Теория близкодействия и дальнодействия электростатики. Принципы близкодействия и дальнодействия

💖 Нравится? Поделись с друзьями ссылкой

Принцип дальнодействия

Дальноде́йствие и Короткоде́йствие (Близкодействие ) - две концепции классической физики , противоборствовавшие на заре её становления.

Согласно концепции дальнодействия, тела действуют друг на друга без посредников, через пустоту, на любом расстоянии, и такое взаимодействие осуществляется с бесконечно большой скоростью (но подчиняется определённым законам). Примером дальнодействия можно считать силу всемирного тяготения в классической теории гравитации Ньютона. Согласно концепции короткодействия (близкодействия), тело может действовать только на своё непосредственное окружение, а всякое действие на расстоянии должно осуществляться при помощи тех или иных посредников.

Принципиальное отличие теории близкодействия, принятой на сегодняшний день, можно рассмотреть на простом примере - взаимодействии двух точечных частиц. Концепция близкодействия постулирует, что в процессе этого взаимодействия частица А испускает другую частицу - С, при этом ее скорость и импульс меняются, согласно законам сохранения. Частица С поглощается частицей В, что, в свою очередь, приводит к изменению импульса и скорости последней. В результате создается иллюзия непосредственного влияния частиц друг на друга. В современной физике проводится четкое разделение материи на частицы-участники (или источники) взаимодействий (называемые веществом) и частицы-переносчики взаимодействий (называемые полем). Из четырех видов фундаментальных взаимодействий надежную экспериментальную проверку существования частиц-переносчиков получили три - сильное , слабое и электромагнитное взаимодействия. В настоящее время предпринимаются попытки по обнаружению переносчиков гравитационного взаимодействия - так называемого гравитона , предсказанного в некоторых расширениях Общей теории относительности .

Важным отличием теории близкодействия от теории дальнодействия является наличие максимальной скорости распространения взаимодействий (полей, частиц) - скорости света .


Wikimedia Foundation . 2010 .

Смотреть что такое "Принцип дальнодействия" в других словарях:

    - (Newton) Исаак (4.1.1643, Вулсторп, ок. Грантема, 31.3.1727, Кенсингтон), англ. физик, астроном, математик, основоположник классич. и небесной механики. Н. создал дифференциальное и интегральное исчисления как адекватный язык математич.… … Философская энциклопедия

    КОСМОЛОГИЧЕСКОЕ ДОКАЗАТЕЛЬСТВО БЫТИЯ БОГА - своеобразная рационализация основного догмата авраамических религий о Боге как созидателе мирового порядка (космоса), отвечающая Книге Бытия из Ветхого завета. Оно называется космологическим (но не просто логическим) потому, что апеллирует к… … Современный философский словарь

    Тяготение, универсальное свойство притяжения между любыми телами. Изучение Г. положило начало ньютоновской классич. механике. Так, Г. Галилей, изучая квазиоднородное поле Г. у поверхности земли, сформулировал закон инерции н установил, что сила,… … Математическая энциклопедия

    - “МАТЕМАТИЧЕСКИЕ НАЧАЛА НАТУРАЛЬНОЙ ФИЛОСОФИИ” (Philosophiae Naturalis Principia Mathematica. L., 1687; последнее издание L., 1990; рус. пер. академика А. Н. Крылова: П., 1915 1916) главное сочинение И. Ньютона, год публикации которого… … Философская энциклопедия

    - (Philosophiae Naturalis Principia Mathematica. L., 1687; последнее издание – L., 1990; рус. пер. академика А.Н.Крылова: П., 1915–1916) – главное сочинение И.Ньютона, год публикации которого считается годом рождения новоевропейской науки. В этом… … Философская энциклопедия

    ФИЗИКА. 1. Предмет и структура физики Ф. наука, изучающая простейшие и вместе с тем наиб. общие свойства и законы движения окружающих нас объектов материального мира. Вследствие этой общности не существует явлений природы, не имеющих физ. свойств … Физическая энциклопедия

    I. Предмет и структура физики Ф. – наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, свойства и строение материи и законы её движения. Поэтому понятия Ф. и сё законы лежат в основе всего… … Большая советская энциклопедия

    В Википедии есть статьи о других людях с такой фамилией, см. Максвелл. Джеймс Клерк Максвелл James Clerk Maxwell … Википедия

    ТЕОРИЯ - (1) система научных идей и принципов, обобщающих практический опыт, отражающих объективные природные закономерности и положения, которые образуют (см.) или раздел какой либо науки, а также совокупность правил в области какого либо знания млн.… … Большая политехническая энциклопедия

    - (греч. τὰ φυσικά – наука о природе, от φύσις – природа) – комплекс науч. дисциплин, изучающих общие свойства структуры, взаимодействия и движения материи. В соответствии с этими задачами совр. Ф. весьма условно можно подразделить на три больших… … Философская энциклопедия

