Понижение сахара в крови лечение. Что поможет понизить сахар в крови

💖 Нравится? Поделись с друзьями ссылкой

Страница 29 из 31

31 Алгоритмы интерпретации показателей кислотно-основного состояния

Выявление нарушении кислотно-основного состояния (КОС) является хорошим примером “правильно сориентированной” системы, так как существует ряд широко известных правил для интерпретации результатов . Эти правила из серии утверждений ЕСЛИ, ТО ДА,. иначе называемые алгоритмами. Алгоритм - главная составная часть решения клинической проблемы и весьма важен в интерпретации нарушений КОС. Алгоритмы, используемые в данной главе, взяты из компьютерной программы, разработанной для интерпретации газового состава крови .

ИНТЕРПРЕТАЦИЯ СПЕЦИАЛИСТА

К интерпретации показателей кислотно-основного состояния применим афоризм Александра Попа: “Малое знание - опасная вещь”. В одном из университетских госпиталей треть данных газового состава крови неправильно истолковывалась старшими сотрудниками, что часто приводило к назначению ошибочного лечения . В другом учебном медицинском центре 70% врачей, не имеющих никакого отношения к пульмонологии, брались интерпретировать результаты исследования газов крови, не удосуживаясь ознакомиться с основными принципами анализа. Однако подобная интерпретация была правильной не более чем в 40% случаев .

ОСНОВНЫЕ ПОЛОЖЕНИЯ

Н+ (мэкв/л) = 24 х (pCO 2 / НСО 3 -).

Изменение концентрации водородных ионов на 1 мэкв/л приводит к изменению рН на 0,01. Отношение рСО 2 /НСО 3 - указывает на то, что содержание Н+ - ионов в плазме крови прямо пропорционально уровню pCO 2 и обратно пропорционально концентрации НСО 3 - . Данное соотношение лежит в основе первичных и вторичных нарушений КОС, приведённых в табл. 31-1; при этом биологический смысл компенсаторных процессов состоит в поддержании указанного соотношения на постоянном уровне. В случае изменения одного из компонентов соотношения лечебные мероприятия следует направить на изменение другого компонента в соответствующем направлении. Важно подчеркнуть, что компенсаторные механизмы приводят только к ограничению сдвигов рН плазмы крови, но не предотвращают полностью их развития.

Таблица 31-1

Первичные и вторичные нарушения кислотно-основного состояния

КОМПЕНСАТОРНЫЕ МЕХАНИЗМЫ

Система газообмена обеспечивает компенсацию метаболических изменений (см. табл. 31-1) в форме немедленных реакции. На фоне метаболического ацидоза происходит стимуляция вентиляции лёгких, результатом чего становится уменьшение pCO 2 , противодействующее первичному снижению содержания НСО 3 - в плазме крови. При метаболическом алкалозе подавляется лёгочная вентиляция, и увеличение рСО 2 будет уравновешивать повышение концентрации НСО 3 - .

В процессах компенсации важна также роль почек - регулирование реабсорбции НСО 3 - в проксимальных канальцах. При дыхательном (респираторном) ацидозе усиливается реабсорбция анионов бикарбоната и увеличивается содержание НСО 3 - в плазме, что препятствует накоплению углекислоты в крови. На фоне респираторного алкалоза подавляется реабсорбция анионов бикарбоната, а снижение концентрации НСО 3 - в плазме крови выравнивает пониженное pCO 2 . В отличие от дыхательной системы компенсаторный ответ почек не немедленный, он начинает развиваться только через 6-12 ч, достигая максимума спустя несколько суток. В этот период респираторные нарушения компенсируются лишь частично.

ПРАВИЛА ИНТЕРПРЕТАЦИИ ПОКАЗАТЕЛЕЙ КИСЛОТНО-ОСНОВНОГО СОСТОЯНИЯ

Компенсаторные реакции можно рассчитать, и, следовательно, наблюдаемый ответ можно сравнить с ожидаемым результатом. Ожидаемые или нормальные реакции приведены в табл. 31-2. Данные уравнения можно использовать для интерпретации параметров КОС, Нормальные показатели КОС (артериальная кровь) указаны ниже.

pCO 2 36-44 мм рт.ст.;

ПЕРВИЧНЫЕ МЕТАБОЛИЧЕСКИЕ РАССТРОЙСТВА

Правило 1. Первичное метаболическое нарушение возможно, если:

А. рН и рСО 2 изменены в одном направлении или

Б. рН изменено, a pCO 2 - нет.

Таблица 31-2

Ожидаемые компенсаторные реакции (T385)

Алгоритм должен быть сформулирован следующим образом:

Если рН и рСО 2 изменены в одном направлении

И рН отличается от нормы,

Тогда первичное расстройство является метаболическим.

Правило 2. Сопутствующие дыхательные расстройства определяют следующие уравнения.

А. Для метаболического ацидоза:

Предполагаемое pCO 2 = 1,5 (НСО 3 -) + 8(±2).

Б. Для метаболического алкалоза:

Предполагаемое pCO 2 = 0,7 (НСО 3 -) + 20(±1,5).

Это означает, что если рСО 2 больше ожидаемого значения, то состояние обусловлено респираторным ацидозом, а если меньше, то дыхательным алкалозом. К сожалению, предполагаемая избыточная стимуляция дыхания при метаболическом ацидозе, равно как и угнетение дыхания при метаболическом алкалозе, часто бывает непостоянной. В подобных случаях можно использовать несколько уравнений (представленных здесь), определяющих зависимость между pCO 2 и НСО 3 - при метаболическом алкалозе . Одно из них наиболее приемлемо, по крайней мере при содержании в плазме крови НСО 3 - 40 мэкв/л.

