В каких единицах измеряется интенсивность звука. Звук и акустические единицы измерения

💖 Нравится? Поделись с друзьями ссылкой

Акустика – область физики, изучающая упругие колебания и волны, методы получения и регистрации колебаний и волн, их взаимодействие с веществом.

Звук в широком смысле – упругие колебания и волны, распространяющиеся в газообразных, жидких и твердых веществах; в узком смысле – явление, субъективно воспринимаемое органом слуха человека и животных. В норме ухо человека слышит звук в диапазоне частот от 16 Гц до 20 кГц.

Звук с частотой ниже 16 Гц называется инфразвуком , выше 20 кГц – ультразвуком , а самые высокочастотные упругие волны в диапазоне от 10 9 до 10 12 Гц – гиперзвуком .

Существующие в природе звуки разделяют на несколько видов.

Звуковой удар – это кратковременное звуковое воздействие (хлопок, взрыв, удар, гром).

Тон – это звук, представляющий собой периодический процесс. Основной характеристикой тона является частота. Тон может быть простым, характеризующимся одной частотой (например, издаваемый камертоном, звуковым генератором), и сложным (издаваемым, например, аппаратом речи, музыкальным инструментом).

Сложный тон можно представить в виде суммы простых тонов (разложить на составляющие тона). Наименьшая частота такого разложения соответствует основному тону , а остальные – обертонам , или гармоникам . Обертоны имеют частоты, кратные основной частоте.

Акустический спектр тона – это совокупность всех его частот с указанием их относительных интенсивностей или амплитуд.

Шум – это звук, имеющий сложную, неповторяющуюся временную зависимость, и представляет собой сочетание беспорядочно изменяющихся сложных тонов. Акустический спектр шума – сплошной (шорох, скрип).

Физические характеристики звука:

а) Скорость (v ). Звук распространяется в любой среде, кроме вакуума. Скорость его распространения зависит от упругости, плотности и температуры среды, но не зависит от частоты колебаний. Скорость звука в воздухе при нормальных условиях равна примерно 330 м/с (» 1200 км/ч). Скорость звука в воде равна 1500 м/с; близкое значение имеет скорость звука и в мягких тканях организма.

б) Интенсивность (I ) – энергетическая характеристика звука – это плотность потока энергии звуковой волны. Для уха человека важны два значения интенсивности (на частоте 1 кГц):

порог слышимости I 0 = 10 –12 Вт/м 2 ; такой порог выбран на основе объективных показателей – это минимальный порог восприятия звука нормальным человеческим ухом; встречаются люди у которых интенсивность I 0 может составлять 10 –13 или 10 –9 Вт/м 2 ;

порог болевого ощущения I max – 10 Вт/м 2 ; звук такой интенсивности человек перестает слышать и воспринимает его как ощущение давления или боли.

в) Звуковое давление (Р ). Распространение звуковой волны сопровождается изменением давления.

Звуковое давление (Р ) – это давление, дополнительно возникающее при прохождении звуковой волны в среде; оно является избыточным над средним давлением среды.

Физиологически звуковое давление проявляется как давление на барабанную перепонку. Для человека важны два значения этого параметра:

– звуковое давление на пороге слышимости – P 0 = 2×10 –5 Па;

– звуковое давление на пороге болевого ощущения – Р m ах =

Между интенсивностью (I ) и звуковым давлением (Р ) существует связь:

I = P 2 /2rv ,

где r – плотность среды, v – скорость звука в среде.

г) Волновое сопротивление среды (R a) – это произведение плотности среды (r )на скорость распространения звука (v ):

R a = rv .

Коэффициент отражения (r ) – величина, равная отношению интенсивностей отраженной и падающей волн:

r = I отр /I пад.

r рассчитывается по формуле:

r = [(R a 2 – R a 1)/(R a 2 + R a 1)] 2 .

Интенсивность преломленной волны зависит от коэффициента пропускания.

Коэффициент пропускания (b ) – величина, равная отношению интенсивностей прошедшей (преломленной) и падающей волн:

b = I прош /I пад.

При нормальном падении коэффициент b рассчитывается по формуле

b = 4(R a 1 /R a 2)/( R a 1 /R a 1 + 1) 2 .

Отметим, что сумма коэффициентов отражения и преломления равна единице, а их значения не зависят от того порядка, в котором звук проходит данные среды. Например, для перехода звука из воздуха в воду значения коэффициентов такие же, как для перехода в обратном направлении.

д) Уровень интенсивности . При сравнении интенсивности звука удобно пользоваться логарифмической шкалой, то есть сравнивать не сами величины, а их логарифмы. Для этого используется специальная величина – уровень интенсивности (L ):

L = lg (I /I 0); L = 2lg (P /P 0). (1.3.79)

Единицей измерения уровня интенсивности является – бел , [Б].

Логарифмический характер зависимости уровня интенсивности от самой интенсивности означает, что при увеличении интенсивности в 10 раз уровень интенсивности возрастает на 1 Б.

Один бел большая величина, поэтому на практике используют более мелкую единицу уровня интенсивности – децибел [дБ]: 1 дБ = 0,1 Б. Уровень интенсивности в децибелах выражается следующими формулами:

L ДБ = 10lg (I /I 0); L ДБ = 20lg (P /P 0).

Если в данную точку приходят звуковые волны от нескольких некогерентных источников , то интенсивность звука равна сумме интенсивностей всех волн:

I = I 1 + I 2 + ...

Для нахождения уровня интенсивности результирующего сигнала используется следующая формула:

L = lg (10 L l +10 L l + ...).

Здесь интенсивности должны быть выражены в белах . Формула для перехода имеет вид

L = 0,l×L ДБ.

Характеристики слухового ощущения:

Высота тона обусловлена, прежде всего, частотой основного тона (чем больше частота, тем более высоким воспринимается звук). В меньшей степени высота зависит от интенсивности волны (звук большей интенсивности воспринимается более низким).

Тембр звука определяется его гармоническим спектром. Различные акустические спектры соответствуют разному тембру, даже в том случае, когда основной тон у них одинаков. Тембр – это качественная характеристика звука.

Громкость звука – это субъективная оценка уровня его интенсивности.

Закон Вебера-Фехнера:

Если увеличивать раздражение в геометрической прогрессии (то есть в одинаковое число раз), то ощущение этого раздражения возрастает в арифметической прогрессии (то есть на одинаковую величину).

Для звука с частотой 1 кГц вводят единицу уровня громкости – фон , которая соответствует уровню интенсивности 1 дБ. Для других частот уровень громкости также выражают в фонах по следующему правилу:

громкость звука равна уровню интенсивности звука (дБ) на частоте 1 кГц, вызывающего у «среднего» человека такое же ощущение громкости, что и данный звук, причем

Е = klg (I/I 0). (1.3.80)

Пример 32. Звук, которому на улице соответствует уровень интенсивности L 1 = 50 дБ, слышен в комнате как звук с уровнем интенсивность L 2 = 30 дБ. Найти отношение интенсивностей звука на улице и в комнате.

Дано: L 1 = 50 дБ = 5 Б;

L 2 = 30 дБ = 3 Б;

I 0 = 10 –12 Вт/м 2 .

Найти: I 1 /I 2 .

Решение. Для того чтобы найти интенсивность звука в комнате и на улице, запишем формулу (1.3.79) для двух рассматриваемых в задаче случаев:

L 1 = lg (I 1 /I 0); L 2 = lg (I 2 /I 0),

откуда выразим интенсивности I 1 и I 2:

5 = lg (I 1 /I 0) Þ I 1 = I 0 ×10 5 ;

3 = lg (I 2 /I 0) Þ I 2 = I 0 ×10 3 .

Очевидно: I 1 /I 2 = 10 5 /10 3 = 100.

Ответ: 100.

Пример 33. Для людей с нарушенной функцией среднего уха слуховые аппараты сконструированы так, чтобы передавать колебания непосредственно на кости черепа. Для костной проводимости порог слухового восприятия на 40 дБ выше, чем для воздушной. Чему равна минимальная интенсивность звука, которую способен воспринимать человек с дефектом слуха?

