Таблица плавления и кипения веществ. Температура плавления

💖 Нравится? Поделись с друзьями ссылкой

После проведения кристаллизации необходимо удостовериться, что вещество является достаточно чистым. Наиболее простым и эффективным методом идентификации и определения меры чистоты вещества является определение его температуры плавления (Т пл). Температурой плавления называют интервал температур, при котором твердое вещество переходит в жидкую фазу. Все чистые химические соединения имеют узкий температурный интервал перехода из твердого состояния в жидкое. Этот температурный интервал для чистых веществ составляет максимум 1–2 о С. Использование температуры плавления в качестве меры чистоты вещества основывается на том, что присутствие примесей (1) понижает температуру плавления и (2) расширяет температурный интервал плавления. Например, чистый образец бензойной кислоты плавится в интервале 120–122 о С, а слегка загрязненный – при 114-119 о С.

Использование температуры плавления для идентификации отличается, очевидно, большой неопределенностью, так как существует несколько миллионов органических соединений, и неизбежно температуры плавления многих из них совпадают. Однако, во-первых, Т пл полученного в синтезе вещества почти всегда отличается от Т пл исходных соединений. Во-вторых, можно использовать методику «определения температуры плавления смешанной пробы». Если Т пл смеси равных количеств исследуемого вещества и известного образца не отличается от Т пл последнего, то оба образца представляют собой одно и то же вещество.

МЕТОДИКА ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ПЛАВЛЕНИЯ . Тщательно растирают исследуемое вещество в тонкий порошок. Заполняют веществом капилляр (на 3–5 мм по высоте; капилляр должен быть тонкостенным, запаянным с одной стороны, с внутренним диаметром 0.8–1 мм и высотой 3–4 см). Для этого осторожно вдавливают капилляр открытым концом в порошок вещества и периодически ударяют его запаянным концом о поверхность стола 5–10 раз. Для полного смещения порошка к запаянному концу капилляра его бросают в вертикальную стеклянную трубку (длиной 30–40 см и диаметром 0.5–1 см) на твердую поверхность. Вставляют капилляр в металлическую кассету, закрепленную на носике термометра (рис. 3.5), и помещают термометр с кассетой в прибор для определения температуры плавления.

В приборе термометр с капиллярами нагревается электрической спиралью, напряжение на которую подается через трансформатор, и скорость нагрева определяется подаваемым напряжением. Сначала нагревают прибор со скоростью 4– 6 о С в минуту, а за 10 о С до предполагаемой Т пл нагревают со скоростью 1–2 о С в минуту. За температуру плавления принимают интервал от размягчения кристаллов (смокания вещества) до полного их плавления.

Полученные данные записывают в лабораторный журнал.

    1. Перегонка

Перегонка является важным и широко используемым методом очистки органических жидкостей и разделения жидких смесей. Этот метод заключается в кипячении и выпаривании жидкости с последующей конденсацией паров в дистиллят. Разделение двух жидкостей с разницей температур кипения 50–70 о С и более можно осуществить простой перегонкой. Если разница меньше, необходимо использовать фракционную перегонку на более сложном приборе. Некоторые жидкости с высокими температурами кипения в процессе перегонки разлагаются. Однако при снижении давления температура кипения понижается, что позволяет перегонять высококипящие жидкости без разложения в вакууме.

Температурой плавления (Т пл) твердого кристаллического вещества называется температура, при которой оно начинает переходить в жидкое состояние при атмосферном давлении. Абсолютно чистое индивидуальное вещество имеет строго определенную Т пл. Однако в обычной практике вещество редко удается довести до чистоты, близкой к 100 %, поэтому полное превращение твердого образца в жидкость происходит в некотором температурном интервале DТ пл = Т к - Т н, где Т к и Т н - соответственно температуры начала и конца плавления. Эти температуры обычно и указывают при характеристике чистоты полученного вещества (в том числе довольно часто в справочниках; например, в “Справочнике химика”, т. II, для п -аминоацетанилида Т пл 161 - 162° С, для ванилина 81 - 83° С и т. п.). Чем чище вещество, тем меньше DТ пл . Практически чистое вещество имеет DТ пл не более 0,5° С. Разность между началом и концом плавления в 1° С свидетельствует о хорошем качестве полученного продукта. Неправильно принимать за температуру плавления среднюю величину (Т н + Т к)/2.