ПЕРВИЧНЫЕ РЕСПИРАТОРНЫЕ РАССТРОЙСТВА

Правило 3. Первичные дыхательные нарушения развиваются при изменениях рН и рСО 2 в противоположных направлениях.

Правило 4. Соотношение между изменением pCO 2 и сдвигом рН можно использовать для выявления метаболических нарушений или неполных компенсаторных реакций .

А. Респираторный ацидоз.

Острый некомпенсированный ацидоз - сдвиг рН на 0,008 при изменении рСО 2 на 1 мм рт.ст. Хронический некомпенсированный ацидоз - смещение рН на 0,003 при изменении pCO 2 на 1 мм рт.ст.

Б. Респираторный алкалоз.

Острый некомпенсированный алкалоз - изменение соотношения pH/pCO 2 , аналогичное таковому при дыхательном ацидозе (0,008).

Хронический компенсированный алкалоз - сдвиг рН на 0,017 при изменении рСО 2 на 1 мм рт.ст.

Следовательно, можно сделать обобщение.

СМЕШАННЫЕ ФОРМЫ РЕСПИРАТОРНО-МЕТАБОЛИЧЕСКИХ НАРУШЕНИЙ

Правило 5. Для нарушений КОС, вызванных смешанными респираторно-метаболическими расстройствами, характерны нормальные значения рН и изменённые величины рСО 2 .

ПРАВИЛЬНАЯ ИНТЕРПРЕТАЦИЯ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЯ ГАЗОВ КРОВИ

Сформулированные выше правила позволяют интерпретировать данные исследований газов артериальной крови у любого пациента. Для адекватного анализа необходима лишь информация об уровнях рН и рСО 2 в артериальной крови. Рис. 31-1 и 31-2 показывают, что при этом базовым показателем остаётся рН артериальной крови.

При сниженном рН:

А. Пониженный или нормальный уровень рСО 2 указывает на первичный метаболический ацидоз (правила 1,А и 1,Б).

Рис. 31-1. Схема интерпретации результатов исследования газов крови при сниженном рН.

Рис. 31-2. Схема интерпретации результатов исследования газов крови при повышенном рН.

Б. Повышенное pCO 2 указывает на первичный дыхательный ацидоз (правило 3). Затем для определения степени компенсации и сопутствующих метаболических нарушений вычисляют сдвиг соотношения pH/pCO 2 (правило 4).

При повышенном рН:

А. Повышенный или нормальный уровень рСО 2 указывает на первичный метаболический алкалоз (правила 1,А и 1,Б).

Б. Сниженное pCO 2 указывает на первичный дыхательный алкалоз (правило 3).

Для определения степени компенсации и сопутствующих метаболических расстройств счисляют изменение соотношения рН/рСО 2 (правило 4,Б).

При нормальной величине рН:

А. Повышенный уровень pCO 2 указывает на смешанную форму респираторного ацидоза и метаболического алкалоза (правило 5).

Б. Пониженный уровень рСО 2 указывает на смешанную форму дыхательного алкалоза и метаболического ацидоза (правило 5).

В. Нормальный уровень pCO 2 может указывать на то, что показатели КОС находятся в пределах нормы, но не исключает смешанных метаболических алкалозов/ацидозов. В данной ситуации весьма полезно определение так называемой анионной разницы [разница между суммой измеренных катионов и анионов в плазме или сыворотке крови, определяемая по формуле: (Na+ + K+ - (Сl- + НСО 3 -); см. ниже].

Рис. 31-3. Классификация метаболического ацидоза (на основании анионной разницы).

МЕТАБОЛИЧЕСКИЙ АЦИДОЗ

По величине анионной разницы (АР) все случаи метаболического ацидоза в клинике можно условно разделить на две группы. Высокие значения АР указывают на ацидоз, вызванный повышением уровня органических кислот (например, молочной). Нормальная величина АР свидетельствует об ацидозе, возникшем в результате истощения бикарбонатного буфера, в частности при диарее. Классификация метаболического ацидоза, основанная на АР, представлена на рис. 31-3.

АНИОННАЯ РАЗНИЦА

В основе внедрения показателя АР в клиническую практику лежит предположение, что для создания нейтральной среды количество отрицательно заряженных анионов и положительно заряженных катионов в плазме крови должно быть одинаковым . Если это предположение считать правильным, то концентрацию неизмеренных анионов и катионов можно определить, используя данные о содержании хлоридов, бикарбоната и натрия в плазме крови. Тогда разница между неизмеренным количеством анионов и катионов и будет АР. Как видно из табл. 31-3, нормальное значение АР составляет 12 мэкв/л . В случае отдачи Н+ ионов в количестве 1 мэкв/л связанными кислотами (например, молочной кислотой) в плазму крови содержание бикарбоната в ней снижается на 1 мэкв/л, а АР соответственно будет возрастать на аналогичную величину. При потере бикарбоната с мочой или калом компенсаторное повышение концентрации хлоридов в плазме крови поддерживает баланс анионов, и АР не изменяется.

Таблица 31-3

Анионная разница

Концентрация неизмеренных анионов (НА), мэкв/л

Концентрация неизмеренных катионов (НК), мэкв/л

Органические кислоты



АР = НА - НК =12 мэкв/л

НА + (Сl + HCO 3 -) = Na+ + HK

HA - HK = Na+ - (Cl - + NCO 3 -)

ДРУГИЕ ФАКТОРЫ, ВЛИЯЮЩИЕ НА АНИОННУЮ РАЗНИЦУ

Как следует из табл. 31-3, наибольшую часть неизмеренного пула анионов в плазме крови составляют белки, поэтому даже небольшое уменьшение концентрации альбуминов может понизить АР. К другим причинам, приводящим к сдвигу АР, относят изменение содержания парапротеинов (аномальные белки плазмы), имеющих суммарный положительный заряд, повышение количества неизмеренных катионов (К+, Mg 2+ и Са 2+), снижение уровня натрия в плазме крови.

