Родительские организмы имеют гомозиготные генотипы. Что такое гомозигота в генетике? Особенности образования и примеры

💖 Нравится? Поделись с друзьями ссылкой

ГЕТЕРОЗИГОТА - (от гетеро… ГЕТЕРОЗИГОТА - ГЕТЕРОЗИГОТА, организм, обладающий двумя контрастирующими формами (АЛЛЕЛИ) ГЕНА в паре ХРОМОСОМ. Гетерозигота - организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой - рецессивным. Рецессивный ген - аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.


Гетерозиготность, как правило, обусловливает высокую жизнеспособность организмов, хорошую приспособляемость их к изменяющимся условиям среды и поэтому широко распространена в природных популяциях.

У человека в среднем ок. 20% генов находятся в гетерозиготном состоянии. То есть аллельные гены (аллели) – отцовский и материнский – не одинаковы. Если обозначить этот ген буквой А, то формула организма будет АА. Если же ген получен только от одного родителя, то особь гетерозиготна. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей.

Проявляющийся у гибридов первого поколения признак Мендель назвал доминантным, а подавляемый - рецессивным. На основе этого Мендель сделал еще один вывод: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении. В 1909 году В. Иогансен назовет эти наследственные факторы генами, а в 1912 году Т. Морган покажет, что они находятся в хромосомах.

ГЕТЕРОЗИГОТА это:

При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. От самоопыления 15-ти гибридов первого поколения было получено 556 семян, из них 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых (расщепление 9:3:3:1). Третий закон Менделя справедлив только для тех случаев, когда гены анализируемых признаков находятся в разных парах гомологичных хромосом.

Как правило, является следствием полового процесса (один из аллелей привносится яйцеклеткой, а другой — сперматозоидом). Гетерозиготность поддерживает в популяции определенный уровень генотипичной изменчивости. Ср. Гомозигота. В экспериментах Г. получают скрещиванием между собой гомозигот по разл. аллелям.

Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. - 2-е изд., исправл. Напр. у обоих родителей могут быть голубые глаза, но у одного из них курчавые волосы, а у другого гладкие. Лит.: Bateson W., Mendel’s principles of heredity, Cambridge, 1913; см. также литературу к ст. Генетика.А.

Генетика - наука о закономерностях наследственности и изменчивости. Наследственность - свойство организмов передавать свои признаки от одного поколения к другому. Изменчивость - свойство организмов приобретать новые по сравнению с родителями признаки.

Основным является гибридологический метод - система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г. Менделем. Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным, двух пар - дигибридным, нескольких пар - полигибридным. Мендель пришел к выводу, что у гибридов первого поколения из каждой пары альтернативных признаков проявляется только один, а второй как бы исчезает.

При моногибридном скрещивании гомозиготных особей, имеющих разные значения альтернативных признаков, гибриды являются единообразными по генотипу и фенотипу. Результаты опытов приведены в таблице. Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть - рецессивный, называют расщеплением.

С 1854 года в течение восьми лет Мендель проводил опыты по скрещиванию растений гороха. Для объяснения этого явления Мендель сделал ряд предположений, которые получили название «гипотезы чистоты гамет», или «закона чистоты гамет». Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г. Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков. В результате оплодотворения возможно появление девяти генотипических классов, которые дадут четыре фенотипических класса.

Нек-рые аллели определ. Определение гетерози-готности по рецессивным аллелям, вызывающим наследственные заболевания (т. е. выявление носителей данного заболевания),- важная проблема мед. генетики.

ГОМОЛОГИЧЕСКИЕ РЯДЫ, группы органических соединений с одинаковой хим. функцией, но отличающихся друг от друга одной или несколькими метиленовыми (СН2) группировками. ГОМОЛОГИЧНЫЕ ОРГАНЫ (от греч. ho-mologos-согласный, соответственный), название морфологически сходных органов,т.е. Под альтернативными признаками понимаются различные значения какого-либо признака, например, признак - цвет горошин, альтернативные признаки - желтый цвет, зеленый цвет горошин.

Напр., при наличии «нормального» аллеля А и мутантных а1 и а2 гетерозиготу а1/а2 наз. компаундом в отличие от гетерозигот А/а1 или А/а2. (см. ГОМОЗИГОТА). Однако при разведении гетерозигот в потомстве теряются ценные свойства сортов и пород именно потому, что половые клетки их разнородны. Желтая окраска (А) и гладкая форма (В) семян - доминантные признаки, зеленая окраска (а) и морщинистая форма (b) - рецессивные признаки.

    Гомо с латинского переводится как одинаковый, гомозиготный признак это признак, который в организме наследуется одинаковым генном, который находится в спаренном состоянии (АА). Следовательно гомозиготный организм это организм, в котором признак наследуется одинаковым генном.