Книги

  • Реляционная концепция Лейбница Маха , Владимиров Ю.С.. В книге изложен реляционно-статистический подход к природе физического мироздания, идейные основания которого заложены в трудах Г. Лейбница и Э. Маха. Согласно этому подходу, в основе…

Близкоде́йствие - представление, согласно которому взаимодействие между удаленными друг от друга телами осуществляется с помощью промежуточной среды (поля) и осуществляется с конечной скоростью. В начале 18 века одновременно с теорией близкодействия зародилась противоположная ей теория дальнодействия , согласно которой тела действуют друг на друга без посредников, через пустоту, на любом расстоянии, и такое взаимодействие осуществляется с бесконечно большой скоростью (но подчиняется определенным законам). Примером дальнодействия можно считать силу всемирного тяготения в классической теории гравитации И. Ньютона .

Одним из родоначальников теории близкодействия считается М. В. Ломоносов . Ломоносов был противником теории дальнодействия, считая, что тело не может воздействовать на другие тела мгновенно. Он полагал, что электрическое взаимодействие передается от тела к телу через особую среду «эфир», заполняющую все пустое пространство, в частности и пространство между частицами, из которых состоит «весомая материя», т. е. вещество. Электрические явления, по Ломоносову, следует рассматривать как определенные микроскопические движения, происходящие в эфире. То же самое относится и к магнитным явлениям.

Однако теоретические представления Ломоносова и Л. Эйлера в то время не могли получить развития. После открытия закона Кулона , который по своей форме был таким же, как и закон всемирного тяготения, теория дальнодействия совсем вытесняет теорию близкодействия. И только в начале 19 века М. Фарадей возрождает теорию близкодействия. Согласно Фарадею, электрические заряды не действуют друг на друга непосредственно. Каждый из них создает в окружающем пространстве электрическое и магнитное (если он движется) поля. Поля одного заряда действуют на другой и наоборот. Всеобщее признание теории близкодействия начинается со второй половины 19 века, после экспериментального доказательства теории Дж. Максвелла , сумевшего придать идеям Фарадея точную количественную форму, столь необходимую в физике - систему уравнений электромагнитного поля.

Важным отличием теории близкодействия от теории дальнодействия является наличие максимальной скорости распространения взаимодействий (полей, частиц) - скорости света. В современной физике проводится четкое разделение материи на частицы-участники (или источники) взаимодействий (называемые веществом) и частицы-переносчики взаимодействий (называемые полем). Из четырех видов фундаментальных взаимодействий надежную экспериментальную проверку существования частиц-переносчиков получили три: сильное, слабое и электромагнитное взаимодействия. В настоящее время предпринимаются попытки по обнаружению переносчиков гравитационного взаимодействия - так называемого

Понятие взаимодействия. Концепция дальнодействия и близкодействия

Под взаимодействием в более узком смысле понимают такие процессы, в ходе которых между взаимодействующими структурами и системами происходит обмен квантами определенных полей, энергией, а иногда и информацией.

В настоящее время принято считать, что любые взаимодействия каких угодно объектов могут быть сведены к ограниченному классу четырех основных видов фундаментальных взаимодействий: сильному, электромагнитному, слабому и гравитационному . Интенсивность взаимодействия принято характеризовать с помощью так называемой константы взаимодействия, которая представляет собой безразмерный параметр, определяющий вероятность процессов, обусловленных данным видом взаимодействия. Отношение значений констант дает относительную интенсивность соответствующих взаимодействий.

Концепции дальнодействия и близкодействия

Близкодействие и дальнодействие --это взаимно противоположные взгляды для объяснения взаимодействия материальных структур. По концепции близкодействия любое взаимодействие на материальные объекты может быть передано только между соседними точками пространства за конечный промежуток времени. Дальнодействие допускает действие на расстоянии мгновенно с бесконечной скоростью, т. е. фактически вне времени и пространства. После Ньютона эта концепция получает широкое распространение в физике, хотя он сам понимал, что введенные им силы дальнодействия (например, силы тяготения) являются лишь формальным приближенным приемом, позволяющим дать верное в некоторых пределах описание наблюдаемых явлений. Окончательное утверждение принципа близкодействия пришло с выработкой концепции физического поля как материальной среды. Уравнения поля описывают состояние системы в данной точке в данный момент времени как зависящее от состояния в ближайший предшествующий момент в ближайшей соседней точке. Если электромагнитное поле может существовать независимо от материального носителя, то электрическое взаимодействие нельзя объяснить мгновенным действием на расстоянии. Поэтому дальнодействие Ньютона уступило место близкодействию, полям, распространяющимся в пространстве с конечной скоростью. Таким образом, согласно современной науке, взаимодействия между структурами передаются посредством соответствующего поля с конечной скоростью, равной скорости света в вакууме.