Гипоальбуминемия. У больных, находящихся в критических состояниях, данный фактор является главной причиной снижения АР. На долю альбуминов приходится около половины (11 мэкв/л) неизмеряемого анионного пула, равного 23 мэкв/л . Уменьшение содержания в плазме крови альбуминов на 50% приводит к снижению АР на 5-6 мэкв/л.

Следовательно, при снижении концентрации альбуминов наполовину АР должна быть повышена до 17-18 мэкв/л (при норме 12 мэкв/л). Данная коррекция крайне важна вследствие преобладания гипоальбуминемии у больных, находящихся в отделениях интенсивной терапии.

Гипонатриемия является другой распространённой причиной снижения АР, но механизм данного феномена до конца не изучен . Наиболее часто гипонатриемия обусловлена разведением плазмы крови внеклеточной жидкостью. Другим возможным механизмом уменьшения АР представляются повышение в плазме крови неизмеренных двухвалентных катионов магния и кальция во время гипонатриемии и расход анионов хлора для поддержания нейтральности среды.

АНИОННАЯ РАЗНИЦА МОЧИ

Данный показатель используется для определения нарушений в системе восстановления рН с участием почечных канальцев (почечного канальцевого ацидоза) у пациентов с гипериоремическим (нормальная АР) метаболическим ацидозом . Принцип расчёта аналогичен таковому в случае АР плазмы крови и представлен в табл. 31-4.

Таблица 31-4

Анионная разница мочи

К электролитам, обычно определяемым в моче, относят натрий, калий и хлориды. Главным неизмеряемым катионом мочи является ион аммония NH 4 + (ион водорода присоединяется к молекуле аммиака, образуя ион аммония). Если аммоний мочи возрастает в результате кислотной нагрузки, то АР мочи снижается и становится отрицательной. После прекращения подкисления мочи концентрация аммония мочи уменьшается и АР возрастает (становится положительной). В табл. 31-4 показано, каким образом с помощью величины АР мочи можно отличить истинные потери бикарбоната от вызванных почечным канальцевым ацидозом.

СМЕШАННЫЕ ФОРМЫ МЕТАБОЛИЧЕСКИХ НАРУШЕНИЙ

Смешанные формы метаболических нарушений характерны для пациентов, находящихся в отделениях интенсивной терапии. Например, у больного с диабетическим кетоацидозои может быть и гиперхлоремический ацидоз вследствие диареи или ранней почечной недостаточности. Смешанные метаболические расстройства можно выявить с помощью определения соотношения возросшего значения АР и снижения уровня бикарбоната в плазме крови. Отношение избытка АР к бикарбонатному дефициту иначе называют “разницей разницы”.

Избыток АР/дефицит НСО 3 - = [(АР - 12/24 - НСО 3 -)].

Это соотношение определённым образом изменяется при различных метаболических расстройствах, что отображено на рис. 31-4.

СМЕШАННЫЕ ФОРМЫ МЕТАБОЛИЧЕСКОГО АЦИДОЗА

При поступлении в кровь органических кислот, например молочной, снижение концентрации НСО 3 - в плазме эквивалентно повышению АР, и величина соотношения (избыток Ар/дефицит НСО 3 -) будет приближаться к единице. В случае гиперхлоремического ацидоза это соотношение будет приближаться к нулю. При смешанной форме ацидоза (сочетание высокой АР и гиперхлоремического ацидоза) величина соотношения (избыток АР/дефицит НСО 3) будет указывать на относительный вклад каждого типа нарушения КОС в развитие ацидоза. Например, значение соотношения 0,5 указывает на причастность к этому в равной мере обоих типов ацидоза.

ДИАБЕТИЧЕСКИЙ КЕТОАЦИДОЗ

В результате лечения диабетического кетоацидоза изменяется соотношение избыток АР/дефицит НСО 3 - , величину которого следует определять вместо содержания бикарбоната в плазме крови.

Pис 31-4. Интерпретация соотношения избыток анионной разницы/дефицит бикарбоната (ДельтаАР/ДельтаНСО 3).

Так, например, при внутривенном введении препаратов инсулина и солевых растворов высокое значение АР начинает снижаться, но концентрация НСО 3 в плазме, крови остаётся низкой из-за эффекта разведения, обусловленного инфузией. В связи с этим определение содержания НСО 3 - в крови может ввести в заблуждение относительно адекватности проводимой терапии. Однако снижение соотношения избыток АР/дефицит НСО 3 - указывает на уменьшение первоначально высоких значений АР и удаление кетоновых тел и организма.

СМЕШАННЫЙ АЦИДОЗ-АЛКАЛОЗ

В случае поступления в организм щелочных растворов при ацидозе с высокой АР снижение концентрации бикарбоната в плазме крови будет меньшим, чем уменьшение АР, а соотношение избыток АР/дефицит НСО 3 - превысит единицу. Метаболический алкалоз достаточно часто встречается у больных, находящихся в отделениях интенсивной терапии, вследствие широкого использования назогастрального отсоса и диуретиков.