    Доминантный признак обозначается буквой А, рецессивный признак обозначается буквой а.

    Гетеро с латинского переводится как разный, это когда в организме признак может быть унаследован как по доминанту, так и по рецессиву, т.е. может быть наследование признака как АА, Аа и аа. В первых двух случаях признак наследуется по доминанту, а во втором случае по рецессиву. Следовательно гетерозиготный организм это организм, в котором признак наследуется разными геннами.

    • Гомозиготный организм - это организм (животное или растение), который имеет два абсолютно одинаковых гена, например, два доминантных гена черной окраски (BB) или два рецессивных гена коричневой окраски (bb). Этот организм по данному признаку называют чистым.
    • Гетерозиготный организм - это организм, содержащий один доминантный и один рецессивный ген (например, Bb). Такой организм называют гибридным.
  • Для того, чтобы понять о чм вообще речь идт необходимо разбираться в генах, а вернее в их делении на доминантные и рецессивные...

    Доминантные гены - это те гены, которые доминируют над другими, сражаются за свою победу...

    Рецессивные гены - это те гены, которые подавлены и не могут сражаться с доминантными...

    Итак гомозиготные организмы содержат два доминантных гена (от слово гомо - одинаковые)...

    Гетерозиготные организмы содержат разные гены, один доминантный, другой рецессивный (от слова гетеро - разные)...

    Итак принципиальная разница в том, что гены могут быть как одинаковые по влвсти, так и разные...

    В медицинской энциклопедии есть определение

    Гомозиготным полом называется пол, который имеет 2 одинаковые половые хромосомы. В гомозиготном (от греческого гомос означает одинаковый, а зиготе означает спаренная) организме имеется 2 одинаковые копии определенного гена в гомологичных хромосомах.

    Гетерозиготным полом называется пол, который имеет разные половые хромосомы или всего одну хромосому. В гетерозиготном организме, еще называют гибридный организм, по определению имеется две разные формы определенного гена (разные формы гена) в гомологичных хромосомах.

    Это очень сложные определения для тех, кто не сталкивался с такими понятиями, но очень понятное объяснение дает биологическая энциклопедия, смотрите по ссылке здесь.

    гомо - однородный.

    гетеро - неоднородный.

    Для организмов это значит, что если аллельные гены одинаковые, то организм гомозиготный, а если разные то гетерозиготный, что можно использовать при скрещивании двух организмов.

    Гомозиготные и гетерозиготные организмы различаются между собой наличием или отсутствием двух одинаковых генов. У гомозиготных организмов или оба признака доминантные или рецессивные (например, темные волосы и карие глаза). У гетерозиготных один из признаков доминантный, а другой рецессивный (например, светлые волосы и карие глаза).

    Гомозиготные (гомо - одинаковые) - те организмы, у которых два гена одинаково доминируют во всм организме.

    Герерозиготные (гетеро - разные) - те организмы, у которых два гена разные, т.е. один доминирует, а другой подавлен.

    Гомозиготный (гомос - одинаковый, зиготе - спаренный) организм с одинаковыми структурами данного типа. Оба доминантных или оба рецессивных. А в гетерозиготных организмах присутствуют оба признака - и доминантный, и рецессивный.

    Гомозиготные организмы - это такие организмы, которые имеют два идентичные по формам гена (либо оба доминантные, либо оба рецессивные);

    Гетерозиготные организмы - это такие организмы, которые имеют как доминантную, так и рецессивную форму генов.

    У гомозиготных организмов нет расщепления признаков, а у гетерозиготных есть.

    Существуют доминантные гены и рецессивные (слабовато влияющие).

    Доминантные гены обозначают заглавной английской буквой, например A , а рецессивные - строчной a .

    У гетерозиготных организмов обычно один ген доминантный, а второй рецессивный:

    Обозначается это так: Aa .

    При создании данным организмом потомства решающую роль в том, каким будет потомок играет доминантный ген, то есть A .

    Например если рассматривать мышей. Если доминантный ген А - это пушистая шерсть, а рецессивный a - это лысый (бывают лысые альбиносы), то победит доминантный ген А и потомок будет волосатый. Причм это ещ приведт к увеличению рода, так как лысые особи не защищены от холода и скорее всего погибнут, а волосатые смогут дожить до взросления и оставления потомства.

    Гомозиготные организмы - это такие организмы у которых одинаковые гены (аллели). Либо два рецессивных aa , либо два доминантных AA .

Признак - единица морфологической, физиологической, биохимической, иммунологической, клинической и любой другой дискретности организмов (клеток), т.е. отдельное качество или свойство, по которому они отличаются друг от друга.

Генотип - это генетическая конституция организма, представляющая собой совокупность всех наследственных задатков его клеток, заключенных в их хромосомном наборе - кариотипе.