Примесь любого другого вещества, способного полностью или частично смешиваться с исследуемым соединением, понижает его температуру плавления и, как правило, расширяет температурный интервал DТ пл. Величина DТ пл получается завышенной также из-за неправильного, слишком быстрого, нагревания образца.

Температура плавления – физическая константа химического соединения. Совпадение найденной и табличной величин Т пл служит одним из доказательств природы неизвестного вещества при его идентификации (распознавании). Прибор для определения температуры плавления изображен на рис. 3. Вещество помещают в стеклянный капилляр (7), который с помощью резинового колечка (6) прикрепляется к термометру (3) так, чтобы столбик вещества в капилляре был прижат к шарику термометра и за его состоянием можно было наблюдать через прозрачные стенки сосудов (1 и 2) и слой концентрированной серной кислоты, находящейся в сосуде (1). Капилляр представляет собой тонкостенную трубочку длиной 40 – 50 мм и диаметром 0,8 – 1 мм. С одного конца (более узкого) капилляр запаивают, для чего достаточно поднести кончик капилляра к краю нижней части пламени горелки. Около 0,1 г исследуемого вещества помещают на часовое стекло или на вогнутую поверхность донышка перевернутого стеклянного стакана и как можно тоньше измельчают кристаллы с помощью стеклянной палочки. Если нет уверенности в Рис. 3. Прибор для определения температуры плавления: 1 – внешний сосуд, заполненный концентрированной серной кислотой; 2 – внутренний пустой сосуд; 3 – термометр, укрепленный с помощью резиновой пробки с боковым вырезом 4; 5 – отвод внешнего сосуда; 6 – резиновое кольцо; 7 – капилляр с веществом; 8 – металлическая или асбестовая сетка

том, что вещество совершенно сухое, стаканчик перед помещением на него образца можно слабо нагреть и подержать измельченное вещество на теплой поверхности в течение некоторого времени (~ 10 минут). Прикасаются открытым концом капилляра к “горке” измельченного вещества и попавшие внутрь кристаллы проталкивают вниз капилляра, бросая его несколько раз запаянным концом вниз в трубку длиной 60 – 70 см и диаметром около 1 см, поставленную вертикально на металлическую, стеклянную или керамическую поверхность. Уплотнение образца в капилляре происходит при ударе о твердую поверхность. При этом из-за упругой деформации стекла капилляр несколько раз подскакивает внутри трубки. Высота столбика вещества в капилляре должна быть 4 – 5 мм (не больше). Чем лучше уплотнено вещество в капилляре, тем точнее может быть определена температура плавления.



Капилляр прикрепляют к термометру, как об этом было сказано выше, и начинают нагрев прибора.

Если температуру плавления измеряют с целью определения степени чистоты известного продукта, прибор нагревают сначала быстро до температуры приблизительно на 10° С ниже известной из справочника Т пл чистого вещества. После этого горелку на короткое время отставляют, однако столбик термометра еще продолжает подниматься из-за тепловой инерции. Затем, тщательно дозируя подвод тепла расположением пламени горелки под сеткой, очень медленно поднимают температуру (1 – 2° С за 1 минуту). Чем медленнее поднимается столбик ртути в термометре, тем точнее может быть измерена температура плавления.

В процессе нагревания наблюдают за состоянием вещества в капилляре. Температуру, при которой столбик вещества в результате появления жидкой фазы начинает разрушаться, уменьшаясь в объеме (“съеживается”), принимают за начало плавления. В этот момент отмечают показание термометра (T н). Еще более замедляют темп нагревания и дожидаются момента, когда вещество в капилляре полностью превратиться в жидкость. Это – конец плавления. Ему соответствует показание термометра T к.