АРТЕРИАЛЬНАЯ И ВЕНОЗНАЯ КРОВЬ

При определении содержания электролитов и бикарбоната традиционно используют пробы венозной крови, а для измерения pCO 2 и рН - артериальной. У больных, получающих лекарственные средства, обладающие сосудосуживающей активностью, а также у пациентов нестабильной гемодинамикой можно наблюдать существенные изменения электролитного я газового состава этих видов крови. Например, в норме физиологические показатели венозной крови прямо зависят от КОС тканей, в то время как артериальная кровь отражает газообмен в лёгких. Однако у больных, находящихся в критических состояниях, венозная кровь может и не отражать КОС тканей, что обусловлено действием микроциркуляторных шунтов, направляющих кровь мимо тканей с активным метаболизмом. В связи с этим при оценке показателей венозной крови следует принять во внимание состояние больного. При уменьшении сердечного выброса уровень рН и молочной кислоты в артериальной крови может быть нормальным, но в венозной крови обнаруживают выраженные признаки лактат-ацидоза. В такой ситуации необходимо периодически определять показатели венозной крови с одновременным исследованием газового состава артериальной крови.

ЛИТЕРАТУРА

ОБЩИЕ ВОПРОСЫ

  1. Cohen JJ, Kassirer JP eds. Acid-base. Boston: Little Brown &: Co. 1982.
  2. Arieff Al, DeFronzo RA eds. Fluid electrolyte and acid-base disorders. New York: Churchill Livingstone, 1985.
  3. Kurtzman NA, Battle DC eds. Acid-base disorders. Med Clin North Am 1983; 67:751-929.
  4. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

  5. KrasnerJ, Marino PL. Respiratory expert. Philadelphia: W.B. Saunders, 1987.
  6. Narins RG, Emmett M. Simple and mixed acid-base disorders: A practical approach, Medicine 1980; 59:161-187.
  7. Fend V, Rossing TH. Acid-base disorders in critical care medicine. Ann Rev Med 1989; 40:17-29.
  8. ФУНКЦИЯ ВРАЧА

  9. Broughton JO, Kennedy TC. Interpretation of arterial blood gases by computer. Chest 1984; 85:148-149.
  10. Kingston DM. A computerized interpretation of arterial pH and blood gas data: Do physicians need it? Respir Care 1982; 27:809-815.
  11. МЕТАБОЛИЧЕСКИЙ АЛКАЛОЗ

  12. Javaheri S, Kazemi H. Metabolic alkalosis and hypoventilation in humans. Am Rev Respir Dis 1987; 136:1011-1016.
  13. АНИОННАЯ РАЗНИЦА

  14. Emmet M, Narins RG. Clinical use of the anion gap. Medicine 1977; 56:38-54.
  15. Oh MS, Carroll HS. The anion gap. N Engi J Med 1977; 297:814-817.
  16. Goodkin DA, Krishna GG, Narins RG. The role of the anion gap in detecting and managing mixed metabolic acid-base disorders. Clin Endocrinol Metab 1984; 23:333-349.
  17. Gabow PA, Kaehny WD, Fennessey PV, et al. Diagnostic importance of an increased serum anion gap. N Engl J Med 1980; 303:854-858.
  18. Paulson WD. Anion gap-bicarbonate relationship in diabetic ketoacidosis. Am J Med 1986; 83:995-1000.
  19. Battle DC, Hizon M, Cohen E, et al. The use of the urinary anion gap in the diagnosis ol hyperchlorernic metabolic acidosis. N Engi J Med 1988; 338:594-599.
  20. Griffith KK, McKenzie MB, Peterson WE, Keyes JL. Mixed venous blood-gas composition in experimentally induced acid-base disturbances. Heart Lung 1983; 12:581-586.

Показатели КОС — кислотно-основного состояния — отражают тесную взаимосвязь меж­ду кислотно-основным, кислородным и водно-электролитным обменами. Разбалансирование одного из них всегда влечет за собой резкие нару­шения в двух других и в нормальном течении физиологических реакций гомеостаза вообще.

Для того, чтоб понять значение регуляции КОС рассмотрим простой пример.

Гипоксия сопровождается нарушениями КОС и водно-электролитного баланса следующего характера: - основной катион внеклеточной жидкости, поступает в чрезмерном коли­честве внутрь клеток и с каждым ммоль Na в клетку вводится 6 мл Н2О, что влечет за собой оттек клеток и, вместе с тем, искусственную гиповолемию. Это, в свою очередь, вызывает повышение осмоляльности плазмы и приводит к увеличению секреции с понижением диуреза.

Снижение объема циркулирующей крови сопровождается повышенной секрецией и задерж­кой Na и жидкости в организме. То есть, компенсаторные механизмы организма дестабилизированные гипоксией, не только не справляются, но и препятствуют выведению избытка жидкости из организма. В ре­зультате перераспределения воды в организме возникает ложная «гипоксическая гиповолемия» за счет оттека клеток. Лечебные мероприя­тия клиницистов в таком случае направлены на ликвидацию гипоксии. Переливание больному жидкостей для восполнения объема циркулирующей крови на фоне выра­женной гипоксии, может лишь утяжелить состояние больного за счет усиления клеточного и внутриорганного оттека.

рН крови

Дает информацию о содержании ионов Н+ в крови.

В норме: в артериальной крови рН = 7,36-7,42, в венозной крови рН = 7,26-7,36, в капиллярной крови рН = 7,35-7,44. Следует иметь в виду, что нормальное значение рН не всегда свидетельствует об от­сутствии нарушений КОС, так как в этом случае нельзя исключить компенсированный ацидоз или .

РСО2 цельной крови

Парциальное давление углекислого газа в крови.

В норме: в артериальной крови 35-45 мм рт. ст., в венозной крови - 46-58 мм рт. ст. Повышение либо понижение рСО2 по срав­нению с нормальным уровнем служит признаком респираторного нару­шения КОС.

