактерии выделяют метан, другие используют для получения энергии соединения серы.

По-видимому, архебактерии являются очень древней группой организмов; «экстремальные» возможности свидетельствуют об условиях, характерных для поверхности Земли в архейскую эру . Считается, что архебактерии наиболее близки к гипотетическим «проклеткам», породившим впоследствии всё многообразие жизни на Земле.

В последнее время стало ясно, что существуют три основных типа р-РНК , представленные, соответственно, первая – в клетках эукариот, вторая – в клетках настоящих бактерий, а также в митохондриях и хлоропластах эукариот, третья – у архебактерий. Исследования молекулярной генетики заставили по-новому взглянуть на теорию происхождения эукариот. В настоящее время считается, что на древней Земле одновременно эволюционировали три различные ветви прокариот – архебактерии, эубактерии и уркариоты , характеризовавшиеся разным строением и различными способами получения энергии. Уркариоты, являвшиеся, по сути, ядерно-цитоплазматическим компонентом эукариот, впоследствии включили в себя в качестве симбионтов представителей различных групп эубактерий, которые превратились в митохондрии и хлоропласты будущих клеток эукариот.

Таким образом, ранг класса, выделявшийся ранее для архебактерий, явно недостаточен. В настоящее время многие исследователи склонны разделять прокариот на два царства: архебактерии и настоящие бактерии (эубактерии ) или даже вовсе выделять архебактерии в отдельное надцарство Archaea.

Классификация настоящих бактерий приведена на схеме .

В бактериальной клетке отсутствует ядро, хромосомы свободно располагаются в цитоплазме. Кроме того, в клетке бактерии отсутствуют мембранные органоиды: митохондрии , ЭПС , аппарат Гольджи и пр. Снаружи клеточная мембрана покрыта клеточной стенкой.

Большинство бактерий передвигаются пассивно, с помощью водных или воздушных течений. Только некоторые из них имеют органеллы движения – жгутики . Жгутики прокариот очень просты по устройству и состоят из белка флагеллина, образующего полый цилиндр диаметром 10–20 нм. Они ввинчиваются в среду, продвигая клетку вперёд. По-видимому, это единственная известная в природе структура, использующая принцип колеса.

По своей форме бактерии делятся на несколько групп:

    кокки (имеют округлую форму);

    бациллы (имеют палочковидную форму);

    спириллы (имеют форму спирали);

    вибрионы (имеют форму запятой).

По способу дыхания бактерии делятся на аэробов (большинство бактерий) и анаэробов (возбудители столбняка, ботулизма, газовой гангрены). Первым для дыхания нужен кислород, для вторых кислород бесполезен или даже ядовит.

Бактерии размножаются путем деления примерно каждые 20 минут (в благоприятных условиях). ДНК реплицируется, каждая дочерняя клетка получает по своей копии родительской ДНК. Возможна также передача ДНК между неделящимися клетками (посредством захвата «голой» ДНК, при помощи бактериофагов или путём конъюгации , когда бактерии соединяются между собой копуляционными фимбриями), однако увеличения количества особей при этом не происходит. Размножению препятствуют солнечные лучи и продукты их собственной жизнедеятельности.

Поведение бактерий не отличается особой сложностью. Химические рецепторы регистрируют изменения кислотности среды и концентрацию различных веществ: сахаров, аминокислот, кислорода. Многие бактерии реагируют на изменения температуры или освещенности, некоторые бактерии могут чувствовать магнитное поле Земли.

При неблагоприятных условиях бактерия покрывается плотной оболочкой, цитоплазма обезвоживается, жизнедеятельность почти прекращается. В таком состоянии споры бактерии могут часами находиться в глубоком вакууме, переносить температуру от –240 °С до +100 °С.

К прокариотам относятся архебактерии, бактерии и синезеленые водоросли. Прокариоты — одноклеточные организмы, у которых отсутствуют структурно оформленное ядро, мембранные органоиды и митоз.

Размеры — от 1 до 15 мкм. Основные формы: 1) кокки (шаровидные), 2) бациллы (палочковидные), 3) вибрионы (изогнутые в виде запятой), 4) спириллы и спирохеты (спирально закрученные).

1 — кокки; 2 — бациллы; 3 — вибрионы; 4—7 — спириллы и спирохеты.

1 — цитоплазматическая мемб-рана; 2 — клеточ-ная стенка; 3 — слизис-тая кап-сула; 4 — цито-плазма; 5 — хромо-сомная ДНК; 6 — рибосомы; 7 — мезо-сома; 8 — фото-синтети-ческие мемб-раны; 9 — вклю-чения; 10 — жгу-тики; 11 — пили.