Генотип (от ген и тип), совокупность всех генов, локализованных в хромосомах данного организма.

Фенотип (Phenotype ) - присущая индивидууму совокупность всех признаков и свойств, которые сформировались в процессе его индивидуального развития.

Фенотип - совокупность всех признаков организма, сформировавшаяся во взаимодействии генотипа с окружающей средой.

Гомозиготность, состояние наследственного аппарата организма , при котором гомологичные хромосомы имеют одну и ту же форму данного гена.

Гетерозиготность , присущее всякому гибридному организму состояние, при котором его гомологичные хромосомы несут разные формы (аллели) того или иного гена.

Гемизиготность (от греч hemi- - полу- и zygotós - соединённый вместе), состояние, связанное с тем, что у организма один или несколько генов не парные, т. е. не имеют аллельных партнёров. (В сцепленном с полом наследовании, Хr или ХR - r – дальтонзим)

35.Закономерности наследования при моногибридном скрещивании.

Моногибридное скрещивание - скрещивание форм, отличающихся друг от друга по одной паре альтернативных признаков.

1 закон Менделя: при скрещивании двух гомозиготных организмов, различающихся друг от друга по одной паре альтернативных признаков в первом поколении наблюдается единообразие по генотипу и по фенотипу. (фиброматоз десен - А, здоровые десны - а, ребенок в любом случае болен)

2 закон менделя: при скрещивании 2х гетерозиготных организмов, различающихся по одной паре альтернативных признаков (гибриды F1) в их потомстве (гибриды F2) наблюдает расщепление по фенотипу 3:1, по генотипу 1:2:1

Полное доминирование - явление, при котором один из аллельных генов имеет преобладающее значение и проявляется как в гетерозиготном, так и в гомозиготном состоянии.

36.Дигибридное и полигибридное скрещивание. Закон независимого комбинирования генов и его цитологические основы. Общая формула расщепления при независимом наследовании.

Дигибридное скрещивание - скрещивание форм, различающихся по двум парам изучаемых признаков

Полигибридное скрещивание - скрещивание форм, отличающихся по многим признакам.

Закон независимого наследования признаков:

При скрещивании гомозиготных особей, которые отличаются двумя и большим количеством пар альтернативных признаков, во втором гибридном поколении (при инбридинге гибридов 1 поколения) фиксируют независимое наследование по каждой паре признаков и появляются особи, с новыми сочетаниями признаков, не свойственных родительским и прародительским формам (закон независимого распределения, или III закон Менделя ) (Карие глаза - B, голубые - b, правша - A, левша - a). Расщепление в отношении (3:1)n, а по фенотипу 9:3:3:1. Задача в альбоме.

Очевидно, этому закону должны подчиняться в первую очередь неаллельные гены, располагающиеся в разных (негомологичных) хромосомах. В таком случае независимый характер наследования признаков объясняется закономерностями поведения негомологичных хромосом в мейозе. Названные хромосомы образуют со своими гомологами разные пары, или биваленты, которые в метафазе I мейоза случайно выстраиваются в плоскости экватора веретена деления. Затем в анафазе I мейоза гомологи каждой пары расходятся к разным полюсам веретена независимо от других пар. В результате у каждого из полюсов возникают случайные сочетания отцовских и материнских хромосом в гаплоидном наборе (см. рис. 3.75). Следовательно, различные гаметы содержат разные комбинации отцовских и материнских аллелей неал-лельных генов.

Разнообразие типов гамет, образуемых организмом, определяется степенью его гетерозиготности и выражается формулой 2n , где n - число локусов в гетерозиготном состоянии. В связи с этим дигетерозиготные гибриды F1 образуют четыре типа гамет с одинаковой вероятностью. Реализация всех возможных встреч этих гамет при оплодотворении приводит к появлению в F2 четырех фенотипических групп потомков в соотношении 9:3:3:1. Анализ потомков F2 по каждой паре альтернативных признаков в отдельности выявляет расщепление в соотношении 3:1.

37.Множественные аллели. Наследование групп крови человека системы АВО.

Множественный аллелизм - различные состояния (три и более) одного и того же локуса хромосом, возникшие в результате мутаций.

Присутствие в генофонде вида одновременно различных аллелей гена называют множественным аллелизмом. Примером этому служат разные варианты окраски глаз у плодовой мухи: белая, вишневая, красная, абрикосовая, эозиновая,- обусловленные различными аллелями соответствующего гена. У человека, как и у других представителей органического мира, множественный аллелизм свойствен многим генам. Так, три аллеля гена I определяют групповую принадлежность крови по системе АВ0 (IA, IB, I0). Два аллеля имеет ген, обусловливающий резус-принадлежность. Более ста аллелей насчитывают гены α- и β-полипептидов гемоглобина.