Дано: L к = L в + 4.

Найти: I min .

Решение. Для костной и воздушной проводимости, согласно (1.3.79),

L к = lg (I min /I 0); L в = lg (I 2 /I 0), (1.3.81)

где I 0 – порог слышимости.

Из условия задачи и (1.3.81) следует, что

L к = lg (I min /I 0) = L в + 4 = lg (I 2 /I 0) + 4, откуда

lg (I min /I 0) – lg (I 2 /I 0) = 4, то есть,

lg [(I min /I 0) : (I 2 /I 0)] = 4 Þ lg (I min /I 2) = 4, имеем:

I min /I 2 = 10 4 Þ I min = I 2 ×10 4 .

При I 2 = 10 –12 Вт/м 2 , I min = 10 –8 Вт/м 2 .

Ответ: I min = 10 –8 Вт/м 2 .

Пример 34. Звук с частотой 1000 Гц проходит через стенку, при этом его интенсивность уменьшается с 10 –6 Вт/м 2 до 10 –8 Вт/м 2 . На сколько уменьшился уровень интенсивности?

Дано: n = 1000 Гц;

I 1 = 10 –6 Вт/м 2 ;

I 2 = 10 –8 Вт/м 2 ;

I 0 = 10 –12 Вт/м 2 .

Найти: L 2 – L 1 .

Решение. Уровни интенсивности звука до и после прохождения стенки найдем из (1.3.79):

L 1 = lg (I 1 /I 0); L 2 = lg (I 2 /I 0), откуда

L 1 = lg (10 –6 /10 –12) = 6; L 2 = lg (10 –8 /10 –12) = 4.

Тогда L 2 – L 1 = 6 – 4 = 2 (Б) = 20 (дБ).

Ответ: уровень интенсивности уменьшился на 20 дБ.

Пример 35. Для людей с нормальным слухом изменение уровня громкости ощущается при изменении интенсивности звука на 26 %. Какому интервалу громкости соответствует указанное изменение интенсивности звука? Частота звука составляет 1000 Гц.

Дано: n = 1000 Гц;

I 0 = 10 –12 Вт/м 2 ;

DI = 26 %.

Найти: DL .

Решение. Для частоты звука, равной 1000 Гц, шкалы интенсивностей и громкостей звука совпадают согласно формуле (1.3.80), так как k = 1,

Е = klg (I/I 0) = lg (I/I 0) = L , откуда

DL = lg (DI/I 0) = 11,4 (Б) = 1 (дБ) = 1 (фон).

Ответ: 1 фон.

Пример 36. Уровень интенсивности приемника составляет 90 дБ. Чему равен максимальный уровень интенсивности трех приемников, работающих одновременно?

Распространение звуковой волны сопровождается переносом энергии, которая зависит от звукового давления p и колебательной скорости v в каждой точке среды.

Средний поток звуковой энергии, проходящий в единицу времени через единицу поверхности, нормальной к направлению распространения волны, называется интенсивностью звука или силой звука (Вт/м 2):

Векторная величина, характеризующая также направление переноса энергии в волне, называется вектором Умова :

Наряду с интенсивностью звука используют еще одну энергетическую характеристику: плотность звуковой энергии (Дж/м 3), равную энергии колебаний в единице объема звукового поля.

Можно показать, что в бегущей волне

Таким образом:

.

Передача энергии звуковой волны в область, ранее не затронутую волнами, требует непрерывного расходования энергии со стороны источника, возбуждающего звук. В тех зонах, где волна уже возникла, энергия непрерывно передается дальше со скоростью звука. Возникающие в среде переменные давления непрерывно совершают работу, ввиду чего и возникает сопротивление (импеданс ) при колебательных движениях частиц среды.

Формулы для силы звука:

подобны формулам закона Джоуля–Ленца для мощности электрического тока, только мощность, затрачиваемая при действии сил давления, расходуется не на выделение тепла, а на передачу энергии новым частям среды. Поэтому величину часто называют также сопротивлением излучения среды.

Логарифмическая шкала силы звука

Отношение максимальной и минимальной интенсивности слышимого человеческим ухом звука очень велико и составляет 10 14 раз (для звукового давления 10 7 раз). Поэтому для характеристики силы звука удобнее пользоваться логарифмическими величинами:

уровнем интенсивности звука , выраженным в децибелах (дБ):

и уровнем звукового давления (дБ):

,

где I 0 и p 0 – значения, соответствующие порогу слышимости на частоте 1000 Гц ( , p 0 = 2∙10 -5 Па).

Значение p 0 выбрано таким образом, чтобы при нормальных атмосферных условиях L I = L p . Поэтому в дальнейшем будем использовать величину

L = L I = L p , которую называют уровнем звука в децибелах .

Уровень звука, соответствующий порогу слышимости на частоте 1000Гц, равен 0 дБ. Болевой порог восприятия звука соответствует I б = 10 2 Вт/м 2 и р б = 2∙10 2 Па, что дает значение L б = 140 дБ.

Введению логарифмических единиц измерения способствовало также то обстоятельство, что ухо человека реагирует не на абсолютное изменение интенсивности звука, а на относительное. Разница уровней в 1 дБ соответствует минимальной величине, различимой слухом, при этом интенсивность звука изменяется в 1,26 раза или на 26%. Если же разница уровней составляет 3 дБ, то сила звука изменяется уже в 2 раза.

В любой точке пространства звуковое давление равно:

р = р 1 + р 2 ,

где р 1 и р 2 – мгновенные значения звуковых давлений, создаваемых в этой точке соответственно первым и вторым источником.

Результирующая интенсивность звука равна:

,

Если источники звука некогерентные, то есть создаваемые ими давления не связаны по фазе, то и или - интенсивность суммарного звукового поля равна сумме интенсивностей источников.

Таким образом, если поле создается N некогерентными источниками, то

I = I 1 +I 2 +…+I N , а дБ,

где , … - уровни звука, создаваемые каждым источником в расчетной точке.

При N одинаковых источниках шума, равноудаленных от расчетной точки, с уровнями звукового давления L 0 , суммарный уровень равен:

L = L 0 +10lgN.


3 Восприятие звука человеком

Слух

Слухом называется способность организма получать информацию о внешнем мире, воспринимая звуковые колебания окружающей среды с помощью специального нервного механизма – звукового (слухового) анализатора. Слуховой анализатор условно разделяют на три отдела: периферический, включающий звуковоспринимающие органы и рецепторы, преобразующие энергию звуковых колебаний в энергию нервного возбуждения; проводниковый - нейроны, проводящие возбуждение; центральный, в котором нейроны воспринимающих центров производят обработку информации. У человека к слуховому анализатору относятся наружное, среднее и внутреннее ухо, нервные проводящие пути слуховой системы, проходящие от кортиева органа в слуховую область коры головного мозга, и слуховая область коры.

Схема строения человеческого уха приведена на рисунке 3.1.

Рисунок 3.1 - Схема строения уха человека: 1 - наружный слуховой проход; 2 - барабанная перепонка; 3 - полость среднего уха (барабанная полость); 4 - молоточек; 5 - наковальня; 6 - стремечко; 7 - полукружные каналы; 8 - преддверие; 9 - улитка; 10 - овальное окно; 11 - евстахиева труба.

Наружное ухо – это ушная раковина и примыкающий к ней наружный слуховой проход. Наружное ухо отделено от среднего кожной мембраной -барабанной перепонкой. Среднее ухо представляет собой заполненную воздухом полость, соединенную с носоглоткой евстахиевой трубой. В барабанной полости находится система слуховых косточек – молоточек, наковальня и стремечко. Рукоятка молоточка срослась с барабанной перепонкой, головка молоточка гибко связана с наковальней, а короткий отросток наковальни с другой стороны соединен с головкой стремечка. Основание стремечка заходит через овальное окно во внутреннее ухо. Внутреннее ухо (улитка) представляет собой капсулу, заполненную жидкостью. Улитка длиной около 35 мм образует два витка. Полость улитки по всей длине разделена перегородкой (основной мембраной) на две части. На основной мембране расположен звуковоспринимающий кортиев орган, состоящий из множества рецепторных волосковых клеток.