Буферные основания цельной крови (ВВ - buffer bases)

Это сум­ма анионов всех слабых кислот, главными из которых являются бикар­бонаты и анионы белков в крови, полностью насыщенной О2. В норме составляют 42-52 ммоль/л. Этот показатель не изменяется при сдви­гах рСО2. Поэтому по величине ВВ можно судить о наличии нереспи­раторных нарушений КОС, связанных с изменением содержания неле­тучих кислот в крови.

Нормальные буферные основания (NBB)

Нормальные буферные основания (NBB) - сумма всех основных (анионных) буферов в крови больного, но приведенных к стандартным условиям (рН = 7,38; рСО2 = 40 мм рт. ст.; 38 °С; НbО2 = 100%).

Смещение буферных оснований

Смещение буферных оснований (BE - base excess) по отноше­нию к стандартным условиям.

BE = ВВ - NBB.

Допустимый предел смещения ±2,0 ммоль/л. Показатель изменяется при нереспиратор­ных нарушениях КОС. В случае отмечается дефицит буферных оснований за счет связывания их нелетучими кислотами - отрицатель­ный BE. При алкалозе буферные основания возрастают за счет сниже­ния нелетучих кислот - положительный BE.

Актуальный бикарбонат крови

Актуальный бикарбонат крови (АВ - Actual bicarbonate) отра­жает концентрацию бикарбонатов (НСО3-) в плазме крови при физио­логических условиях. В норме составляет 21-26 ммоль/л.

Стандартный бикарбонат

Стандартный бикарбонат (SB - Standart bicarbonate) - концен­трация бикарбоната в плазме крови, приведенной к стандартным условиям. В норме составляет 20-26 ммоль/л. По разнице между стан­дартным и актуальным бикарбонатам также, как и по рСО2 можно судить о наличии респираторных нарушений КОС по тому, что основ­ная часть ионов HCO3- переносится в виде углекислоты. При этом, если SB = AB - нарушений нет; если SB > АВ - ; если SB < АВ - .

Общее содержание СО2

В норме составляет 52-73% либо 23-53 ммоль/л.

РО2 - парциальное давление кислорода

Является показателем снабжения тканей кислородом. В норме составляет в венозной крови 38-40 мм рт. ст., в артериальной крови - 80-108 мм рт. ст. Снижение этого показателя свидетельствует о дефиците кислорода в тка­нях - гипоксии. Однако, описаны случаи, когда рО2 оставалось в пределах нормы или было выше нормы при ряде патологических состояний организма (выраженный ).

Исполь­зуется как показатель наличия или отсутствия у больных гипоксии. Лактат - промежуточный продукт расщепления . Его полное окисление происходит при достаточной насыщенности организма кисло­родом через преобразование в пируват и в дальнейшем, путем ресинтеза гликогена в печени или распада до СО2 и Н20. В норме содержание лактата в артериальной крови не превышает 1 ммоль/л, а в венозной крови - не более 2 ммоль/л. При отсутствии у больного диабета, выраженной , увеличение лак­тата в крови - гиперлактатацидемия, трактуется как показатель дефи­цита кислорода в организме.

Содержание остаточных (резидуальных - R) анионов в кро­ви

Данный показатель информативен для оценки нарушении КОС, вы­званных накоплением недоокисленных продуктов обмена в организме. К остаточным анионам относят анионы нелетучих (органических и не­органических) кислот.

Нормальная концентрация R-анионов оставляет, в среднем 12 ммоль/л. Отмечена достоверная корреляционная связь между лактатом и R-анионами в крови. Поэтому, при невозможности в лаборатории определять молочную кислоту, R-анионы могут служить надежным критерием в оценке содержания лактата. Увеличение R-анионов соответствует уве­личению содержания лактата в крови и в совокупности с другими показателями КОС позволяет подтвердить в качестве причины метаболи­ческих нарушений гипоксию.

Лабораторные показатели кислотно-основного состояния крови was last modified: Октябрь 23rd, 2017 by Мария Салецкая

Шведов КС (отделение реанимации новорожденных г. Нижневартовск)

У детей, находящихся в критическом состоянии, с острым поражением дыхательной, сердечно-сосудистой, выделительной систем изменения кислотно - основного состояния неизбежны. Эти изменения должны быть выявлены как можно раньше; нормализация гомеостаза приведет к восстановлениюработоспособности организма в целом, а оценивая полученные показателив динамике , можно косвенно судить о течении патологического процесса и адекватности принимаемых мер. Врачу важно иметь информацию, отражающую адекватность вентиляции, оксигенации, кислотно-основное состояние – некие объективные и точные показатели (хотя клиническая оценка всегда остается одним из основных компонентов).

Определить КОС можно:

    в пробе артериальной крови (периферический или пупочный артериальный катетер, однократная чрескожная пункция периферической артерии)

    непрерывный мониторинг датчиком, введенным в периферическую (либо пупочную) артерию или пупочную вену (определяет РаСО 2 , РаО 2 , рН иt о тела)

    в капиллярной крови

    в венозной или смешанной крови

Для неинвазивной оценки газового состава крови используют :

    транскутанное определение РаСО2, РаО2

    пульсоксиметрию (SрО2)

    капнометрию (EtCO2)

С помощью пробы артериального КОС («золотой стандарт газов крови») мы можем получить информацию о :

Состоянии оксигенации (РаО2,SaO2)

Адекватности вентиляции (РаСО2)

    кислотно – щелочном балансе (рН)

    кислородной емкости крови (PaO2,HbO2,Hbобщий)

    уровне лактата (Lac)

    дефиците/избытке буферных оснований крови (BD/BE)

Данные о кислотно – щелочном гомеостазе особенно необходимы при проведении новорожденному ИВЛ (оптимизация параметров и сведение к минимуму осложнений).