Если необходимо определить температуру плавления неизвестного вещества, то, прежде всего, следует убедиться, что оно вообще способно расплавляться при такой температуре, которая лежит в обычных пределах величин Т пл органических соединений (<300° C). Это можно сделать, нагревая небольшое количество продукта на стеклянной палочке над пламенем горелки. Только убедившись в том, что неизвестное вещество плавится на нагретой стеклянной палочке, можно приступить к определению его температуры плавления в капилляре. В этом случае обычно проводят не менее двух испытаний. В первом опыте Т пл определяют ориентировочно при относительно быстром темпе нагревания. Для второго опыта следует использовать вновь набитый капилляр и определить Т пл более тщательно при медленном повышении температуры, как это описано выше.

В приборе, изображенном на рис. 3, заполненном концентрированной серной кислотой, запрещается определять температуры плавления веществ, плавящихся выше 200° С.

Следует также указать на другие меры предосторожности при работе с прибором для определения температуры плавления, заполненном концентрированной серной кислотой. Определение высоких Т пл (180 – 200° С) следует проводить в защитных очках или наблюдать за плавлением через защитный экран. Отвод (5) сосуда (рис. 3) при нагреве должен быть обращен в ту сторону, где нет людей. Если капилляр упал на дно внутреннего сосуда, не пытайтесь доставать его с помощью стеклянной палочки и ни в коем случае не переворачивайте прибор! Нельзя принудительно охлаждать горячий прибор холодной водой; перед повторным определением температуры плавления прибору надо дать постепенно остыть на воздухе.

Контрольные вопросы

1. На каких различиях в свойствах вещества и примесей к нему основан метод очистки твердого вещества путем перекристаллизации?

2. Как обычно изменяется растворимость органических веществ с изменением температуры?

3. Какими свойствами должен обладать растворитель для того, чтобы быть пригодным для перекристаллизации вещества?

4. Как практически подбирают растворитель, пригодный для перекристаллизации вещества?

5. Как правильно приготовить горячий насыщенный раствор вещества: а) в воде; б) в легколетучем огнеопасном растворителе?

6. Как проводится удаление примесей продуктов осмоления, придающих веществам буро-желтую окраску?

7. Для чего и как проводится “горячее” фильтрование?

8. Какие меры предосторожности должны соблюдаться при внесении активированного угля в раствор?

9. Как и для чего определяют температуру плавления вещества?

Кипит – вода, плавится – металл, в крайнем случае – стекло… такие представления привычны с детства. Но, оказывается, и вода может плавиться, и металл кипеть – словом эти понятия могут быть применены к любому веществу.

Как все мы помним из школьного курса физики, любое вещество может пребывать в одном из трёх агрегатных состояний: твердом, жидком и газообразном (правда, выделяют еще и другие состояния вещества – плазма, жидкие кристаллы – но в контексте рассматриваемого вопроса они нас интересовать не будет).

В каком бы состоянии ни пребывало вещество, оно будет состоять из одних и тех молекул, разница лишь в том, как они расположены и как «себя ведут». В твердом теле они совершают лишь небольшие колебания, благодаря чему твердое тело сохраняет форму и объем. Твердые тела подразделяются на кристаллические и аморфные. В кристаллических телах молекулы располагаются в строгом порядке и периодично, образуя кристаллическую решетку в виде многогранника. Аморфное тело граничит с жидкостью, но вязкость этой «жидкости» очень велика, поэтому такое тело все же обладает свойствами твердого.

В жидкости молекулы не имеют определенного расположения, но и свободы передвижения лишены, притяжение удерживает их вместе, поэтому жидкое тело сохраняет объем, но не форму. В газообразном веществе молекулы хаотично движутся, слабо взаимодействуют, и такое вещество ни объема, ни формы не может сохранить.

Как уже говорилось, в любом из трех этих состояний может находиться любое вещество – все зависит лишь от двух факторов: давления и температуры. Например, в условиях Марса нет жидкой воды, на Земле достаточно сложно получить жидкий кислород, но все-таки возможно, а вот металлический водород не получится сделать ни в одной земной лаборатории – зато на Юпитере он есть. Переходы между этими состояниями – т.н. фазовые переходы – именуются кипением и плавлением.