Колебания барабанной перепонки, вызываемые звуковыми волнами, через систему слуховых косточек передаются жидкости в улитке. Колебания основной мембраны приводят в движение волосковые клетки кортиева органа, в которых возбуждается электрический потенциал. Этот потенциал и приводит к возбуждению волокон слухового нерва, который передает соответствующий сигнал в слуховой центр коры головного мозга.

К основным свойствам слуха можно отнести способность к различению частоты и интенсивности звуков, к анализу сложных звуков и к оценке их свойств, определять положение источника звука в пространстве, выделять один из звуковых сигналов на фоне других и так далее. Свойства слуха различны у разных животных. Более высокоорганизованные животные обладают существенно большим совершенством свойств слуха. Например, слух человека обладает рядом специфических свойств, связанных с восприятием речи.

К количественным характеристикам слуха относятся слуховая чувствительность (порог слышимости ), верхний предел слухового восприятия (порог болевого ощущения или болевой порог ) и частотный диапазон слышимости.

У разных животных частотный диапазон слышимых звуков различен. Например, для кузнечиков он составляет 10 Гц – 100 кГц, для лягушки 50 Гц – 30 кГц, верхняя граница слышимости для летучих мышей 100-150 кГц. Область слышимых для человека звуков приведена на рисунке 3.2.

Видно, что человек воспринимает на слух звуки в диапазоне частот от 16 Гц до 20 кГц (слышимый звук ). Звуковые волны с частотами ниже 16 Гц называются инфразвуком , а с частотами выше 20 кГц – ультразвуком .

Рисунок 3.2 - Область слышимых звуков для человека

Субъективное восприятие слышимого звука человеком характеризуется высотой, громкостью и тембром . Рассмотрим связь этих характеристик с физическими параметрами звуковой волны.

Высота тона

Гармоническая звуковая волна воспринимается на слух как чистый (музыкальный) тон . При этом, чем больше частота колебаний в волне, тем выше тон. По высоте звуки принято делить на октавы. Октавой называется полоса частот, в которой верхняя граничная частота в два раза больше, чем нижняя:

В качестве частоты, характеризующей частотную полосу в целом, берется среднегеометрическая частота . Среднегеометрические частоты октавных полос стандартизованы: 32, 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц.

Симфонический оркестр воспроизводит почти все слышимые частоты. Диапазон рояля охватывает тона с частотами примерно от 25 до 4000 Гц. При помощи бесклавишных инструментов (типа скрипки) можно взять тон любой высоты. В таком инструменте, как рояль, струны настроены на определенные частоты. За основу берется нота «ля» первой октавы, для которой частота колебаний равна 440 Гц. При настройке таких музыкальных инструментов октаву делят на 12 частей (полутонов). Соотношение частот соседних тонов при этом равно 1,029. Связь между высотой нот музыкального звукоряда и частотой тона приведена на рисунке 3.3 а.

Единицей измерения высоты тона является мел . В соответствии с общепринятым определением тон частотой 1000 Гц при уровне звука 60 дБ имеет высоту 1000 мел. Зависимость высоты тона в мелах от частоты представлена на рисунке 3.3 б.

Рисунок 3.3 – Соотношение частоты и высоты тонов

Громкость звука

Если сравнить между собой громкость двух чистых тонов одинаковой частоты, то чем больше амплитуда звукового давления, тем более громким будет звук. Однако человеческое ухо имеет разную чувствительность к звукам разной частоты, то есть на разных частотах одинаковую громкость могут иметь звуки разной интенсивности. Область наилучшей слышимости лежит в интервале от 1000 до 5000 Гц. На низких и высоких частотах чувствительность слухового аппарата снижается.

Громкость звука оценивают, сравнивая ее с громкостью чистого тона частотой 1000 Гц. Уровень звукового давления (в дБ) чистого тона с частотой 1000 Гц, столь же громкого (сравнением на слух), как и измеряемый звук, называется уровнем громкости данного звука (в фонах) . На практике для оценки громкости звука различных частот используют «кривые равной громкости» - геометрическое место точек равногромких тонов различных частот (рисунок 3.4).

Рисунок 3.4 – Кривые равной громкости

Нижняя кривая показывает зависимость порога слышимости от частоты. На частоте 1000 Гц порог слышимости соответствует давлению 0,02 мПа (0 дБ). В области очень низких или очень высоких частот порог слышимости повышается и может составлять 80 – 100 дБ. Следует отметить, что с возрастом порог слышимости сдвигается, особенно в области высоких частот (рисунок 3.5).

Рисунок 3.5 – Возрастные изменения порога слышимости

В области наилучшей слышимости ухо способно различить около 370 градаций по громкости, а на частоте 60 Гц число градаций только 34. Эти данные соответствуют условиям тонкого опыта при полной тишине. Практически человек с нормальным слухом начинает замечать прирост уровня звука на 1 дБ, то есть на 26% по интенсивности звука.

Примеры уровня громкости различных звуков:

Шум авиамотора (на расстоянии 5 м от винта) – 120 фон;

Вагон метро на большой скорости – 90- 95 фон;

Шумная улица - 80-85 фон;

Шум в городской квартире – 40-50 фон;

Шепот на расстоянии 1 м – 20 фон.

Шкала уровней громкости не является натуральной шкалой, то есть, например, изменение уровня громкости в два раза не означает, что субъективное ощущение громкости звука изменится во столько же раз. Для оценки субъективного восприятия громкости звука введена шкала сонов. Громкость звука в сонах равна

где L – уровень громкости в фонах.

Из формулы (3.2) видно, что громкость в 1 сон имеет звук с уровнем громкости L = 40 фон. Изменение уровня громкости на 10 фон соответствует изменению громкости звука в два раза. Диапазоны громкости различных звуков иллюстрирует рисунок 3.6.

Рисунок 3.6 – Громкость различных звуков

Спектральный состав звука

Физические величины, характеризующие звук, являются функцией времени, поэтому их можно представить в виде суммы гармонических колебаний с различными частотами и амплитудами (см. раздел 1.1.2). Зависимость амплитуды (или эффективного значения) гармонических составляющих звуковой волны от частоты называется спектром звука .

Периодические колебания при разложении в ряд Фурье представляются как сумма гармоник с различной амплитудой. Такие гармоники образуют дискретный или линейчатый спектр .

Непериодические колебания сложной формы (случайные или одиночные процессы) могут быть представлены с помощью интеграла Фурье в виде суммы бесконечно большого числа гармонических составляющих, образующих сплошной спектр . Обычно звуковые сигналы имеют смешанный спектр , в котором на фоне сплошного спектра выделяются отдельные тональные составляющие. Различные виды спектров приведены на рисунке 3.7.

Рисунок 3.7 – Различные виды спектров звуковых сигналов

Дискретные спектры характерны, в основном, для музыкальных звуков . При этом самая низкая по частоте гармоника называется основным тоном , а все остальные – обертонами (рисунок 3.8).

Рисунок 3.8 – Разложение звукового сигнала на гармонические составляющие.

Частота основного тона определяет высоту звука, а обертоны придают звуку определённую тембровую окраску (тембр ). Если в звуке мало обертонов, то тембр оценивается как глухой, пустой, неокрашенный; если сильно выражены первые обертоны – сочный, полный; если сильно выражены высшие составляющие в области 3000 – 6000 Гц – пронзительный, металлический, резкий, яркий. На рисунке 3.9 приведены осциллограммы звуков одинаковой высоты, исполняемых на рояле и кларнете. Период у обоих колебаний одинаков, но они сильно отличаются друг от друга по своей форме и, следовательно, различаются своим гармоническим составом.

Рисунок 3.9 – Осциллограммы звуковых колебаний рояля и кларнета.

На рисунке 3.10 изображены спектры этих звуковых сигналов. Так как высоты звуков одинаковы, то и частоты тонов - основного и обертонов - одни и те же. Однако амплитуды отдельных гармоник в каждом спектре сильно различаются.