Причиной множественного аллелизма являются случайные изменения структуры гена (мутации), сохраняемые в процессе естественного отбора в генофонде популяции. Многообразие аллелей, рекомбинирующихся при половом размножении, определяет степень генотипического разнообразия среди представителей данного вида, что имеет большое эволюционное значение, повышая жизнеспособность популяций в меняющихся условиях их существования. Кроме эволюционного и экологического значения аллельное состояние генов оказывает большое влияние на функционирование генетического материала. В диплоидных соматических клетках эукариотических организмов большинство генов представлено двумя аллелями, которые совместно влияют на формирование признаков. Задачи в альбоме.

38.Взаимодействие неаллельных генов: комплементарность, эпистаз, полимерия, модифицирующее действие.

Комплементарность - такой тип взаимодействия, когда 2 неаллельных гена, попадая в генотип в доминирующем состоянии, совместно определяют появление нового признака, который каждый из них по отдельности не детерминирует.(R- розовидный гребень, P – гороховидный, rp – листовидный, RP – ореховидный)

Если присутствует один из пары – проявляется он.

Примером служат группы крови у человека.

Комплементарность может быть доминантная и рецессивная.

Для того чтобы человек имел нормальный слух, необходимо чтобы работали, согласовано многие гены, и доминантные и рецессивные. Если, хотя бы по одному гену он будет гомозиготен по рецессиву – слух будет ослаблен.

Эпистаз - маскирование генов одной аллельной пары генами другой.

Эпистаз (от греч. epi - над + stasis - препятствие) - взаимодействие неаллельных генов, при котором наблюдается подавление проявления одного гена действием другого, неаллелъного гена.

Ген, подавляющий фенотипические проявления другого, называется эпистатичным; ген, чья активность изменена или подавлена, называется гипостатичным.

Это обусловлено тем, что ферменты катализируют разные процессы клетки, Когда на одном метаболическом пути действуют несколько генов. Действие их должно быть согласовано во времени.

Механизм: если В выключится, он замаскирует действие С

В одних случаях развитие признака при наличии двух неаллельных генов в доминантном состоянии рассматривают как комплементарное взаимодействие, в других - неразвитие признака, определяемого одним из генов при отсутствии другого гена в доминантном состоянии, расценивают как рецессивный эпистаз; если же признак развивается при отсутствии доминантного аллеля неаллельного гена, а в его присутствии не развивается, говорят о доминантном эпистазе.

Полимерия - явление, когда различные неаллельные гены могут оказывать однозначное действие на один и тот же признак, усиливая его проявление.

Наследование признаков при полимерном взаимодействии генов. В том случае, когда сложный признак определяется несколькими парами генов в генотипе и их взаимодействие сводится к накоплению эффекта действия определенных аллелей этих генов, в потомстве гетерозигот наблюдается разная степень выраженности признака, зависящая от суммарной дозы соответствующих аллелей. Например, степень пигментации кожи у человека, определяемая четырьмя парами генов, колеблется от максимально выраженной у гомозигот по доминантным аллелям во всех четырех парах (Р1Р1Р2Р2Р3Р3Р4Р4) до минимальной у гомозигот по рецессивным аллелям (р1р1р2р2р3р3р4р4) (см. рис. 3.80). При браке двух мулатов, гетерозиготных по всем четырем парам, которые образуют по 24 = 16 типов гамет, получается потомство, 1/256 которого имеет максимальную пигментацию кожи, 1/256 - минимальную, а остальные характеризуются промежуточными показателями экспрессивности этого признака. В разобранном примере доминантные аллели полигенов определяют синтез пигмента, а рецессивные - практически не обеспечивают этого признака. В клетках кожи организмов, гомозиготных по рецессивным аллелям всех генов, содержится минимальное количество гранул пигмента.

В некоторых случаях доминантные и рецессивные аллели полигенов могут обеспечивать развитие разных вариантов признаков. Например, у растения пастушьей сумки два гена одинаково влияют на определение формы стручочка. Их доминантные аллели образуют одну, а рецессивные - другую форму стручочков. При скрещивании двух дигетерозигот по этим генам (рис. 6.16) в потомстве наблюдается расщепление 15:1, где 15/16 потомков имеют от 1 до 4 доминантных аллелей, а 1/16, не имеет доминантных аллелей в генотипе.

Если гены располагаются, каждый в своем отдельном локусе, но их взаимодействие проявляется в одном и том же направлении – это полигены. Один ген проявляет признак незначительно. Полигены дополняют друг друга и оказывают мощное действие – возникает полигенная система – т.е. система является результатом действия одинаково направленных генов. Гены подвергаются значительному влиянию главных генов, которых более 50. полигенных систем известно множество.

При сахарном диабете наблюдается умственная отсталость.