H + (мЭкв/л) = 24 х (РаСО2/HCO 3 –)

Изменение концентрации водородных ионов на 1 мЭкв/л приводит к изменению рН на 0.01.

Концентрация ионов водорода во внеклеточной жидкости поддерживается в узком диапазоне – 36 – 43 ммоль/л (что соответствует рН 7.35 - 7.46), конечной целью организма является поддержание рН в пределах этих значений, т.к. при них происходит большинство ферментативных реакций в клетках.

Таблица № 1 Нормальные показатели артериальной крови (традиционные значения)

Параметр

Значение

Диапазон

Ед измерения

Парциальное напряжение CO2

Стандартный бикарбонат

O2сатурация

Парциальное напряжение O2

1. pH крови определяется уравнением Henderson - Hasselbalch

pH = 6,1 +lg/(РаCO 2  0,03).

2. Стандартный бикарбонат (СБ, Standart bicarbonate, SBС)

3. Актуальный (истинный) бикарбонат (АВС)

4. BD / BE (Basedeficit/baseexcess) – показывают, сколько миллимолей кислоты или основания следует прибавить к 1 л крови для приведения рН к 7.4 при РаСО2= 40 мм рт ст, температуре тела 38º С, содержании протеинов 70 г/л, гемоглобина 150 г/л и 100% насыщении крови кислородом.

Для поддержки адекватного уровня газов крови необходимо каждые несколько часов (4-6) выполнять газометрические исследования. Однако, проводя их каждые 60 минут, что вызвало бы значительную потерю крови на одни только анализы (возможная анемизация пациента), не будем знать, что делается с этими параметрами между исследованиями. Чтобы расширить во времени сведения об оксигенации крови и парциальном давлении двуокиси углерода, а также иметь возможность вовремя корригировать их нарушения, необходим постоянный контроль неинвазивными методиками.

1.Пульсоксиметрия.

Работа пульсоксиметра основана на способности гемоглобина связанного (НbО2) и не связанного с кислородом (Нb) абсорбировать свет различной длины волны. Измеряя разницу между количеством света абсорбируемого во время систолы и диастолы, пульсоксиметр определяет величину артериальной пульсации. Соотношение количества НbО2к общему количеству гемоглобина, выраженное в процентах, называется сатурацией.

SаО2= (НbО2/ НbО2+ Нb)100 %

У новорожденного в первые сутки жизни (высокий уровень HbF) сатурация 90% часто отвечает значениям РаО2не выше 40 мм рт.ст. Обратная ситуация встречается при смещении кривой диссоциации гемоглобина вправо (например, при ацидозе, гипертермии, гиперкапнии). Тогда при нормальном значенииSpO2, например, 93%, значение РаО2может быть слишком высоким, порядка 90 мм рт.ст.

К основным недостаткам следует отнести неспособность показывать степень гипероксии (в связи с пологим ходом кривой диссоциации гемоглобина при больших цифрах РаО 2 ;SрО 2 = 95% при РаО 2 от 60 до 160 мм рт ст), в связи с чем необходимо периодически контролировать корреляцию междуSрО 2 и РаО 2 в артериальной крови.

2.Транскутанное определение РаО 2 (ТсО 2 ).

Метод определения РаО2с помощью электрохимического датчика Участок кожи в месте наложения датчика в течении нескольких минут нагревается до температуры 43 – 45 º С, капиллярный кровоток многократно увеличивается. Кислород диффундирует через кожу и измеряется датчиком.

У одного пациента в нормальных условиях разница между РаО 2 и ТсО 2 постоянна (РаО 2 – ТсО 2 =const), для правильной корреляции эти значения необходимо периодически сравнивать.

3.Транскутанное определение РаСО 2 (ТсСО 2 ).

Физический механизм чрескожного определения РаСО2подобен таковому для определения РаО2. Показатели ТсСО2всегда больше РаСО 2 , но между ними существует линейная зависимость.

Применение у глубоконедоношенных новорожденных методов ТсСО2и ТсО2 может вызвать ожоги в месте наложения электродов вследствие слабо развитого подкожно-жирового слоя.

4.Концентрация СО 2 в выдыхаемом воздухе (ЕТ СО 2 ).

Метод основан на способности СО2поглощать инфракрасные лучи. Величина ЕТ СО2обратно пропорциональна альвеолярной вентиляции. Когда вентиляция снижается, показатель ЕТ СО2повышается и наоборот. Абсолютный показатель ЕТСО2не так важен, как динамика его изменений. Данный метод можно рекомендовать, когда цель состоит прежде всего в избежании гипер – или гипокапнии, а не в поддержании РаСО 2 в пределах каких-либо фиксированных значений, что особенно важно у недоношенных новорожденных в первые 72 часа жизни. Возможно у стабильного больного существует некоторые безопасные границыEТСО2(менее 28 или более 45 мм рт. ст) и только в случае если показатели больного выйдут за эти пределы, следует инвазивно уточнить концентрацию РаСО2.

Постоянный мониторинг уровня СО 2 в выдыхаемом воздухе желателен по нескольким причинам – гипокапния и гиперкапния могут оказывать определенное влияние на развитие ХЛЗ, перивентрикулярной лейкомаляции или ВЖК.

При определении содержания электролитов и бикарбоната традиционно используют пробы венозной крови, а для измерения рСО2, рН и рО2– артериальной. В норме физиологические показатели венозной крови прямо зависят от КОС тканей, в то время как артериальная кровь отражаетв большей степенигазообмен в легких. Однако у больных, находящихся в критических состояниях, венозная кровь может и не отражать КОС тканей, что обусловлено действием микроциркуляторных шунтов, направляющих кровь мимо тканей с активным метаболизмом.