Рисунок 3.10 – Спектры звуковых колебаний рояля и кларнета

Сплошной широкополосный спектр характерен для неупорядоченных во времени звуковых сигналов, называемых шумом . При этом по положению максимума спектра шумы можно разделить на низкочастотные (максимум ниже 300 Гц), среднечастотные (от 300 до 800 Гц) и высокочастотные (максимум выше 800 Гц).

Спектр речи является смешанным, причём его дискретные частоты определяются гласными звуками, которые по своей природе близки к музыкальным. Их спектр представляет собой последовательность большого числа отдельных линий, соответствующих гармоникам колебаний голосовых связок. Основная частота колебаний голосовых связок у разных людей различна (бас – примерно 100 Гц, сопрано – 250 Гц).

Обычно при произнесении гласных звуков максимальную амплитуду имеют одна или две гармоники, которые называются формантами .Например, для гласного звука «а» частота форманты примерно равна 900 Гц, для «о» - 500 Гц, для «е» - 550 и 2100 Гц, для «и» - 350 и 2400 Гц. Согласные звуки характеризуются сплошным («шумовым») спектром. На рисунке 3.10 приведены спектры звуков «а» и «с».

Рисунок 3.10 – Спектры звуков речи: «а» (вверху) и «с» (внизу).


4 ИСТОЧНИКИ И ПРИЕМНИКИ ЗВУКА

Интенсивность звука (сила звука)

Интенсивностью звука называется физическая величина, равная средней по времени энергии, переносимой за единицу времени звуковой волной через единичную площадку, ориентированную перпендикулярно направлению распространения волны (плотность потока энергии). Для периодического звука усреднение проводится либо за промежуток времени, большой по сравнению с периодом, либо за целое число периодов.

Для плоской гармонической волны интенсивность звука равна:

где - амплитуда звукового давления; – амплитуда скорости колебаний; - плотность среды, в которой распространяется звук; – скорость звука в среде (фазовая или групповая, если дисперсия мала, то скорости практически совпадают).

В международной системе единиц СИ интенсивность звука измеряется в .

Уровень интенсивности

Уровень интенсивности – оценочная величина интенсивности, выраженная в децибелах (дБ). Число децибел N равно:

(2)

где - интенсивность данного звука, - пороговая интенсивность.

Пороговая интенсивность

Пороговая интенсивность – интенсивность, соответствующая порогу чувствительности уха человека. За пороговую интенсивность принята величина:

(3)

Другой количественной характеристикой звука является эффективное звуковое давление, т.к. человек физиологически воспринимает интенсивность звука как давление, которое оказывают звуковые волны на органы слуха. Количественной мерой в этом случае служит и уровень звукового давления . Следует отличать звуковое давление от давления звука. Давление звукового излучения (иначе – давление звука, радиационное давление) – постоянное давление, которое испытывает тело, находящееся в стационарном звуковом поле. Давление звукового излучения пропорционально плотности звуковой энергии. Оно мало по сравнению со звуковым давлением. Звуковое давление в несколько сот раз больше давления звука.

Эффективное звуковое давление – эффективное (или действующее) значение звукового давления (среднеквадратичное):

(4)

См. формулу (1).

Уровень звукового давления

Уровень звукового давления – оценочная величина давления, выражаемая в белах (Б) или децибелах (дБ):

(5)

где - условный порог слышимости; k – нормировочный коэффициент. Если k=1, то уровень звукового давления измеряется в белах (Б); если k=10, то уровень звукового давления измеряется в дБ.

Условный порог слышимости

Условный порог слышимости задается как числовое значение звукового давления при частотах 1,5 – 3 кГц, равное

Более подробно теорию можно прочесть в методических указаниях «Шумы и вибрации» , а также в прилагаемом в конце данной работы списке литературы .

Описание прибора

Универсальный прибор SLM 329 (Sound Level Meter 329) позволяет провести измерения уровня эффективного звукового давления в широком диапазоне. Пределы измерений и спецификация прибора приведены в таблице 1.Шаг измерений и приборная погрешность приведены в таблице 2.

Прибор нельзя эксплуатировать в условиях:

повышенной влажности;

повышенной температуры (более );

при прямых ярких лучах Солнца; при попадании яркого света или заметном нагревании жидкокристаллический дисплей может стать чёрным, а сам прибор не пригодным для измерений. Однако если экстремальные условия всё же не привели к порче прибора, то после остывания в течение 1-2 часов прибор снова будет готов к работе;

сильного запыления или рядом с открытым огнём;

во время грозы или в районе сильных электромагнитных полей.

Перед началом работы прибор должен достичь комнатной температуры, поэтому, принеся его с мороза, не начинайте измерения сразу, подождите, пока прибор нагреется.

Питание осуществляется от батарейки 9 вольт. Когда ресурс батарейки заканчивается, в левой части дисплея появляется соответствующий значок. Необходимо сменить батарею. Смена батарейки производится только лаборантом или преподавателем.

Никогда не включайте прибор, когда открыт отсек батарейки.

Таблица 1

Технические характеристики и пределы измерений SLM 329 (спецификация прибора)

Параметр Значение
Дисплей Жидкокристаллический четырёхразрядный
Максимальная скорость измерений 2 измерения в секунду
Диапазон От 40 дБ до 130 дБ
Частоты измеряемых сигналов От 125 Гц до 8 кГц
Время проведения одного измерения В режиме FAST 125 мс, в режиме SLOW 1 с
Рабочая температура От до
Относительная влажность От 10% до 75%, конденсат не допустим
Оптимальная температура для проведения измерений
Индикация необходимости замены батарейки Если напряжение батарейки падает до уровня ниже 7,5 В, то на дисплее появляется значок
Рекомендуемые батарейки NEDA 1604 9V или 6F22 9V («Крона»)
Время непрерывной работы без замены питания В непрерывном режиме измерений время работы не более 10 часов
Вес 170 г с батарейкой
Размеры: длина ширина высота 231 53 33 мм

Таблица 2

Шаг и точность измерений

Элементы управления

1 – ёмкостной микрофон,

2, 4 – цифровой жидкокристаллический дисплей,

3 – клавиша включения (включить/выключить) (ON/OFF),

5 – клавиша для установки фильтров: «А» для обычных звуковых сигналов, «С» - для сигналов низкой частоты или содержащих низкочастотные компоненты,

6- клавиша «Быстро/Медленно» (FAST/SLOW) для установки скорости измерений: «Быстро» (FAST) для нормального режима, «Медленно» (SLOW) для измерения сигналов с увеличивающейся или уменьшающейся интенсивностью,

7 – клавиша «Уровень» (LEVEL) для переключения диапазонов измерений (40 дБ, 70 дБ) (60 дБ, 90 дБ) (80 дБ, 110 дБ) (100 дБ, 130 дБ),

8 – тумблер «CAL» для калибровки.

Порядок включения прибора и установки необходимых режимов измерений

1. Для включения прибора нажмите клавишу - самая верхняя на передней панели. Этой же клавишей выключите прибор по окончании измерений.

2. Включите режим максимального сигнала клавишей MAX – вторая сверху на передней панели. Индикация включённого режима находится на дисплее справа вверху. Если индикация по каким-то причинам пропала, то нажмите клавишу ещё раз. Она появится, а режим включится.


3. Далее надо установить фильтр. Если в изучаемом сигнале не предполагается низкочастотных компонент, то нажатием клавиши A/C надо установить фильтр А. Если предполагается проводить измерения сигналов низкой частоты или содержащих низкочастотную компоненту, то той же клавишей надо установить фильтр С. Индикация установленного фильтра расположена справа на дисплее.

4. Установите скорость проведения измерения клавишей FAST/SLOW. Как правило, для проведения измерений удобен режим FAST. Но если предполагается, что интенсивность сигнала может меняться в процессе измерения, то необходимо установить режим SLOW. Индикация на дисплее справа вверху.