Бактериальная клетка ограничена оболочкой. Внутренний слой оболочки представлен цитоплазматической мембраной (1), над которой находится клеточная стенка (2); над клеточной стенкой у многих бактерий — слизистая капсула (3). Строение и функции цитоплазматической мембраны эукариотической и прокариотической клеток не отличаются. Мембрана может образовывать складки, называемые мезосомами (7). Они могут иметь разную форму (мешковидные, трубчатые, пластинчатые и др.).

На поверхности мезосом располагаются ферменты. Клеточная стенка толстая, плотная, жесткая, состоит из муреина (главный компонент) и других органических веществ. Муреин представляет собой правильную сеть из параллельных полисахаридных цепей, сшитых друг с другом короткими белковыми цепочками. В зависимости от особенностей строения клеточной стенки бактерии подразделяются на грамположительные (окрашиваются по Граму) и грамотрицательные (не окрашиваются). У грамотрицательных бактерий стенка тоньше, устроена сложнее и над муреиновым слоем снаружи имеется слой липидов. Внутреннее пространство заполнено цитоплазмой (4).

Генетический материал представлен кольцевыми молекулами ДНК. Эти ДНК можно условно разделить на «хромосомные» и плазмидные. «Хромосомная» ДНК (5) — одна, прикреплена к мембране, содержит несколько тысяч генов, в отличие от хромосомных ДНК эукариот она не линейная, не связана с белками. Зона, в которой расположена эта ДНК, называется нуклеоидом . Плазмиды — внехромосомные генетические элементы. Представляют собой небольшие кольцевые ДНК, не связаны с белками, не прикреплены к мембране, содержат небольшое число генов. Количество плазмид может быть различным. Наиболее изучены плазмиды, несущие информацию об устойчивости к лекарственным препаратам (R-фактор), принимающие участие в половом процессе (F-фактор). Плазмида, способная объединяться с хромосомой, называется эписомой .

В бактериальной клетке отсутствуют все мембранные органоиды, характерные для эукариотической клетки (митохондрии, пластиды, ЭПС, аппарат Гольджи, лизосомы).

В цитоплазме бактерий находятся рибосомы 70S-типа (6) и включения (9). Как правило, рибосомы собраны в полисомы. Каждая рибосома состоит из малой (30S) и большой субъединиц (50S). Функция рибосом: сборка полипептидной цепочки. Включения могут быть представлены глыбками крахмала, гликогена, волютина, липидными каплями.

У многих бактерий имеются жгутики (10) и пили (фимбрии) (11). Жгутики не ограничены мембраной, имеют волнистую форму и состоят из сферических субъединиц белка флагеллина. Эти субъединицы расположены по спирали и образуют полый цилиндр диаметром 10-20 нм. Жгутик прокариот по своей структуре напоминает одну из микротрубочек эукариотического жгутика. Количество и расположение жгутиков может быть различным. Пили — прямые нитевидные структуры на поверхности бактерий. Они тоньше и короче жгутиков. Представляют собой короткие полые цилиндры из белка пилина. Пили служат для прикрепления бактерий к субстрату и друг к другу. Во время конъюгации образуются особые F-пили, по которым осуществляется передача генетического материала от одной бактериальной клетки к другой.

Спорообразование у бактерий — способ переживания неблагоприятных условий. Споры формируются обычно по одной внутри «материнской клетки» и называются эндоспорами. Споры обладают высокой устойчивостью к радиации, экстремальным температурам, высушиванию и другим факторам, вызывающим гибель вегетативных клеток.

Размножение. Бактерии размножаются бесполым способом — делением «материнской клетки» надвое. Перед делением происходит репликация ДНК.

Редко у бактерий наблюдается половой процесс, при котором происходит рекомбинация генетического материала. Следует подчеркнуть, что у бактерий никогда не образуются гаметы, не происходит слияние содержимого клеток, а имеет место передача ДНК от клетки-донора к клетке-реципиенту. Различают три способа передачи ДНК: конъюгация, трансформация, трансдукция.

— однонаправленный перенос F-плазмиды от клетки-донора в клетку-реципиента, контактирующих друг с другом. При этом бактерии соединяются друг с другом особыми F-пилями (F-фимбриями), по каналам которых фрагменты ДНК и переносятся. Конъюгацию можно разбить на следующие этапы: 1) раскручивание F-плазмиды, 2) проникновение одной из цепей F-плазмиды в клетку-реципиента через F-пилю, 3) синтез комплементарной цепи на матрице одноцепочечной ДНК (происходит как в клетке-доноре (F +), так и в клетке-реципиенте (F -)).