В регуляции кислотно-щелочного равновесия принимают участие:

    Буферные системы организма , связывающие ионы водорода (способны препятствовать изменению рН в течение минут)

Выделяют три основные буферные системы:

а) бикарбонатную

б) гемоглобиновую

в) костно-тканевую.

Вновь появляющиеся ионы водорода распределяются в организме следующим образом: 25% связываются бикарбонатной буферной системой (HCO 3 –), 25% - гемоглобином и 50% - костно-тканевой буферной системой. При хронических анемиях, почечной недостаточности буферная емкость снижается и незначительный избыток или недостаток ионов водорода приводит к тяжелому ацидозу или алкалозу.

2. Почки . Почечные механизмы поддержания pH включают:

Реабсорбцию бикарбоната из первичной мочи (регулируют реабсорбцию HCO 3 – в проксимальных канальцах в ответ на изменение уровня РаСО2)

Экскрецию ионов водорода (50-100 мэкв H + в сутки). Почечная недостаточность сопровождается хроническим ацидозом, степень которого зависит от степени нарушения функции почек. Добиваться полной коррекции ацидоза нецелесообразно, поскольку он обычно достаточно компенсирован респираторными механизмами.

3.Легкие. Выводят из организма углекислый газ, образующийся в результате реакции:

HCO 3 – + H + ↔ H 2 O + CO 2 .

Система газообмена обеспечивает компенсацию метаболических нарушений в форме немедленных реакций. На фоне метаболического ацидоза происходит стимуляция вентиляции легких, результатом чего становится уменьшение РаСО2, противодействующее первичному снижению содержанияHCO 3 – в плазме крови; при метаболическом алакалозе легочная вентиляция подавляется и РаСО2увеличивается, компенсируя повышениеHCO 3 – .

Поскольку растворимость углекислого газа примерно в 20 раз выше, чем растворимость кислорода, накопление углекислого газа в организме свидетельствует о тяжелой дыхательной недостаточности.

Кислотно-основное состояние (кислотно-щелочная реакция) - это исключительно важная постоянная характеристика крови, которая обеспечивает нормальное течение окислительно-восстановительных процессов в организме, ферментативную активность, а также направление и интенсивность всех видов обмена веществ.
Кислотность или щелочность любой жидкости (в том числе и крови) напрямую зависит от содержания в ней свободных ионов водорода. Количественная активная кислотная или щелочная реакция определяется «водородным показателем» - рН.
Понятие «водородный показатель» (дословно «сила водорода») и шкалу рН (от 0 до 14) ввел в 1908 г. физик и датский биохимик Серен Петер Лауриц Сервисен.
Нейтральная реакция соответствует рН = 7,0, меньшие значения являются свидетельством сдвига в «кислую» сторону, а большие - в «щелочную».
Постоянство кислотно-основного состояния организма поддерживается буферными системами (жидкостями, поддерживающими баланс ионов водорода) и физиологическими механизмами компенсации (за счет деятельности печени, почек, легких и других органов).
В крови человека одновременно функционируют несколько буферных систем (кислота-основание):
1) бикарбонатная (Н2СОэ и НСО-3);
2) гемоглобиновая (гемоглобин - слабая кислота, оксигемоглобин - слабое основание);
3) белковая (работающая за счет способности белков ионизироваться);
4) фосфатная (дифосфат и монофосфат).
Наиболее активной является бикарбонатная буферная система крови, обеспечивающая до 35 % буферной емкости крови; на остальные системы приходится, соответственно, 35, 7 и 5 %. Особенность гемоглобиновой буферной системы крови состоит в том, что кислотность гемоглобина зависит от его насыщенности кислородом, который человек получает извне.
Основная роль в поддержании стабильного кислотно-основного равновесия в организме отводится почкам, печени и легким. Наибольшее значение имеют легкие, так как через них (в виде углекислоты) выделяется до 95% кислых продуктов, образующихся в результате жизнедеятельности организма. В почках связываются и выводятся ионы водорода, а также возвращаются в кровь ионы натрия и бикарбонат. Печень преобразует и выводит различные кислоты. Деятельность органов пищеварительного тракта в поддержании кислотно-основного постоянства также немаловажна, поскольку они выделяют пищеварительные соки, имеющие кислую или щелочную реакцию.
Определение водородного показателя (рН) крови проводят электрометрическим способом с применением специального стеклянного электрода, чувствительного к ионам водорода.
Кислотно-основное состояние крови связано с содержанием в ней углекислого газа. Для установления уровня напряжения углекислого газа и кислорода в крови применяют эквилибрационную методику Аструпа или электрод Северингхауса. Значения, характеризующие изменения кислотно-основного состояния, рассчитывают посредством составления номограммы.
Сейчас массово выпускают приборы, определяющие рН, напряжение С02 и 02 в крови; расчеты производятся с помощью микрокомпьютера, входящего в состав прибора. В настоящее время для определения кислотно-щелочного состояния наиболее широко применяется так называемая методика Аструпа.
Для определения кислотно-основного состояния крови берется артериальная или капиллярная (из кончика пальца) кровь. Следует отметить, что наиболее высокое постоянство кислотно-щелочных показателей отмечается все же в артериальной крови.
У здорового человека рН артериальной крови составляет 7,35-7,45, т.е. кровь имеет слабощелочную реакцию. Снижение величины рН свидетельствует о сдвиге реакции крови в кислую сторону, что называется «ацидоз» (рН Сдвиги рН более чем на 0,4 (рН менее 7,0 и более 7,8) расцениваются как несовместимые с жизнью. Изменения рН, отличные от нормы, обозначаются как:
1) субкомпенсированный ацидоз (рН 7,25-7,35);
2) декомпенсированый ацидоз (рН 3) субкомпенсированный алкалоз (рН 7,45-7,55);
4) декомпенсированный алкалоз (рН > 7,55).
Немаловажно учитывать при оценке кислотно-основного состояния организма РаС02, т.е. напряжение углекислого газа в артериальной крови. В норме данный показатель составляет в среднем 40 мм рт. ст. (от 35 до 45), а более значительные отклонения от нормы являются признаком дыхательных нарушений.
Метаболический алкалоз или ацидоз определяется в том числе по избытку или недостаточности буферных оснований (Buffer Base, ВВ) в крови. У здорового человека В В = 0, а допустимые пределы колебаний составляют ±2,3 ммоль/л.
Такой показатель как «стандартные бикарбонаты» (SB) отражает концентрацию бикарбонатов в крови при стандартных условиях (рН = 7,40; РаС02 = 40 мм рт. ст.; t = 37 °С; S02 = 100%). «Истинные, или актуальные бикарбонаты» (АВ) отражают состояние бикарбонатного буфера в условиях конкретного организма, в норме совпадают со «стандартными» и составляют 24,0 ± 2,0 ммоль/л.
Показатели SB и АВ снижаются при нарушение обмена веществ со сдвигом реакции крови в кислую сторону и уменьшаются при сдвиге реакции крови в щелочную сторону.
Если лабораторные данные свидетельствуют о наличии метаболического ацидоза, это может быть признаком кетоацидоза, сахарного диабета, кислородного голодания (гипоксии) тканей, шокового состояния, а также ряда других патологических состояний.
Причиной метаболического алкалоза может стать неукротимая рвота (с большой потерей кислоты с желудочным соком) или чрезмерное употребление в пищу продуктов, вызывающих ощелачивание организма (растительных, молочных).
Дыхательный алкалоз может возникнуть у физически здорового человека в условиях высокогорья или при чрезмерной физической или психической нагрузке. Также он отмечается при одышке у пациентов с заболеваниями сердца и (или) легких, если углекислый газ не скапливается в легочных альвеолах.
Дыхательный ацидоз развивается при недостаточном поступлении воздуха в легкие, что может говорить об угнетении деятельности дыхательного центра в головном мозге, выраженной дыхательной недостаточности при тяжелой патологии легких.