Кипение – это переход от жидкого состояния к газообразному. Такой переход происходит всегда за счет того, что молекулы, находящиеся на поверхности жидкости, подвергаются воздействию не только «собратьев» из жидкости, но и молекул воздуха. У некоторых молекул жидкости кинетической энергии больше, чем у других, и они покидают жидкость, а у оставшихся молекул энергии в целом меньше, поэтому жидкость становится холоднее. Так постепенно может «уйти» вся жидкость, это называется испарением. При кипении же испарение происходит не только с поверхности жидкости, но и во всем ее объеме – благодаря образующимся в жидкости пузырькам пара. Такой фазовый переход происходит намного быстрее любая хозяйка знает, что воде нужно больше времени на высыхание, чем на выкипание). Если испарение происходит при любой температуре, то кипение – только при повышении температуры до определенного уровня (у каждого вещества температура своя).

Переход вещества из кристаллического твердого тела в жидкое состояние называется плавлением. Следует подчеркнуть: именно из кристаллического, к аморфным телам это понятие не применяется. Так что выражение «плавленый сыр» с точки зрения физики лишена смысла, поскольку сыр – как раз аморфное тело, а вот лёд плавиться может (что не очевидно для многих далеких от физики людей).

Как и кипение, плавление происходит при повышении температуры до определенного уровня. При нормальном давлении самая высокая температуры плавления у углерода (4500 градусов), из металлов – у вольфрама (3422 градуса). Самой низкой температурой плавления при нормальном давлении обладает гелий. Она настолько низкая, что ее… вообще нет! Даже при температуре, близкой к абсолютному нулю, он остается жидким, не переходя в твердое состояние – для этого нужно давление более 25 атмосфер.

Не все вещества при нормальном давлении проходят все эти три состояния и фазовых перехода. Некоторые из них переходят из твердого состояния в газообразное, минуя стадию жидкости – этот процесс называется возгонкой, или сублимацией.

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Температура плавления ОФС.1.2.1.0011.15
Взамен ГФ
XII , ч.1, ОФС 42-0034-07

Температурой плавления называют температуру, при которой происходит переход вещества из твердого состояния в жидкое.

Для определения температуры плавления в зависимости от физических свойств вещества применяют капиллярный метод (метод 1), открытый капиллярный метод (метод 2), метод мгновенного плавления (метод 3) и метод каплепадения (метод 4). Для твердых веществ, легко превращаемых в порошок, применяют методы 1 и 3, для аморфных веществ, не растирающихся в порошок и плавящихся ниже температуры кипения воды (таких как жиры, воск, парафин, вазелин, смолы), – методы 2 и 4.

Для веществ, не устойчивых при нагревании, определяют температуру разложения. Температурой разложения называют температуру, при которой происходит резкое изменение физического состояния или окраски вещества (вспенивание, побурение).

Для определения температуры плавления используют описанные ниже приборы и методы. Для калибровки приборов используют подходящие для этих целей стандартные вещества, имеющие температуру плавления, близкую к температуре плавления испытуемого вещества.

1. Капиллярный метод

Температура плавления, определенная капиллярным методом, представляет собой температуру, при которой последняя твердая частичка уплотненного столбика вещества в капилляре переходит в жидкую фазу.

Прибор 1 .

  • стеклянный сосуд, содержащий жидкость (например, воду, вазелиновое или силиконовое масло), используемый в качестве бани и оснащенный подходящим устройством для нагрева. Жидкость в бане следует выбирать в зависимости от требуемой температуры;
  • устройство для перемешивания, обеспечивающее однородность температуры внутри бани;
  • подходящий термометр с ценой деления не более 0,5 °С. Разность между верхним и нижним делениями термометра в области измеряемой температуры – не более 100 °С;
  • запаянные с одного конца капилляры из нейтрального прочного стекла диаметром от 0,9 до 1,1 мм, толщиной стенок от 0,10 до 0,15 мм и длиной 10 см.

Прибор 2 .

Составными частями прибора являются:

  • круглодонная колба из термостойкого стекла вместимостью от 100 до 150 мл; длина горла колбы 20 см; диаметр горла – от 3 до 4 см;
  • пробирка из термостойкого стекла, вставленная в колбу и отстоящая от дна колбы на расстоянии 1,0 см; диаметр пробирки от 2,0 до 2,5см;
  • термометр ртутный стеклянный укороченный с ценой деления 0,5°С, вставленный во внутреннюю пробирку так, чтобы конец его отстоял от дна пробирки на 1,0 см;
  • источник нагрева (газовая горелка, электрический обогрев);
  • запаянные с одного конца капилляры из нейтрального прочного стекла диаметром от 0,9 до 1,1 мм, толщиной стенок от 0,10 до 0,15 мм и длиной от 6 до 8 см.