5. Необходимо выбрать диапазон измерений. Выбор производится клавишей LEVEL. Индикация внизу дисплея. До получения результатов измерений и уточнения диапазона можно ориентироваться на следующие уровни звука:

(40 дБ, 70 дБ) – привычный "домашний" уровень: разговор, работающий телевизор, негромкие бытовые приборы;

(60 дБ, 90 дБ) – технические звуки, например, работающая дрель, пылесос, проезжающие близко автомобили и проч.;

(80 дБ, 110 дБ) – это уже достаточно громкие звуки, например, спортивный мотоцикл, автомобиль без глушителя, автомобиль, который ездит в режиме «Формулы-1» и т.п.;

(100 дБ, 130 дБ) – уровень звуков на грани болевых ощущений, при которых не слышно собеседника – взлетающий самолёт, ревущий турбодвигатель, канонада, выстрелы из ружья, пушечный фейерверк прямо «над ухом». Звуки такого уровня могут оказаться опасными для слуховых органов. Поэтому, если Вы намереваетесь проводить измерения в данном диапазоне, для безопасности используйте специальные наушники.

Для обеспечения правильности работы прибора его необходимо калибровать раз в год.

Процесс калибровки

В качестве источника звукового сигнала используется источник с уровнем эффективного звукового давления 94 дБ, частотой 1 кГц и синусоидальной формой импульсов. Для проведения измерений устанавливаются следующие режимы:

фильтр А,

время измерений FAST,

режим измерений без индикации MAX,

диапазон (80 дБ, 110 дБ).

Справа сбоку расположено маленькое гнездо для ключа, которым можно провести калибровку, поворачивая который можно добиться показаний на дисплее до значения 94 дБ.

Калибровку прибора проводит только лаборант.

Порядок выполнения работы

Февраль 18, 2016

Мир домашних развлечений довольно разнообразен и может включать в себя: просмотр кино на хорошей домашней кинотеатральной системе; увлекательный и захватывающий игровой процесс или прослушивание музыкальных композиций. Как правило, каждый находит что-то своё в этой области, или сочетает всё сразу. Но какими бы не были цели человека по организации своего досуга и в какую бы крайность не ударялись - все эти звенья прочно связаны одним простым и понятным словом - "звук". Действительно, во всех перечисленных случаях нас будет вести за ручку звуковое сопровождение. Но вопрос этот не так прост и тривиален, особенно в тех случаях, когда появляется желание добиться качественного звучания в помещении или любых других условиях. Для этого не всегда обязательно покупать дорогостоящие hi-fi или hi-end компоненты (хотя будет весьма кстати), а бывает достаточным хорошее знание физической теории, которая способна устранить большинство проблем, возникающих у всех, кто задался целью получить озвучку высокого качества.

Далее будет рассмотрена теория звука и акустики с точки зрения физики. В данном случае я постараюсь сделать это максимально доступно для понимания любого человека, который, возможно, далёк от знания физических законов или формул, но тем не менее страстно грезит воплощением мечты создания совершенной акустической системы. Я не берусь утверждать, что для достижения хороших результатов в этой области в домашних условиях (или в автомобиле, например) необходимо знать эти теории досканально, однако понимание основ позволит избежать множество глупых и абсурдных ошибок, а так же позволит достичь максимального эффекта звучания от системы любого уровня.

Общая теория звука и музыкальная терминология

Что же такое звук ? Это ощущение, которое воспринимает слуховой орган "ухо" (само по себе явление существует и без участия «уха» в процессе, но так проще для понимания), возникающее при возбуждении барабанной перепонки звуковой волной. Ухо в данном случае выступает в роли "приёмника" звуковых волн различной частоты.
Звуковая волна же представляет собой по сути последовательный ряд уплотнений и разряжений среды (чаще всего воздушной среды в обычных условиях) различной частоты. Природа звуковых волн колебательная, вызываемая и производимая вибрацией любых тел. Возникновение и распространение классической звуковой волны возможно в трёх упругих средах: газообразных, жидких и твёрдых. При возникновении звуковой волны в одном из этих типов пространства неизбежно возникают некоторые изменения в самой среде, например, изменение плотности или давления воздуха, перемещение частиц воздушных масс и т.д.

Поскольку звуковая волна имеет колебательную природу, то у неё имеется такая характеристика, как частота. Частота измеряется в герцах (в честь немецкого физика Генриха Рудольфа Герца), и обозначает количество колебаний за период времени, равный одной секунде. Т.е. например, частота 20 Гц обозначает цикл в 20 колебаний за одну секунду. От частоты звука зависит и субъективное понятие его высоты. Чем больше звуковых колебаний совершается за секунду, тем «выше» кажется звучание. У звуковой волны так же имеется ещё одна важнейшая характеристика, имеющая название - длина волны. Длиной волны принято считать расстояние, которое проходит звук определённой частоты за период, равный одной секунде. Для примера, длина волны самого низкого звука в слышимом диапазоне для человека частотой 20 Гц составляет 16,5 метров, а длина волны самого высокого звука 20000 Гц составляет 1,7 сантиметра.

Человеческое ухо устроено таким образом, что способно воспринимать волны только в ограниченном диапазоне, примерно 20 Гц - 20000 Гц (зависит от особенностей конкретного человека, кто-то способен слышать чуть больше, кто-то меньше). Таким образом, это не означает, что звуков ниже или выше этих частот не существует, просто человеческим ухом они не воспринимаются, выходя за границу слышимого диапазона. Звук выше слышимого диапазона называется ультразвуком , звук ниже слышимого диапазона называется инфразвуком . Некоторые животные способны воспринимать ультра и инфра звуки, некоторые даже используют этот диапазон для ориентирования в пространстве (летучие мыши, дельфины). В случае, если звук проходит через среду, которая напрямую не соприкасается с органом слуха человека, то такой звук может быть не слышим или сильно ослабленным в последствии.

В музыкальной терминологии звука существуют такие важные обозначения, как октава, тон и обертон звука. Октава означает интервал, в котором соотношение частот между звуками составляет 1 к 2. Октава обычно очень хорошо различима на слух, в то время как звуки в пределах этого интервала могут быть очень похожими друг на друга. Октавой также можно назвать звук, который делает вдвое больше колебаний, чем другой звук, в одинаковый временной период. Например, частота 800 Гц, есть ни что иное, как более высокая октава 400 Гц, а частота 400 Гц в свою очередь является следующей октавой звука частотой 200 Гц. Октава в свою очередь состоит из тонов и обертонов. Переменные колебания в гармонической звуковой волне одной частоты воспринимаются человеческим ухом как музыкальный тон . Колебания высокой частоты можно интерпретировать как звуки высокого тона, колебания низкой частоты – как звуки низкого тона. Человеческое ухо способно чётко отличать звуки с разницей в один тон (в диапазоне до 4000 Гц). Несмотря на это, в музыке используется крайне малое число тонов. Объясняется это из соображений принципа гармонической созвучности, всё основано на принципе октав.

Рассмотрим теорию музыкальных тонов на примере струны, натянутой определённым образом. Такая струна, в зависимости от силы натяжения, будет иметь "настройку" на какую-то одну конкретную частоту. При воздействии на эту струну чем-либо с одной определённой силой, что вызовет её колебания, стабильно будет наблюдаться какой-то один определенный тон звука, мы услышим искомую частоту настройки. Этот звук называется основным тоном. За основной тон в музыкальной сфере официально принята частота ноты "ля" первой октавы, равная 440 Гц. Однако, большинство музыкальных инструментов никогда не воспроизводят одни чистые основные тона, их неизбежно сопровождают призвуки, именуемые обертонами . Тут уместно вспомнить важное определение музыкальной акустики, понятие тембра звука. Тембр - это особенность музыкальных звуков, которые придают музыкальным инструментам и голосам их неповторимую узнаваемую специфику звучания, даже если сравнивать звуки одинаковой высоты и громкости. Тембр каждого музыкального инструмента зависит от распределения звуковой энергии по обертонам в момент появления звука.