Трансформация — однонаправленный перенос фрагментов ДНК от клетки-донора к клетке-реципиенту, не контактирующих друг с другом. При этом клетка-донор или «выделяет» из себя небольшой фрагмент ДНК, или ДНК попадает в окружающую среду после гибели этой клетки. В любом случае ДНК активно поглощается клеткой-реципиентом и встраивается в собственную «хромосому».

Трансдукция — перенос фрагмента ДНК от клетки-донора к клетке-реципиенту с помощью бактериофагов.

Вирусы

Вирусы состоят из нуклеиновой кислоты (ДНК или РНК) и белков, образующих оболочку вокруг этой нуклеиновой кислоты, т.е. представляют собой нуклеопротеидный комплекс. В состав некоторых вирусов входят липиды и углеводы. Вирусы содержат всегда один тип нуклеиновой кислоты — либо ДНК, либо РНК. Причем каждая из нуклеиновых кислот может быть как одноцепочечной, так и двухцепочечной, как линейной, так и кольцевой.

Размеры вирусов — 10-300 нм. Форма вирусов: шаровидная, палочковидная, нитевидная, цилиндрическая и др.

Капсид — оболочка вируса, образована белковыми субъединицами, уложенными определенным образом. Капсид защищает нуклеиновую кислоту вируса от различных воздействий, обеспечивает осаждение вируса на поверхности клетки-хозяина. Суперкапсид характерен для сложноорганизованных вирусов (ВИЧ, вирусы гриппа, герпеса). Возникает во время выхода вируса из клетки-хозяина и представляет собой модифицированный участок ядерной или наружной цитоплазматической мембраны клетки-хозяина.

Если вирус находится внутри клетки-хозяина, то он существует в форме нуклеиновой кислоты. Если вирус находится вне клетки-хозяина, то он представляет собой нуклеопротеидный комплекс, и эта свободная форма существования называется вирионом . Вирусы обладают высокой специфичностью, т.е. они могут использовать для своей жизнедеятельности строго определенный круг хозяев.

В цикле репродукции вируса можно выделить следующие стадии.

  1. Осаждение на поверхности клетки-хозяина.
  2. Проникновение вируса в клетку-хозяина (могут попасть в клетку-хозяина путем: а) «инъекции», б) растворения оболочки клетки вирусными ферментами, в) эндоцитоза; попав внутрь клетки вирус переводит ее белок-синтезирующий аппарат под собственный контроль).
  3. Встраивание вирусной ДНК в ДНК клетки-хозяина (у РНК-содержащих вирусов перед этим происходит обратная транскрипция — синтез ДНК на матрице РНК).
  4. Транскрипция вирусной РНК.
  5. Синтез вирусных белков.
  6. Синтез вирусных нуклеиновых кислот.
  7. Самосборка и выход из клетки дочерних вирусов. Затем клетка либо погибает, либо продолжает существовать и производить новые поколения вирусных частиц.

Вирус иммунодефицита человека поражает главным образом CD 4 -лимфоциты (хелперы), на поверхности которых есть рецепторы, способные связываться с поверхностным белком ВИЧ. Кроме того, ВИЧ проникает в клетки ЦНС, нейроглии, кишечника. Иммунная система организма человека утрачивает свои защитные свойства и оказывается не в состоянии противостоять возбудителям различных инфекций. Средняя продолжительность жизни инфицированного человека составляет 7-10 лет.

Источником заражения служит только человек — носитель вируса иммунодефицита. СПИД передается половым путем, через кровь и ткани, содержащие вирус иммунодефицита, от матери к плоду.

    Перейти к лекции №8 « Ядро. Хромосомы»

    Перейти к лекции №10 « Понятие об обмене веществ. Биосинтез белков»

Строение прокариотной клетки схематично показано на рис. 1.3.

Рис. 1.3. Строение прокариотной клетки

А – поверхностные клеточные структуры и внеклеточные образования: 1 – клеточная стенка; 2 – капсула; 3 – слизистые выделения; 4 – чехол; 5 жгутики; 6 – ворсинки; Б – цитоплазматические клеточные структуры: 7 ЦПМ; 8 – нуклеоид; 9 – рибосомы; 10 – цитоплазма; 11 – хроматофоры; 12 – хлоросомы; 13 – пластинчатые тилакоиды; 14 – фикобилисомы; 15 – трубчатые тилакоиды; 16 – мезосома; 17 – аэросомы (газовые вакуоли); 18 ламеллярные структуры; В запасные вещества: 19 – полисахаридные гранулы; 20 – гранулы поли-b-оксимасляной кислоты; 21 – гранулы полифосфата; 22 – цианофициновые гранулы; 23 – карбоксисомы (полиэдральные тела); 24 – включения серы; 25 – жировые капли; 26 – углеводородные гранулы

Структуры, расположенные снаружи от цитоплазматической мембраны (ЦПМ), называются поверхностными. Они включают клеточную стенку, слизистое вещество, жгутики и ворсинки. Клеточная стенка вместе со слизистым веществом называется клеточной оболочкой , а ЦПМ вместе с цитоплазмой образует протопласт.