Колбу наполняют на ¾ объема соответствующей жидкостью:

  • вазелиновое масло или жидкие силиконы; серная кислота концентрированная – для веществ с температурой плавления от 80 до 260 °С;
  • раствор калия сульфата в серной кислоте концентрированной (3:7 по массе) – для веществ с температурой плавления выше 260 °С;
  • вода очищенная – для веществ с температурой плавления ниже 80°С.

Примечания.

  1. Стеклянные трубки, из которых вытягивают капилляры, должны быть вымыты и высушены.
  2. При приготовлении раствора калия сульфата в серной кислоте концентрированной смесь кипятят в течение 5 мин при энергичном перемешивании. При недостаточном перемешивании могут образоваться 2 слоя, в результате чего может произойти закипание смеси, приводящее к взрыву.

Прибор 3 .

Прибор для определения температуры плавления с диапазоном измерений в пределах от 20 до 360 °С с электрическим обогревом типа ПТП или типа ПТП-М (рис. 1) с диапазоном измерений в пределах от 20 до 340 °С.

Составными частями прибора являются:

  • основание со щитком управления и номограммой;
  • стеклянный блок-нагреватель, обогрев которого осуществляется константановой проволокой, навитой бифилярно;
  • оптическое приспособление;
  • приспособление для установки термометра;
  • приспособление для установки капилляров;
  • термометр укороченный с ценой деления 0,5 ºС;
  • источник нагрева (электрический обогрев);
  • капилляры длиной 20 см для прибора типа ПТП; капилляры длиной 8см для прибора типа ПТП-М.

Принцип действия прибора основан на температурном воздействии на исследуемые вещества в вертикально установленных капиллярах, запаянных с нижнего конца.

Допускается применение других приборов, использующих капиллярный метод, если точность и правильность измерений будут не хуже, чем в случае применения приборов, описанных выше.

Рисунок 1– Прибор ПТП-М для определения температуры плавления

Методика . Если нет других указаний в фармакопейной статье, тонкоизмельченное в порошок вещество сушат или при температуре от 100 до 105 °С в течение 2 ч или в эксикаторе над серной кислотой в течение 24 ч, или в вакууме над безводным силикагелем в течение 24 ч.

Достаточное количество вещества помещают в капилляр до получения уплотненного столбика высотой около 5 мм. Необходимое уплотнение вещества при заполнении капилляра можно получить, если его несколько раз бросить запаянным концом вниз в стеклянную трубку длиной 0,5 — 1,0 м, поставленную вертикально на стекло. Капилляр с веществом сохраняют до начала определения в эксикаторе.

Повышают температуру в бане (приборе). При температуре приблизительно на 10 °С ниже предполагаемой температуры плавления регулируют нагрев прибора так, чтобы скорость подъема температуры на протяжении всего испытания составляла около 1 °С в мин. Когда температура достигнет значения на 5 — 10 °С ниже предполагаемой температуры плавления, капилляр с веществом прикрепляют к термометру так, чтобы его запаянный конец находился на уровне центра шарика термометра, и помещают в прибор.

Продолжают нагревание со скоростью:

  • для устойчивых при нагревании веществ при определении температуры плавления ниже 100 °С – со скоростью от 0,5 до 1,0 °С в 1мин;
  • при определении температуры плавления от 100 до 150 °С – от 1,0 до 1,5 °С в 1 мин;
  • при определении температуры плавления выше 150 °С – от 1,5 до 2,0°С в 1 мин;
  • для неустойчивых при нагревании веществ от 2,5 до 3,5 °С в 1мин.

Отмечают температуру, при которой последняя твердая частичка перейдет в жидкую фазу.

Проводят не менее двух определений. За температуру плавления принимают среднее арифметическое значение нескольких определений, проведенных в одинаковых условиях и отличающихся друг от друга не более чем на 1 °С.