Обертоны формируют специфическую окраску основного тона, по которой мы легко можем определить и узнать конкретный инструмент, а так же чётко отличить его звучание от другого инструмента. Обертоны бывают двух типов: гармонические и негармонические. Гармонические обертоны по определению кратны частоте основного тона. Напротив, если обертоны не кратны и заметно отклоняются от величин, то они называются негармоническими . В музыке практически исключается оперирование некратными обертонами, поэтому термин сводится к понятию "обертон", подразумевая под собой гармонический. У некоторых инструментов, например фортепиано, основной тон даже не успевает сформироваться, за короткий промежуток происходит нарастание звуковой энергии обертонов, а затем так же стремительно происходит спад. Многие инструменты создают так называемый эффект "переходного тона", когда энергия определённых обертонов максимальна в определённый момент времени, обычно в самом начале, но потом резко меняется и переходит к другим обертонам. Частотный диапазон каждого инструмента можно рассмотреть отдельно и он обычно ограничивается частотами основных тонов, который способен воспроизводить данный конкретный инструмент.

В теории звука также присутствует такое понятие как ШУМ. Шум - это любой звук, которой создаётся совокупностью несогласованных между собой источников. Всем хорошо знаком шум листвы деревьев, колышимой ветром и т.д.

От чего зависит громкость звука? Очевидно, что подобное явление напрямую зависит от количества энергии, переносимой звуковой волной. Для определения количественных показателей громкости, существует понятие - интенсивность звука. Интенсивность звука определяется как поток энергии, прошедший через какую-то площадь пространства (например, см2) за единицу времени (например, за секунду). При обычном разговоре интенсивность составляет примерно 9 или 10 Вт/см2. Человеческое ухо способно воспринимать звуки достаточно широкого диапазона чувствительности, при этом восприимчивость частот неоднородна в пределах звукового спектра. Так наилучшим образом воспринимается диапазон частот 1000 Гц - 4000 Гц, который наиболее широко охватывает человеческую речь.

Поскольку звуки столь сильно различаются по интенсивности, удобнее рассматривать её как логарифмическую величину и измерять в децибелах (в честь шотландского учёного Александра Грэма Белла). Нижний порог слуховой чувствительности человеческого уха составляет 0 Дб, верхний 120 Дб, он же ещё называется "болевой порог". Верхняя граница чувствительности так же воспринимается человеческим ухом не одинаково, а зависит от конкретной частоты. Звуки низких частот должны обладать гораздо бОльшей интенсивностью, чем высокие, чтобы вызвать болевой порог. Например, болевой порог на низкой частоте 31,5 Гц наступает при уровне силы звука 135 дБ, когда на частоте 2000 Гц ощущение боли появится при уже при 112 дБ. Имеется также понятие звукового давления, которое фактически расширяет привычное объяснение распространение звуковой волны в воздухе. Звуковое давление - это переменное избыточное давление, возникающее в упругой среде в результате прохождения через неё звуковой волны.

Волновая природа звука

Чтобы лучше понять систему возникновения звуковой волны, представим классический динамик, находящийся в трубе, наполненной воздухом. Если динамик совершит резкое движение вперёд, то воздух, находящийся в непосредственной близости диффузора на мгновение сжимается. После этого воздух расширится, толкая тем самым сжатую воздушную область вдоль по трубе.
Вот это волновое движение и будет впоследствии звуком, когда достигнет слухового органа и "возбудит" барабанную перепонку. При возникновении звуковой волны в газе создаётся избыточное давление, избыточная плотность и происходит перемещение частиц с постоянной скоростью. Про звуковые волны важно помнить то обстоятельство, что вещество не перемещается вместе со звуковой волной, а возникает лишь временное возмущение воздушных масс.

Если представить поршень, подвешенный в свободном пространстве на пружине и совершающий повторяющиеся движения "вперёд-назад", то такие колебания будут называться гармоническими или синусоидальными (если представить волну в виде графика, то получим в этом случае чистейшую синусойду с повторяющимися спадами и подъёмами). Если представить динамик в трубе (как и в примере, описанном выше), совершающий гармонические колебания, то в момент движения динамика "вперёд" получается известный уже эффект сжатия воздуха, а при движении динамика "назад" обратный эффект разряжения. В этом случае по трубе будет распространяться волна чередующихся сжатий и разрежений. Расстояние вдоль трубы между соседними максимумами или минимумами (фазами) будет называться длиной волны . Если частицы колеблются параллельно направлению распространения волны, то волна называется продольной . Если же они колеблются перпендикулярно направлению распространения, то волна называется поперечной . Обычно звуковые волны в газах и жидкостях – продольные, в твердых же телах возможно возникновение волн обоих типов. Поперечные волны в твердых телах возникают благодаря сопротивлению к изменению формы. Основная разница между этими двумя типами волн заключается в том, что поперечная волна обладает свойством поляризации (колебания происходят в определенной плоскости), а продольная – нет.

Скорость звука

Скорость звука напрямую зависит от характеристик среды, в которой он распространяется. Она определяется (зависима) двумя свойствами среды: упругостью и плотностью материала. Скорость звука в твёрдых телах соответственно напрямую зависит от типа материала и его свойств. Скорость в газовых средах зависит только от одного типа деформации среды: сжатие-разрежение. Изменение давления в звуковой волне происходит без теплообмена с окружающими частицами и носит название адиабатическое.
Скорость звука в газе зависит в основном от температуры - возрастает при повышении температуры и падает при понижении. Так же скорость звука в газообразной среде зависит от размеров и массы самих молекул газа, - чем масса и размер частиц меньше, тем "проводимость" волны больше и больше соответственно скорость.

В жидкой и твёрдой средах принцип распространения и скорость звука аналогичны тому, как волна распространяется в воздухе: путём сжатия-разряжения. Но в данных средах, помимо той же зависимости от температуры, достаточно важное значение имеет плотность среды и её состав/структура. Чем меньше плотность вещества, тем скорость звука выше и наоборот. Зависимость же от состава среды сложнее и определяется в каждом конкретном случае с учётом расположения и взаимодействия молекул/атомов.

Скорость звука в воздухе при t, °C 20: 343 м/с
Скорость звука в дистиллированной воде при t, °C 20: 1481 м/с
Скорость звука в стали при t, °C 20: 5000 м/с

Стоячие волны и интерференция

Когда динамик создаёт звуковые волны в ограниченном пространстве неизбежно возникает эффект отражения волн от границ. В результате этого чаще всего возникает эффект интерференции - когда две или более звуковых волн накладываются друг на друга. Особыми случаями явления интерференции являются образование: 1) Биений волн или 2) Стоячих волн. Биения волн - это случай, когда происходит сложение волн с близкими частотами и амплитудой. Картина возникновения биений: когда две похожие по частоте волны накладываются друг на друга. В какой-то момент времени при таком наложении, амплитудные пики могут совпадать "по фазе", а также могут совпадать и спады по "противофазе". Именно так и характеризуются биения звука. Важно помнить, что в отличие от стоячих волн, фазовые совпадения пиков происходят не постоянно, а через какие-то временные промежутки. На слух такая картина биений различается достаточно чётко, и слышится как периодическое нарастание и убывание громкости соответственно. Механизм возникновения этого эффекта предельно прост: в момент совпадения пиков громкость нарастает, в момент совпадения спадов громкость уменьшается.

Стоячие волны возникают в случае наложения двух волн одинаковой амлитуды, фазы и частоты, когда при "встрече" таких волн одна движется в прямом, а другая – в обратном направлении. В участке пространства (где образовалась стоячая волна) возникает картина наложения двух частотных амплитуд, с чередованием максимумов (т.н. пучностей) и минимумов (т.н. узлов). При возникновении этого явления крайне важное значение имеет частота, фаза и коэффициент затухания волны в месте отражения. В отличие от бегущих волн, в стоячей волне отсутствует перенос энергии вследствие того, что образующие эту волну прямая и обратная волны переносят энергию в равных количествах и в прямом и в противоположном направлениях. Для наглядного понимания возникновения стоячей волны, представим пример из домашней акустики. Допустим, у нас есть напольные акустические системы в некотором ограниченном пространстве (комнате). Заставив их играть какую-нибудь композицию с большим количеством баса, попробуем изменить местоположение слушателя в помещении. Таким образом слушатель, попав в зону минимума (вычитания) стоячей волны ощутит эффект того, что баса стало очень мало, а если слушатель попадает в зону максимума (сложения) частот, то получается обратный эффект существенного увеличения басовой области. При этом эффект наблюдается во всех октавах базовой частоты. Например, если базовая частота составляет 440 Гц, то явление "сложения" или "вычитания" будет наблюдаться также на частотах 880 Гц, 1760 Гц, 3520 Гц и т.д.