Рост, уровень интеллекта - определяются полигенными системами

Модифицирующее действие. Гены модификаторы сами по себе не определяют какой- то признак, но могут усиливать или ослаблять действие основных генов, вызывая таким образом изменение фенотипа. В качестве примера обычно приводится наследование пегости у собак и лошадей. Числового расщепления никогда не даётся, так как характер наследования больше напоминает полигенное наследование количественных признаков.

1919 год Бриджес ввел термин ген-модификатор . Теоретически любой ген может взаимодействовать с другими генами, а значит, и проявлять модифицирующее действие, но некоторые гены – модификаторы в большей степени. Они часто не имеют собственного признака, но способны усиливать или ослаблять проявление признака, контролируемого другим геном. В формировании признака кроме основных генов проявляют свое действие и модифицирующие гены.

Брахидактилия – может быть резкая или незначительная. Помимо основного гена, есть еще модификатор, который усиливает эффект.

Окраска млекопитающих – белая, черная + модификаторы.

39.Хромосомная теория наследственности. Сцепление генов. Группы сцепления. Кроссинговер как механизм, определяющий нарушения сцепления генов.

Генетика – наука, которая изучает гены, механизмы наследования признаков и изменчивость организмов. В процессе размножения ряд признаков передается потомству. Было замечено еще в девятнадцатом столетии, что живые организмы наследуют особенности своих родителей. Первым, кто описал эти закономерности, был Г.Мендель.

Наследственность – свойство отдельных особей передавать потомству свои признаки при помощи размножения (через половые и соматические клетки). Так сохраняются особенности организмов в ряде поколений. При передаче наследственной информации не происходит точное ее копирование, а всегда присутствует изменчивость.

Изменчивость – приобретение индивидуумами новых свойств или утрата старых. Это важное звено в процессе эволюции и адаптации живых существ. То, что в мире нет идентичных особей – это заслуга изменчивости.

Наследование признаков осуществляется с помощью элементарных единиц наследования – генов . Совокупность генов определяет генотип организма. Каждый ген несет в себе закодированную информацию и расположен в определенном месте ДНК.

Гены обладают рядом специфических свойств:

  1. Разные признаки кодируются разными генами;
  2. Постоянство – при отсутствии мутирующего действия, наследственный материал передается в неизменном виде;
  3. Лабильность – способность поддаваться мутациям;
  4. Специфичность – ген несет в себе особую информацию;
  5. Плейотропия – одним геном кодируется несколько признаков;

Под действием условий внешней среды генотип дает разные фенотипы. Фенотип определяет степень влияния на организм окружающих условий.

Аллельные гены

Клетки нашего организма имеют диплоидный набор хромосом, они в свою очередь состоят из пары хроматид, разбитых на участки (гены). Разные формы одинаковых генов (например карие/голубые глаза), расположены в одних и тех же локусах гомологичных хромосом, носят название аллельных генов . В диплоидных клетках гены представлены двумя аллелями, один от отца, другой от матери.

Аллели делятся на доминантные и рецессивные . Доминантная аллель определят, какой признак будет выражен в фенотипе, а рецессивная – передается по наследству, но в гетерозиготном организме не проявляется.

Существуют аллели с частичной доминантностью , такое состояние называется кодоминантностью, в таком случае оба признака будут проявляться в фенотипе. Например, скрещивали цветы с красными и белыми соцветиями, в результате в следующем поколении получили красные, розовые и белые цветы (розовые соцветия и есть проявлением кодоминантности). Все аллели обозначают буквами латинского алфавита: большими – доминантные (АА, ВВ), маленькими – рецессивные (аа,bb).

Гомозиготы и гетерозиготы

Гомозигота – это организм, в котором аллели представлены только доминантными или рецессивными генами.

Гомозиготность означает наличие одинаковых аллелей в обеих хромосомах (АА, bb). В гомозиготных организмах они кодируют одни и те же признаки (например, белый цвет лепестков роз), в таком случае все потомство получит такой же генотип и фенотипические проявления.

Гетерозигота – это организм, в котором аллели имеют и доминантный, и рецессивный гены.

Гетерозиготность — наличие разных аллельных генов в гомологичных участках хромосом (Аа, Вb). Фенотип у гетерозиготных организмов всегда будет одинаков и определяется доминантным геном.

Например, А – карие глаза, а – голубые глаза, у особи с генотипом Аа будут карие глаза.

Для гетерозиготных форм характерно расщепление, когда при скрещивании двух гетерозиготных организмов в первом поколении мы получаем следующий результат: по фенотипу 3:1, по генотипу 1:2:1.

Примером может послужить наследование темных и светлых волос, если у обоих родителей они темные. А – доминантная аллель по признаку темных волос, а – рецессивная (светлые волосы).

Р: Аа х Аа

Г: А, а, А, а

F: АА:2Аа:аа

*Где Р – родители, Г – гаметы, F – потомство.