Характеристика основных видов взаимодействия (гравитационное, электромагнитное, сильное и слабое)

1. Гравитационное взаимодействие является универсальным, однако в микромире не учитывается, так как из всех взаимодействий является самым слабым и проявляется только при наличии достаточно больших масс. Его радиус действия не ограничен, время также не ограничено. Обменный характер гравитационного взаимодействия до сих пор остается под вопросом, так как гипотетическая фундаментальная частица- гравитон- пока не обнаружена.

(И. Ньютон) - самое слабое взаимодействие.

2. Электромагнитное взаимодействие: константа порядка 10 -2 , радиус взаимодействия не ограничен, время взаимодействия t ~ 10 -20 с. Оно реализуется между всеми заряженными частицами. Частица-переносчик - фотон (г-квант).

3. Слабое взаимодействие связано со всеми видами в-распада, им обусловлены многие распады элементарных частиц и взаимодействие нейтрино с веществом. Константа взаимодействия порядка 10 -13 , t ~ 10 -10 с. Это взаимодействие, как и сильное, является короткодействующим: радиус взаимодействия r~10 -18 м. Частицы-переносчики - промежуточный векторный бозон: W + , W - , Z 0 . (Ферми).

4. Сильное взаимодействие обеспечивает связь нуклонов в ядре. Константа взаимодействия принимается равной1, радиус действия порядка 10 -15 м, время протекания t ~10 -23 с. Сильное взаимодействие осуществляется между кварками - частицами, из которых состоят протоны и нейтроны - c помощью т.н. глюонов. (Юкава).

  • Основные законы Динамики. Законы Ньютона - первый, второй, третий. Принцип относительности Галилея. Закон всемирного тяготения. Сила тяжести. Силы упругости. Вес. Силы трения - покоя, скольжения, качения + трение в жидкостях и газах.
  • Кинематика. Основные понятия. Равномерное прямолинейное движение. Равноускоренное движение. Равномерное движение по окружности. Система отсчёта. Траектория, перемещение, путь, уравнение движения, скорость, ускорение, связь линейной и угловой скорости.
  • Простые механизмы. Рычаг (рычаг первого рода и рычаг второго рода). Блок (неподвижный блок и подвижный блок). Наклонная плоскость. Гидравлический пресс. Золотое правило механики
  • Законы сохранения в механике. Механическая работа, мощность, энергия, закон сохранения импульса, закон сохранения энергии, равновесие твердых тел
  • Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости
  • Механические колебания. Свободные и вынужденные колебания. Гармонические колебания. Упругие колебания. Математический маятник. Превращения энергии при гармонических колебаниях
  • Механические волны. Скорость и длина волны. Уравнение бегущей волны. Волновые явления (дифракция. интерференция...)
  • Гидромеханика и аэромеханика. Давление, гидростатическое давление. Закон Паскаля. Основное уравнение гидростатики. Сообщающиеся сосуды. Закон Архимеда. Условия плавания тел. Течение жидкости. Закон Бернулли. Формула Торричели
  • Молекулярная физика. Основные положения МКТ. Основные понятия и формулы. Свойства идеального газа. Основное уравнение МКТ. Температура. Уравнение состояния идеального газа. Уравнение Менделеева-Клайперона. Газовые законы - изотерма, изобара, изохора
  • Волновая оптика. Корпускулярно-волновая теория света. Волновые свойства света. Дисперсия света. Интерференция света. Принцип Гюйгенса-Френеля. Дифракция света. Поляризация света
  • Термодинамика. Внутренняя энергия. Работа. Количество теплоты. Тепловые явления. Первый закон термодинамики. Применение первого закона термодинамики к различным процессам. Уравнение теплового балланса. Второй закон термодинамики. Тепловые двигатели
  • Вы сейчас здесь: Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор.
  • Постоянный электрический ток. Закон Ома для участка цепи. Работа и мощность постоянного тока. Закон Джоуля-Ленца. Закон Ома для полной цепи. Закон электролиза Фарадея. Электрические цепи - последовательное и параллельное соединение. Правила Кирхгофа.
  • Электромагнитные колебания. Свободные и вынужденные электромагнитные колебания. Колебательный контур. Переменный электрический ток. Конденсатор в цепи переменного тока. Катушка индуктивности ("соленоид") в цепи переменного тока.
  • Элементы теории относительности. Постулаты теории относительности. Относительность одновременности, расстояний, промежутков времени. Релятивистский закон сложения скоростей. Зависимость массы от скорости. Основной закон релятивистский динамики...
  • Погрешности прямых и косвенных измерений. Абсолютная, относительная погрешность. Систематические и случайные погрешности. Среднее квадратическое отклонение (ошибка). Таблица определения погрешностей косвенных измерений различных функций.
  • Взаимодействие между частицами (заряженными и незаряженными) можно описывать при помощи полей, но можно и не вводить понятие поля. Концепцию, в соответствии с которой взаимодействие между частицами описывают напрямую, без введения понятия поля, называют концепцией дальнодействия . Название это означает, что частицы взаимодействуют на далеком расстоянии. Наоборот, вторую концепцию, в соответствии с которой взаимодействие осуществляется через посредство поля (гравитационного и электромагнитного), называют концепцией близкодействия . Смысл понятия близкодействия заключается в том, что частица взаимодействует с полем, которое имеется вблизи нее, хотя само это поле может создаваться частицами, находящимися очень далеко.