Жгутики являются органами движения. Клетка может иметь от 1 до 1000 жгутиков, которые располагаются либо на полюсах, либо равномерно по всей поверхности. Толщина жгутика 10-20 нм, длина 3-15 мкм. С помощью жгутиков бактерии передвигаются со скоростью 20-60 мкм/с в направлении, где условия роста лучше: выше концентрация субстрата, кислорода, лучше освещенность. При отсутствии жгутиков клетки размером менее 4 мкм перемещаются в водной среде за счет броуновского движения. Нитчатые бактерии способны передвигаться за счет скольжения (скорость 2-11 мкм/с), отталкиваясь от твердого или вязкого субстрата с помощью микроскопических выпуклостей клеточной стенки.

Ворсинки – тонкие прямые нити длиной 0,3-4 мкм и диаметром 5-10 нм. Имеются не у всех бактерий. В движении клеток участия не принимают. Количество ворсинок может составлять от 10 до нескольких тысяч. Предполагается, что ворсинки участвуют в транспорте метаболитов и прикреплении бактерий к твердому субстрату. Кроме того, некоторые бактерии (например E. coli штамм K12) имеют половые ворсинки, называемые F-пили. Их количество 1-2 штуки на клетку. F-пили имеют вид полых белковых трубочек длиной от 0,5 до 10 мкм, по которым ДНК может передаваться от клетки-донора к клетке-реципиенту.

Слизистое вещество покрывает клеточную стенку практически всех прокариот. Оно состоит преимущественно из полисахаридов, а также белков, липидов и других полимеров. В зависимости от структуры и прочности связи с клеточной стенкой слизистое вещество делят на 3 типа: слизистый слой (имеет аморфную структуру и легко отделяется от клеточной стенки), капсула (имеет аморфную структуру, но трудно отделяется от клеточной стенки), чехол (имеет упорядоченную тонкую структуру). Толщина слоя слизистого вещества изменяется от долей мкм до десятков мкм. Благодаря слизистому веществу клетки способны слипаться в крупные колонии и прикрепляться к твердым поверхностям. Кроме того, слизь защищает клетку от механических повреждений, высыхания, проникновения бактериофагов и некоторых токсичных веществ, а также может служить источником запасных питательных веществ.



Клеточная стенка обеспечивает механическую прочность клетки и придает ей определенную форму. Она способна выдержать давление до 30-100 атм (3-10 МПа). Толщина стенки 10-100 мкм, масса составляет от 5 до 50 % сухого вещества клетки. Клеточная стенка состоит из семи групп веществ: пептидогликан, тейхоевые кислоты, полисахариды, белки, липиды, липополисахариды, липопротеиды. Пептидогликан содержится только в стенках прокариот (у эукариот отсутствует). По компонентам, структуре и механизму биосинтеза, клеточные стенки бактерий коренным образом отличаются от таковых у животных и растений. Поэтому лекарственные препараты, специфически воздействующие на бактериальные стенки и на процесс их синтеза, безвредны для высших организмов.

В зависимости от строения клеточной стенки бактерии делятся на 2 группы: грамположительные и грамотрицательные . В основе деления лежит способность воспринимать окраску по Граму (Х. Грам –датский ученый, предложивший этот метод окрашивания в 1884 г.). Методика окрашивания по Граму состоит в следующем. Фиксированные клетки обрабатывают основным красителем кристаллическим фиолетовым, а затем раствором иода. Иод образует с кристаллическим фиолетовым комплексное соединение, нерастворимое в воде и плохо растворимое в спирте. При последующей обработке клеток спиртом происходит дифференцировка клеток: у грамположительных видов этот комплекс удерживается клеткой и они остаются окрашенными (синими), у грамотрицательных видов окрашенный комплекс вымывается из клеток и они обесцвечиваются. Клеточные стенки грамположительных и грамотрицательных бактерий резко различаются как по химическому составу, так и по ультраструктуре (см. рис. 1.4).