По данной схеме можно увидеть, что вероятность унаследовать от родителей доминантный признак (темные волосы) в три раза выше, чем рецессивный.

Дигетерозигота – гетерозиготная особь, которая несет две пары альтернативных признаков. Например, исследование наследования признаков Менделем с помощью семян гороха. Доминантными характеристиками были желтый цвет и гладкая поверхность семян, а рецессивными — зеленый цвет и шероховатая поверхность. В результате скрещивания получилось девять различных генотипов и четыре фенотипа.

Гемизигота – это организм с одним аллельным геном, даже если он рецессивный, фенотипически всегда будет проявляться. В норме они присутствуют в половых хромосомах.

Отличие гомозиготы и гетерозиготы (таблица)

Отличия гомозиготных организмов от гетерозиготных
Характеристика Гомозигота Гетерозигота
Аллели гомологичных хромосом Одинаковые Разные
Генотип AA, aa Aa
Фенотип определяется по признаку По рецессивному или доминатному По доминатному
Однообразие первого поколения + +
Расщепление Не происходит Со второго поколения
Проявление рецессивного гена Характерно Подавляется

Размножение, скрещивание гомозигот и гетерозигот ведет к образованию новых признаков, которые необходимы живым организмам для адаптации к переменчивым условиям внешней среды. Их свойства необходимы при выведении культур, пород с высокими качественными показателями.

Изменчивость - способность живых организмов приобретать новые признаки и качества. Различают ненаследственную и наследственную изменчивость (схема 1).

К ненаследственной изменчивости относятся изменения изменение внешних признаков (фенотипа), которые не сохраняющиеся в поколении. К ним относятся модификации , которые возникают под действием окружающей среды.

у насекомых и других животных → смена окраски шерсти у некоторых млекопитающих при изменении погодных условий (например, у зайца) рис. 2,

у человека → увеличение уровня эритроцитов при подъёме в горы, увеличение пигментации кожи при интенсивном воздействии ультрафиолетовых лучей, развитие костно-мышечной системы в результате тренировок (рис. 3).

Рис. 3 Развитие костно-мышечной системы в результате тренировок

Наследственная изменчивость представляет собой изменения генотипа, которые сохраняются в ряду поколений. К ним относятся комбинации и мутации. Комбинационная изменчивость возникает при перекомбинации (перемешивании) генов отца и матери.

Пример: проявление дрозофил с темным телом и длинными крыльями при скрещивании серых дрозофил с длинными крыльями с темными дрозофилами с короткими крыльями (рис.4).

Рис. 4 Дрозофила с темным телом и длинными крыльями

у цветка ночная красавица есть лепестки розового цвета возникают при сочетании (комбинации) красного и белого гена (рис. 5).

Рис. 5 Образование лепестков розового цвета у ночной красавицы

Мутационная изменчивость - это изменения ДНК клетки (изменение строения и количества хромосом). Возникают под действием ультрафиолета, радиации (рентгеновских лучей) и т.п.

у человека → трисомия по 21-й паре (синдром Дауна),

у животных → двуглавие (рис. 6).

Рис. 6 Двуглавая черепаха из Китая


ГЕНОМ

Геном - совокупность наследственного материала, находящийся в клетке организма. Большинство геномов, в том числе геном человека и геномы всех остальных клеточных форм жизни, построены из ДНК.

Дезоксирибонуклеиновая кислота (ДНК) - макромолекула обеспечивающая хранение, передачу и реализацию из поколения в поколение генетической программы развития и функционирования живых организмов.

Генотип - совокупность генов данного организма.

Итак, геном является характеристикой вида в целом, а генотип - отдельной особи.

Ген - элементарная единица наследственностиживых организмов. Ген представляет собой участок ДНК ответственный за проявление какого-либо признака.

Гены есть в ядре каждой клетки живого организма рис. 7.

Рис. 7 Расположение гена в клетке

В результате взаимодействия генотипа с факторами окружающей среды формируется фенотип , то есть совокупность всех признаков и свойств организма. Примеры: рост, масса тела, цвет глаз рис. 8 , форма волос, группа крови, левша, правша.

Рис. 8 Карый и голубой цвет глаз Рис. 9 Генотип и фенотип у гороха

К ф е н о т и п у относятся не только внешние признаки, но и внутренние: анатомические, физиологические, биохимические. Каждая особь имеет свои особенности внешнего вида, внутреннего строения, характера обмена веществ, функционирования органов, т.е. свой фенотип, который сформировался в определённых условиях среды.


СТРОЕНИЕ ХРОМОСОМЫ

ХРОМОСОМЫ являются структурным элементом ядра в котором заключена вся наследственная информации (рис. 10, 11, 12).

Рис. 10 Схематическое изображение хромосомы

ЦЕНТРОМЕРА - участок хромосомы, делящий хромосому на два плеча.