    В первом случае на заряд \(q\) действует сила \(F\) со стороны заряда \(Q\), находящегося на расстоянии \(r\). Во втором случае заряд \(Q\) создает в пространстве вокруг себя поле \(\vec{Е}(x, y, z)\). В частности, в точке с координатами \(x_{0}\), \(y_{0}\), \(z_{0}\), где находится заряд \(q\), создается поле \(\vec{Е}(x_{0}, y_{0}, z_{0})\). Это поле, а не непосредственно заряд \(Q\) взаимодействует с зарядом \(q\).

    Исторически знания о природе развивались таким образом, что концепция близкодействия, предложенная в 30-е гг. XIX в. английским физиком М. Фарадеем, воспринималась лишь как удобное описание.

    Положение принципиально изменилось после открытия электромагнитных волн, распространяющихся с конечной скоростью - скоростью света. Из теории электромагнитных волн следовало, что любое изменение электромагнитного поля распространяется через пространство также со скоростью света. Можно сказать, что если заряд \(Q\) в какой-то момент времени начнет движение, то заряд \(q\) «ощутит» изменение действующей на него силы не в тот же момент времени, а спустя время \(r/c\) (\(c\) - скорость света), т. е. время, необходимое для того, чтобы электромагнитная волна дошла от заряда \(Q\) до заряда \(q\).

    Конечность распространения электромагнитных волн приводит к тому, что описание электромагнитного взаимодействия на основе концепции дальнодействия становится неудобным.

    Чтобы понять это, рассмотрим следующий пример. В 1054 г. на небосводе появилась яркая звезда, свет которой наблюдался даже днем в течение нескольких недель. Затем звезда угасла, и в настоящее время в районе небесной сферы, где находилась звезда, отмечается слабо светящееся образование, которое получило название Крабовидной туманности. В соответствии с современными представлениями об эволюции звезд произошла вспышка звезды, во время которой ее мощность излучения увеличилась в миллиарды раз, после чего звезда распалась. На месте ярко светящейся звезды образовались практически не излучающая нейтронная звезда и расширяющееся облако слабо светящегося газа.

    С точки зрения концепции близкодействия наблюдение света звезды сводится к следующему. Заряды, находящиеся на звезде, создали поле, которое в виде волны дошло до Земли и оказало воздействие на электроны в сетчатке глаза наблюдателя. При этом волна достигла Земли за сотни лет. Люди наблюдали вспышку звезды, когда самой звезды уже не было. Если попробовать описать это наблюдение на основе концепции дальнодействия, то приходится считать, что заряды в сетчатке глаза взаимодействуют не с зарядами звезды, а с теми, которые когда-то были на звезде, которой уже нет. Заметим, что в процессе образования нейтронной звезды многие заряды исчезают, поскольку из электронов и протонов образуются нейтроны - нейтральные частицы, практически не участвующие в электромагнитном взаимодействии. Согласитесь, что описание на основе взаимодействия с тем, что когда-то было, но не существует в настоящий момент времени, «не очень удобное».

    Другая причина признать поле материальным связана с тем, что электромагнитная волна переносит через пространство энергию и импульс . Если поле не считать материальным, то следует признать, что энергия и импульс не связаны с чем-то материальным и сами по себе переносятся через пространство.

    Сформулированная в 1905 г. Альбертом Эйнштейном теория относительности базируется на постулате, в соответствии с которым не существует взаимодействий (в том числе и фундаментальных), распространяющихся быстрее света.

    Мы начали с «материализации духов». Так вот... Физики - народ остроумный, и понятие «духи» уже используется в современной теории поля. Можно сказать, что пока еще эти духи не материализованы, т. е. не наблюдаются на опыте. Но и наука о фундаментальных полях пока еще не завершена.

    Конечность распространения фундаменталь­ных полей и их связь с энергией и импуль­сом (перенос энергии и импульса этими по­лями) приводят к признанию этих полей в качестве одной из составляющих материи. Материя, таким образом, представлена час­тицами (веществом) и фундаментальными полями.



    Рассказать друзьям