Явление резонанса

У большинства твёрдых тел имеется собственная частота резонанса. Понять этот эффект достаточно просто на примере обычной трубы, открытой только с одного конца. Представим ситуацию, что с другого конца трубы подсоединяется динамик, который может играть какую-то одну постоянную частоту, её также впоследствии можно менять. Так вот, у трубы имеется собственная частота резонанса, говоря простым языком - это частота, на которой труба "резонирует" или издаёт свой собственный звук. Если частота динамика (в результате регулировки) совпадёт с частотой резонанса трубы, то возникнет эффект увеличения громкости в несколько раз. Это происходит потому, что громкоговоритель возбуждает колебания воздушного столба в трубе со значительной амплитудой до тех пор, пока не найдётся та самая «резонансная частота» и произойдёт эффект сложения. Возникшее явление можно описать следующим образом: труба в этом примере "помогает" динамику, резонируя на конкретной частоте, их усилия складываются и "выливаются" в слышимый громкий эффект. На примере музыкальных инструментов легко прослеживается это явление, поскольку в конструкции большинства присутствуют элементы, называемые резонаторами. Нетрудно догадаться, что служит цели усилить определённую частоту или музыкальный тон. Для примера: корпус гитары с резонатором ввиде отверстия, сопрягаемого с объёмом; Конструкция трубки у флейты (и все трубы вообще); Циллиндрическая форма корпуса барабана, который сам по себе является резонатором определённой частоты.

Частотный спектр звука и АЧХ

Поскольку на практике практически не встречаются волны одной частоты, то возникает необходимость разложения всего звукового спектра слышимого диапазона на обертоны или гармоники. Для этих целей существуют графики, которые отображают зависимость относительной энергии звуковых колебаний от частоты. Такой график называется графиком частотного спектра звука. Частотный спектр звука бывает двух типов: дискретный и непрерывный. Дискретный график спектра отображает частоты по отдельности, разделённые пустыми промежутками. В непрерывном спектре присутствуют сразу все звуковые частоты.
В случае с музыкой или акустикой чаще всего используется обычный график Амплитудно-Частотой Характеристики (сокращённо "АЧХ"). На таком графике представлена зависимость амплитуды звуковых колебаний от частоты на протяжении всего спектра частот (20 Гц - 20 кГц). Глядя на такой график легко понять, например, сильные или слабые стороны конкретного динамика или акустической системы в целом, наиболее сильные участки энергетической отдачи, частотные спады и подъёмы, затухания, а так же проследить крутизну спада.

Распространение звуковых волн, фаза и противофаза

Процесс распространения звуковых волн происходит во всех направлениях от источника. Простейший пример для понимания этого явления: камешек, брошенный в воду.
От места, куда упал камень, начинают расходиться волны по поверхности воды во всех направлениях. Однако, представим ситуацию с использованием динамика в неком объёме, допустим закрытом ящике, который подключён к усилителю и воспроизводит какой-то музыкальный сигнал. Несложно заметить (особенно при условии, если подать мощный НЧ сигнал, например бас-бочку), что динамик совершает стремительное движение "вперёд", а потом такое же стремительное движение "назад". Остаётся понять, что когда динамик совершает движение вперёд, он излучает звуковую волну, которую мы слышим впоследствии. А вот что происходит, когда динамик совершает движение назад? А происходит парадоксально тоже самое, динамик совершает тот же звук, только распространяется он в нашем примере всецело в пределах объёма ящика, не выходя за его пределы (ящик закрыт). В целом, на приведённом выше примере можно наблюдать достаточно много интересных физических явлений, наиболее значимым из которых является понятие фазы.

Звуковая волна, которую динамик, находясь в объёме, излучает в направлении слушателя - находится "в фазе". Обратная же волна, которая уходит в объём ящика, будет соответственно противофазной. Остаётся только понять, что подразумевают эти понятия? Фаза сигнала – это уровень звукового давления в текущий момент времени в какой-то точке пространства. Фазу проще всего понять на примере воспроизведения музыкального материала обычной напольной стерео-парой домашних акустических систем. Представим, что две такие напольные колонки установлены в неком помещении и играют. Обе акустические системы в этом случае воспроизводят синхронный сигнал переменного звукового давления, притом звуковое давление одной колонки складывается со звуковым давлением другой колонки. Происходит подобный эффект за счёт синхронности воспроизведения сигнала левой и правой АС соответственно, другими словами, пики и спады волн, излучаемых левыми и правыми динамиками совпадают.

А теперь представим, что давления звука по-прежнему меняются одинаковым образом (не претерпели изменений), но только теперь противоположно друг другу. Подобное может произойти, если подключить одну акустическую систему из двух в обратной полярности ("+" кабель от усилителя к "-" клемме акустической системе, и "-" кабель от усилителя к "+" клемме акустической системы). В этом случае противоположный по направлению сигнал вызовет разницу давлений, которую можно представить в виде чисел следующим образом: левая акустическая система будет создавать давление "1 Па", а правая акустическая система будет создавать давление "минус 1 Па". В результате, суммарная громкость звука в точке размещения слушателя будет равна нулю. Это явление называется противофазой. Если рассматривать пример более детально для понимания, то получается, что два динамика, играющие "в фазе" - создают одинаковые области уплотнения и разряжения воздуха, чем фактически помогают друг другу. В случае же с идеализированной противофазой, область уплотнения воздушного пространства, созданная одним динамиком, будет сопровождаться областью разряжения воздушного пространства, созданной вторым динамиком. Выглядит это примерно, как явление взаимного синхронного гашения волн. Правда, на практике падения громкости до нуля не происходит, и мы услышим сильно искажённый и ослабленный звук.

Самым доступным образом можно описать это явление так: два сигнала с одинаковыми колебаниями (частотой), но сдвинутые по времени. Ввиду этого, удобнее представить эти явления смещения на примере обычных круглых стрелочных часов. Представим, что на стене висит несколько одинаковых круглых часов. Когда секундные стрелки этих часов бегут синхронно, на одних часах 30 секунд и на других 30, то это пример сигнала, который находится в фазе. Если же секундные стрелки бегут со смещением, но скорость по-прежнему одинакова, например, на одних часах 30 секунд, а на других 24 секунды, то это и есть классический пример смещения (сдвига) по фазе. Таким же образом фаза измеряется в градусах, в пределах виртуальной окружности. В этом случае, при смещении сигналов относительно друг друга на 180 градусов (половина периода), и получается классическая противофаза. Нередко на практике возникают незначительные смещения по фазе, которые так же можно определить в градусах и успешно устранить.

Волны бывают плоские и сферические. Плоский волновой фронт распространяется только в одном направлении и редко встречается на практике. Сферический волновой фронт представляет собой волны простого типа, которые исходят из одной точки и распространяется во всех направлениях. Звуковые волны обладают свойством дифракции , т.е. способностью огибать препятствия и объекты. Степень огибания зависит от отношения длины звуковой волны к размерам препятствия или отверстия. Дифракция возникает и в случае, когда на пути звука оказывается какое-либо препятствие. В этом случае возможны два варианта развития событий: 1) Если размеры препятствия намного больше длины волны, то звук отражается или поглощается (в зависимости от степени поглощения материала, толщины препятствия и т.д.), а позади препятствия формируется зона "акустической тени". 2) Если же размеры препятствия сравнимы с длиной волны или даже меньше её, тогда звук дифрагирует в какой-то мере во всех направлениях. Если звуковая волна при движении в одной среде попадает на границу раздела с другой средой (например воздушная среда с твёрдой средой), то может возникнуть три варианта развития событий: 1) волна отразится от поверхности раздела 2) волна может пройти в другую среду без изменения направления 3) волна может пройти в другую среду с изменением направления на границе, это называется "преломление волны".