Анализ газов крови и ее кислотно-щелочное состояние обладает немаловажным значением при диагностике различных состояний в хирургии, реаниматологии, анестезиологии и играет не менее важную роль при лечении. Три наиболее соизмеримых показателя. Как правило, это:

  • давление кислорода,
  • углекислый газ,
  • кровь,

которые на протяжении длительного времени диктуют состояние человека. Именно по этой причине в каждой современной лаборатории находится специальный газовый анализатор крови. Если вы хотите контролировать основные показатели в крови, данные о подобных параметрах, позволяют получить электролитный анализатор.

Другими словами - это система электролитов, которая дает возможность получить полный состав крови, исключая при этом человеческий фактор. Большинство современных клиник оборудованы подобными приборами для определения более точных показателей. Кроме того, у них присутствует удобный интерфейс, благодаря которому весьма просто проводить работу. Подобный анализатор КЩС также способен проанализировать всю концентрацию билирубина в крови. Только что упомянутый параметр обладает огромным значением при реанимации новорожденных, в период обнаружения у критически больных в трансплантологии и почечной недостаточности.

Как правило, кислотно-щелочное состояние является следствием трудного патологического нарушения и довольно редко обладает самостоятельным значением.

Анализ газового состава в артериальной крови является незаменимым способом исследования у больных с подозрением на нарушения обменов веществ или респираторную патологию.

Вторичный анализ газового состава в артериальной крови позволяет отследить в течение главного заболевания, контролируя эффект осуществляемой терапии. Итоги данного исследования реализуются составом в артериальной крови, и обязаны рассматриваться параллельно с оценкой клинического состояния. Способ обладает ограничением, так как предусматривает использование жидкости внеклеточного компортамента, что не позволяет найти информацию во внутриклеточной жидкости.

Большинство клиницистов зачастую сталкиваются с различными трудностями в период интерпретации газового состава крови.

Расшифровка КЩС анализа

Если Вы не разбираетесь, какое значение несет тот или иной показатель, и что это вообще, существует общая расшифровка, позволяющая ориентироваться в данных.

Для титрования требуется около 1 литра крови, в котором значение возвращается к 7,4 и температуре больного - 37 градусов по Цельсию.

Показатель, который соответствует метаболическому компоненту нарушения, он же ренальный, относится к дополнительной категории.

Норма КЩС крови

С течением времени были сформированы определенные механизмы для регуляции баланса и приведения его в норму, даже в случае развития патологии. Как правило, в норме в организме осуществляются примерно до 20 кислых компонентов, чем у базовых. По этой причине в нем существуют специальные механизмы, которые производят нейтрализацию и выводят из секреции избыток соединений совместно с кислыми параметрами. К подобным системам относятся буферные химические соединения и физиологические рычаги.

Нормы предоставлены для артериализированной или артериальной крови капиллярного значения совместно с температурой больного 37 градусов. Норма показателей крови в таком случае варьируется между значением 7,35 - 7,45, включая концентрацию 44 - 36 нмоль/л.

Если по каким-то причинам значение КЩС сдвигается за пределы нормальных показателей, то это указывает на серьезнейшие нарушения в метаболических процессах внутри организма, что говорит о необходимости срочного подключения специалистов для решения данной проблемы.

В случае, когда коэффициент рН находится выше нормы, это считается адкадемией. Причинами служат дыхательный или метаболический алкалоз, который субкомпенсируется и не компенсируется при максимальном компенсированном алкалозе, находящемся в пределах оптимального состояния.



Рассказать друзьям