Рис. 1.4. Клеточная стенка грамположительных (А) и грамотрицательных (Б) бактерий

1 - цитоплазматическая мембрана; 2 - пептидогликан; 3 - периплазматическое пространство; 4 - наружная мембрана: 5 - цитоплазма, в центре которой расположена ДНК

Цитоплазматическая мембрана (ЦПМ) является обязательным структурным элементом клетки, нарушение целостности которого вызывает ее гибель. ЦПМ представляет собой очень мягкое, пластичное, почти жидкое образование, состоящее из белков (50-75 %), липидов (15-45 %) и углеводов (0-20 %). Ее толщина 5-7,5 нм, а массовая доля в клетке 8-15 % от сухого вещества. ЦПМ служит осмотическим барьером и обеспечивает избирательное поступление в клетку и выход из нее различных молекул и ионов, а также участвует в превращениях клеточной энергии и биосинтетических процессах.

Цитоплазма представляет собой коллоидный раствор углеводов, аминокислот, минеральных и других веществ в воде. В ней присутствуют разнообразные структурные элементы: генетический аппарат (нуклеоид), рибосомы, мембраны (внутрицитоплазматические мембраны имеются не во всех прокариотных клетках) и различные включения.

Нуклеоид – молекула ДНК, имеющая форму замкнутого кольца, скрученного в упорядоченный клубок. Нуклеоид не отделен от цитоплазмы мембраной и практически не виден в световой микроскоп. Молекула ДНК (бактериальная хромосома) в развернутом виде имеет длину около 1 мм, т.е. в 1000 раз больше размера клетки.

Многие бактерии наряду с хромосомой ДНК содержат и внехромосомную ДНК, тоже представленную двойными спиралями, замкнутыми в кольцо и свернутыми в клубок. Такие молекулы внехромосомной ДНК, способные к автономной репликации называют плазмидами .

Рибосомы прокариот – это частицы размером 15-20 нм, состоящие из р-РНК (рибосомной РНК) и белка в соотношении 2:1. На рибосомах при участии информационной РНК (и-РНК) и транспортной РНК (т-РНК) осуществляется синтез белков. Рибосомы, связанные наподобие бус на цепи и-РНК, называют полирибосомами или полисомами. В зависимости от активности синтеза белка в бактериальной клетке может содержаться от 5 до 50 тысяч рибосом.

Внутриплазматические включения представлены гранулами запасных веществ (полисахариды, липиды, полипептиды, полифосфаты, отложения серы) и газовыми вакуолями, обеспечивающими плавучесть водных микроорганизмов.

Поступление питательных веществ в прокариотную клетку и выход из нее продуктов осуществляется через всю клеточную поверхность. Слизистый слой очень рыхлый и не является препятствием для проникновения веществ. Но диффузия в этом слое идет медленнее, чем в воде (примерно в 5 раз). Через клеточную стенку легко проникают небольшие молекулы и ионы. Крупные молекулы с молекулярной массой свыше 600 Д (Д – дальтон, 1 Д = 1,66 10 -27 кг) предварительно расщепляются внеклеточными ферментами до низкомолекулярных соединений.

Активная роль в процессе поступления питательных веществ в клетку принадлежит цитоплазматической мембране. Выделяют четыре механизма переноса веществ через ЦПМ: пассивную диффузию, облегченную диффузию, активный транспорт, перенос (транслокацию) групп.

Пассивная (простая) диффузия – самостоятельный переход веществ через ЦПМ за счет разности концентраций по обе стороны мембраны. Основным веществом, проникающим в клетку и выходящим из нее по этому механизму, является вода. Предположительно, путем простой диффузии в клетку поступают низкомолекулярные газы (кислород, водород, азот), а также яды, ингибиторы и другие чуждые клетке вещества.

Облегченная диффузия – переход веществ через ЦПМ по градиенту концентрации с помощью белков-переносчиков (пермеаз), которые обратимо связываются с переносимым веществом. В норме этот механизм иногда используется для входа и выхода из клетки низкомолекулярных органических веществ, но чаще включается только при нарушении внутриклеточных процессов.

Активный транспорт – процесс, аналогичный облегченной диффузии, но осуществляется с затратой клеточной энергии и позволяет переносить вещества против градиента концентрации. Этот механизм является основным способом поступления молекул и ионов в прокариотную клетку.

Транслокация групп – процесс, аналогичный активному транспорту, но сопровождающийся химической модификацией молекулы при переносе через ЦПМ. Например, сахара (глюкоза, фруктоза и др.) подвергаются фосфорилированию (присоединение фосфата с образованием фосфатного эфира).



Рассказать друзьям