Отношением избыточного давления звуковой волны к колебательной объёмной скорости называется волновое сопротивление. Говоря простыми словами, волновым сопротивлением среды можно назвать способность поглощать звуковые волны или "сопротивляться" им. Коэффициенты отражения и прохождения напрямую зависят от соотношения волновых сопротивлений двух сред. Волновое сопротивление в газовой среде гораздо ниже, чем в воде или твёрдых телах. Поэтому если звуковая волна в воздухе падает на твердый объект или на поверхность глубокой воды, то звук либо отражается от поверхности, либо поглощается в значительной мере. Зависит это от толщины поверхности (воды или твёрдого тела), на которую падает искомая звуковая волна. При низкой толщине твёрдой или жидкой среды, звуковые волны практически полностью "проходят", и наоборот, при большой толщине среды волны чаще отражается. В случае отражения звуковых волн, происходит этот процесс по хорошо известному физическому закону: "Угол падения равен углу отражения". В этом случае, когда волна из среды с меньшей плотностью попадает на границу со средой большей плотности - происходит явление рефракции . Оно заключается в изгибе (преломлении) звуковой волны после "встречи" с препятствием, и обязательно сопровождается изменением скорости. Рефракция зависит также от температуры среды, в которой происходит отражение.

В процессе распространения звуковых волн в пространстве неизбежно происходит снижение их интенсивности, можно сказать затухание волн и ослабление звука. На практике столкнуться с подобным эффектом достаточно просто: например, если два человека встанут в поле на некотором близком расстоянии (метр и ближе) и начнут что-то говорить друг другу. Если впоследствии увеличивать расстояние между людьми (если они начнут отдаляться друг от друга), тот же самый уровень разговорной громкости будет становиться всё менее и менее слышимым. Подобный пример наглядно демонстрирует явление снижения интенсивности звуковых волн. Почему это происходит? Причиной тому различные процессы теплообмена, молекулярного взаимодействия и внутреннего трения звуковых волн. Наиболее часто на практике происходит превращение звуковой энергии в тепловую. Подобные процессы неизбежно возникают в любой из 3-ёх сред распространения звука и их можно охарактеризовать как поглощение звуковых волн .

Интенсивность и степень поглощения звуковых волн зависит от многих факторов, таких как: давление и температура среды. Также поглощение зависит от конкретной частоты звука. При распространении звуковой волны в жидкостях или газах возникает эффект трения между разными частицами, которое называется вязкостью. В результате этого трения на молекулярном уровне и происходит процесс превращения волны из звуковой в тепловую. Другими словами, чем выше теплопроводность среды, тем меньше степень поглощения волн. Поглощение звука в газовых средах зависит ещё и от давления (атмосферное давление меняется с повышением высоты относительно уровня моря). Что касательно зависимости степени поглощения от частоты звука, то принимая во внимание вышеназванные зависимости вязкости и теплопроводности, поглощение звука тем выше, чем выше его частота. Для примера, при нормальной температуре и давлении, в воздухе поглощение волны частотой 5000 Гц составляет 3 Дб/км, а поглощение волны частотой 50000 Гц составит уже 300 Дб/м.

В твёрдых средах сохраняются все вышеназванные зависимости (теплопроводность и вязкость), однако к этому добавляется ещё несколько условий. Они связаны с молекулярной структурой твёрдых материалов, которая может быть разной, со своими неоднородностями. В зависимости от этого внутреннего твёрдого молекулярного строения, поглощение звуковых волн в данном случае может быть различным, и зависит от типа конкретного материала. При прохождении звука через твёрдое тело, волна претерпевает ряд преобразований и искажений, что чаще всего приводит к рассеиванию и поглощению звуковой энергии. На молекулярном уровне может возникнуть эффект дислокаций, когда звуковая волна вызывает смещение атомных плоскостей, которые затем возвращаются в исходное положение. Либо же, движение дислокаций приводит к столкновению с перпендикулярными им дислокациями или дефектами кристаллического строения, что вызывает их торможение и как следствие некоторое поглощение звуковой волны. Однако, звуковая волна может и резонировать с данными дефектами, что приведет к искажению исходной волны. Энергия звуковой волны в момент взаимодействия с элементами молекулярной структуры материала рассеивается в результате процессов внутреннего трения.

В я постараюсь разобрать особенности слухового восприятия человека и некоторые тонкости и особенности распространения звука.

I = \frac{1}{T}\int\limits_t^{t+T}\frac{dP}{dS}dt,

где T - время усреднения, dP - поток звуковой энергии, переносимый через площадку dS .

Используется также физическая величина мгновенная интенсивность звука , представляющая собой мгновенное значение потока звуковой энергии через единичную площадку, расположенную перпендикулярно направлению распространения звука :

I(t) = \frac{dP(t)}{dS}.

Для плоской волны интенсивность звука может быть выражена через амплитуду звукового давления p 0 и колебательную скорость v :

I = {p_0v \over 2} = {v^2Z_S \over 2} = {p_0^2 \over 2Z_S},

См. также

Напишите отзыв о статье "Интенсивность звука"

Примечания

Литература

  • Интенсивность звука (сила звука) // Большая Советская энциклопедия (в 30 т.) / А. М. Прохоров (гл. ред.). - 3-е изд. - М .: Сов. энциклопедия, 1972. - Т. X. - С. 315–316. - 592 с.

Отрывок, характеризующий Интенсивность звука

Кутузов отступил к Вене, уничтожая за собой мосты на реках Инне (в Браунау) и Трауне (в Линце). 23 го октября.русские войска переходили реку Энс. Русские обозы, артиллерия и колонны войск в середине дня тянулись через город Энс, по сю и по ту сторону моста.
День был теплый, осенний и дождливый. Пространная перспектива, раскрывавшаяся с возвышения, где стояли русские батареи, защищавшие мост, то вдруг затягивалась кисейным занавесом косого дождя, то вдруг расширялась, и при свете солнца далеко и ясно становились видны предметы, точно покрытые лаком. Виднелся городок под ногами с своими белыми домами и красными крышами, собором и мостом, по обеим сторонам которого, толпясь, лилися массы русских войск. Виднелись на повороте Дуная суда, и остров, и замок с парком, окруженный водами впадения Энса в Дунай, виднелся левый скалистый и покрытый сосновым лесом берег Дуная с таинственною далью зеленых вершин и голубеющими ущельями. Виднелись башни монастыря, выдававшегося из за соснового, казавшегося нетронутым, дикого леса; далеко впереди на горе, по ту сторону Энса, виднелись разъезды неприятеля.
Между орудиями, на высоте, стояли спереди начальник ариергарда генерал с свитским офицером, рассматривая в трубу местность. Несколько позади сидел на хоботе орудия Несвицкий, посланный от главнокомандующего к ариергарду.
Казак, сопутствовавший Несвицкому, подал сумочку и фляжку, и Несвицкий угощал офицеров пирожками и настоящим доппелькюмелем. Офицеры радостно окружали его, кто на коленах, кто сидя по турецки на мокрой траве.
– Да, не дурак был этот австрийский князь, что тут замок выстроил. Славное место. Что же вы не едите, господа? – говорил Несвицкий.
– Покорно благодарю, князь, – отвечал один из офицеров, с удовольствием разговаривая с таким важным штабным чиновником. – Прекрасное место. Мы мимо самого парка проходили, двух оленей видели, и дом какой чудесный!
– Посмотрите, князь, – сказал другой, которому очень хотелось взять еще пирожок, но совестно было, и который поэтому притворялся, что он оглядывает местность, – посмотрите ка, уж забрались туда наши пехотные. Вон там, на лужку, за деревней, трое тащут что то. .Они проберут этот дворец, – сказал он с видимым одобрением.
– И то, и то, – сказал Несвицкий. – Нет, а чего бы я желал, – прибавил он, прожевывая пирожок в своем красивом влажном рте, – так это вон туда забраться.

Рассказать друзьям