Рис. 11 Изображение хромосомы в электроном микроскопе

Рис. 12 Расположение хромосомы в клетке

Существуют X-хромосома и Y-хромосома рис. 13.

X-хромосома - половая хромосома большинства млекопитающих, в том числе человека, определяющий женский пол организма.

Y-хромосома - половая хромосома большинства млекопитающих, в том числе человека, определяющий мужской пол организма.

У самок две X-хромосомы (XX), а у самцов - одна X-хромосома и одна Y-хромосома (XY).

Рис. 13 X-хромосома и Y-хромосома

КАРИОТИП - совокупность хромосом, характерная для данного вида организмов (хромосомный набор) Рис. 14.

Рис. 14 Кариотип здорового человека

Аутосомы - это хромосомы одинаковые у обоих полов. Генотип женского организма имеет 44 хромосомы (22 пары), одинаковые с мужскими. Их и называют аутосомами рис. 14.

Рис. 15 Кариотипы растений и животных

Рис. 16 Изображение растений и животных соответственного кариотипа:

скерда, бабочка, плодовая мушка, кузнечик и петух

Кариотип – совокупность внешних признаков хромосомного набора (число, форма, размер хромосом), характерных для данного вида.


АЗОТИСТЫЕ ОСНОВАНИЯ

АЗОТИСТЫЕ ОСНОВАНИЯ - органические соединения входящие в состав нуклеиновых кислот (ДНК и РНК) рис. 17.

Латинские и русские коды для нуклеиновых оснований (азотистое основание):

A - А: Аденин;

G - Г: Гуанин;

C - Ц: Цитозин;

T - Т: Тимин, встречается у бактериофагов (вирусы бактерий) в ДНК, занимает место урацила в РНК;

U - У: Урацил, встречается в РНК, занимает место тимина в ДНК.

Рис. 17 Азотистые основания в ДНК и РНК

Рис. 18 Расположение азотистых оснований в клетке

Нуклеотид построен из сахара-пентозы, азотистого основания и остатка фосфорной кислоты (ФК).

Водородная связь - это взаимодействие между двумя электроотрицательными атомами одной или разных молекул посредством атома водорода: G−Н ... C (чертой обозначена ковалентная связь, тремя точками - водородная связь) Рис. 19.

Рис. 19 Водородная связь

Принцип комплементарности используется в синтезе ДНК. Это строгое соответствие соединения азотистых оснований, соединёнными водородными связями, в котором: А-Т (Аденин соединяется с Тимином) Г-Ц (Гуанин соединяется с Цитозином).

Принцип комплементарности используется и в синтезе РНК, в котором А-У (Аденин соединяется с Урацилом) Г-Ц (Гуанин соединяется с Цитозином).


СКРЕЩИВАНИЕ

Скрещивание - естественное или искусственное соединение двух наследственно различающихся генотипов посредством оплодотворения.

Оплодотворение – процесс слияние женской и мужской половых клеток рис. 20.

Рис. 20 Слияние яйцеклетки и сперматороида

Гаметы - половые клетки животных и растений. Обеспечивает передачу признаков от родителей потомкам. Обладает уменьшенным вдвое (гаплоидным) набором хромосом по сравнению с соматической клеткой. Половые клетки несущие наследственную информацию.

Зигота - диплоидная (содержащая полный двойной набор хромосом) клетка, образующаяся в результате оплодотворения рис. 20

Рис. 21 Зигота

Возникновение нового организма в результате оплодотворения, слияние мужской и женской гамет с гаплоидным (одинарным) набором хромосом. Биологическое значение: восстановление диплоидного (двойного) набора хромосом в зиготе (рис. 21).

Рис. 22 Зигота - результат оплодотворения

Существуют гомозиготы и гетерозиготы.

Гомозигота - организм (зигота), имеющий одинаковые аллели одного гена в гомологичных хромосомах (ААВВ; АА).

Гетерозигота - особь, дающая разные типы гамет. Гетерозигота – содержание в клетках тела разных генов данной аллельной пары, например Аа, возникающее вследствие соединения гамет с разными аллелями, например AaBb, даже по одному признаку AABb.

Доминантность - преобладание эффекта действия определённого аллеля (гена) в процессе реализации генотипа в фенотипе, выражается в том, что доминантный аллель более или менее подавляет действия другого аллеля (рецессивного), и рассматриваемый признак "подчиняется" ему.

Доминантный ген проявляется как в гомозиготном, так и в гетерозиготном организмах.

Явление преобладания у гибрида признака родителей называется доминированием .

Рис. 23 Доминирование рижого цвета волос и веснушек

Рис. 24 Доминирование дальнозоркости

Рецессивность - отсутствие фенотипического проявления одного аллеля у гетерозиготной особи (у особи, несущей два различных аллеля одного гена). Подавляемый (внешне исчезающий) признак.

Парные гены, расположенные в гомологичных хромосомах и контролирующие развитие одного и того же признака, называютсямаллельными Рис. 25.

Рис. 25 Аллельные гены

Аллельные гены – парные гены – различные формы одного и того же гена, отвечающие за альтернативность (различное) проявления одного и того же признака. Например, за цвет глаз отвечают два аллельных гена, расположенных в одинаковых локусах (местах). Только один из них может отвечать за развитие карих глаз, а другой – за развитие голубых глаз. В том случае, когда оба гена отвечают за одинаковое развитие признака, говорят о гомозиготном организме по данному признаку. Если аллельные гены определяют различное развитие признака, говорят о гетерозиготном организме. У видов с большой численностью особей не менее 30-40% генов имеют два, три аллеля и больше. Такой запас аллелей обеспечивает высокую приспособляемость видов к меняющимся условиям среды обитания – это материал для естественного отбора и одновременно залог выживания вида. Генетическое разнообразие внутри вида определяется количеством и распределением аллелей различных генов.

Скрещивание гомозиготного организма с рецессивной гомозиготой называется анализирующим.

Анализирующее скрещивание – скрещивание, проводящееся для определения генотипа организма. Для этого подопытный организм скрещивают с организмом, являющимся рецессивной гомозиготой по изучаемому признаку. Допустим, надо выяснить генотип растения гороха, имеющего жёлтые семена. Возможны два варианта генотипа подопытного растения: он может являться либо гетерозиготой (Аа), либо доминантной гомозиготой (Аа). Для установления его генотипа проведём анализирующее скрещивание с рецессивной гомозиготой (аа) – растением с зелёными семенами.

Таким образом, если в результате анализирующего скрещивания в F1 наблюдается расщепление в соотношении 1:1, то подопытный организм был гетерозиготен; если расщепления не наблюдается и все организмы в F1 проявляют доминантные признаки, то подопытный организм был гомозиготен рис. 26.

Рис. 26 Анализирующие скрещивание

Чистая линия - это группа генетически однородных (гомозиготных) организмов. Чистые линии образованы только гомозиготными растениями, поэтому при самоопылении они всегда воспроизводят один вариант проявления признака рис. 27. Самоопыление – опыление на одном цветке.

Рис. 27 Самоопыление

НЕПОЛНОЕ ДОМИНИРОВАНИЕ – один из видов взаимодействия аллельных генов, при котором один из аллелей (доминантный) в гетерозиготе не полностью подавляется проявление другого аллеля (рецессивного), и в первом поколении выражение признака носит промежуточный характер рис. 28.

Рис. 28 Неполное доминирование

Промежуточный характер наследования признака проявляется при неполном доминировании.

Подавление одним доминантным геном активности другого неаллельного доминантного гена называетсяЭПИСТАЗОМ.

Рис. 28 Эпистаз

Неаллельные гены - это гены, расположенные в различных участках хромосом.


ЗАКОНЫ МЕНДЕЛЯ

6.1 Первый закон Менделя - Закон единообразия гибридов первого поколения.

Закон единообразия гибридов первого поколения (первый закон Менделя) - при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей.

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака - на современном языке это означает гомозиготность особей по этому признаку. При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого.

Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми рис. 29.

Рис. 29 Скрещивание гороха

Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким.

Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак - более сильный, доминантный (термин введён Менделем от латинского dominus ), всегда подавлял другой, рецессивный рис. 30.

Рис. 30 Первый закон - Закон единообразия гибридов первого поколения

6.2 Второй закон Менделя - Закон расщепления.

Закон расщепления, или второй закон Менделя. При скрещивании двух потомков первого поколения между собой (двух гетерозиготных особей) во втором поколении F2 наблюдается расщепление в определенном числовом соотношении: по фенотипу 3:1, по генотипу 1:2:1. 25% организмов, полученных во втором поколении F2, являются гомозиготными доминантными (АА), 50% - доминантны (Аа) по фенотипу и 25% - гомозиготны по рецессивному признаку (аа).

При неполном доминировании в потомстве гибридов F2 расщепление по фенотипу и генотипу составляет 1:2:1. Закон расщепления (второй закон Менделя) - при скрещивании двух гетерозиготных потомков первого поколения между собой, во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.

Скрещиванием организмов двух чистых линий, различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть - рецессивный, называется расщеплением. Следовательно, расщепление - это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении Рис. 31, 32.

Рис. 31 Закон расщепления

Рис. 32 Второй закон

  • Существуют несколько типов и видов ячеек, отличающихся по технологии и функционированию. Рассмотрим основные.
  • Существуют различные точки зрения на проектную деятельность



  • Рассказать друзьям