Примечание. Во время определения температуры плавления колба и пробирка должны быть открыты.

2. Открытый капиллярный метод

Используют стеклянный капилляр, открытый с обоих концов, длиной около 80 мм, наружным диаметром от 1,4 до 1,5 мм и внутренним диаметром от 1,0 до 1,2 мм.

Вещество, предварительно подготовленное, как указано в фармакопейной статье, помещают в каждый из 5 капилляров в количестве, достаточном для формирования в каждом капилляре столбика высотой около 10 мм. Капилляры оставляют на определенное время при температуре, указанной в фармакопейной статье.

Прикрепляют один из капилляров к термометру с ценой деления 0,2 °С таким образом, чтобы вещество находилось около шарика термометра.

Термометр с прикрепленным капилляром помещают в стакан таким образом, чтобы расстояние между дном стакана и нижней частью шарика термометра составляло 1 см. Стакан наполняют водой до высоты слоя 5 см.

Повышают температуру воды со скоростью 1 °С в мин.

За температуру плавления принимают температуру, при которой вещество начинает подниматься по капилляру. В тех случаях, когда столбик вещества не поднимается в капилляре, за температуру плавления принимают температуру, при которой столбик вещества в капилляре становится прозрачным.

Повторяют эту операцию с 4 другими капиллярами и рассчитывают результат как среднее арифметическое из 5 значений. Расхождение между всеми значениями не должно превышать 1 °С.

  1. Метод мгновенного плавления

Прибор . Прибор состоит из металлического блока, изготовленного из материала, обладающего высокой теплопроводностью и не взаимодействующего с испытуемым веществом, например, из латуни. Верхняя поверхность блока должна быть плоской и тщательно отполированной. Блок равномерно нагревают по всей массе газовой горелкой с микрорегулировкой или электрическим нагревателем с тонкой регулировкой. Блок имеет достаточно широкую цилиндрическую полость для размещения термометра, столбик ртути которого должен находиться в одном и том же положении, как при калибровке, так и при определении температуры плавления испытуемого вещества. Цилиндрическая полость размещена параллельно отполированной верхней поверхности блока на расстоянии около 3 мм от нее.

Методика . Блок быстро нагревают до температуры, которая на 10 °C ниже предполагаемой температуры плавления, и затем устанавливают скорость нагрева около 1 °C в минуту. Несколько частичек тонкоизмельченного в порошок вещества, высушенного в вакууме над безводным силикагелем в течение 24 ч, бросают через равные промежутки времени на поверхность блока в непосредственной близости от шарика термометра, очищая поверхность после каждого испытания. Записывают температуру t 1 , при которой вещество плавится мгновенно при соприкосновении с металлом. Останавливают нагрев. Во время охлаждения через равные промежутки времени бросают несколько частичек вещества на поверхность блока, очищая ее после каждого испытания. Записывают температуру t 2 , при которой вещество прекращает мгновенно плавиться при соприкосновении с металлом.

Температуру плавления (Т пл.) рассчитывают по формуле:

t 1 – первое значение температуры;

t 2 – второе значение температуры.

  1. Метод каплепадения

В данном методе определяют температуру, при которой в условиях, приведенных ниже, первая капля расплавленного испытуемого вещества падает из чашечки.

Прибор . Прибор состоит из двух металлических гильз (А и Б ), соединенных посредством резьбы. Гильза (А ) прикреплена к ртутному термометру. В нижней части гильзы (Б ) с помощью двух уплотнителей (Г ) свободно закреплена металлическая чашечка (Д ). Точное положение чашечки определяется фиксаторами (Е ) длиной 2 мм, которые используются также для центровки термометра. Отверстие (В ) в стенке гильзы (Б ) предназначено для выравнивания давления. Отводящая поверхность чашечки должна быть плоской, а края выходного отверстия расположены под прямым углом к поверхности. Нижняя часть ртутного термометра имеет форму и размер, как показано на рис.2. Термометр градуирован от 0 до 110 ºС и расстояние на шкале в 1 мм соответствует разности температур в 1 ºС. Ртутный шарик термометра имеет диаметр (3,5 ± 0,2) мм и высоту (6,0 ± 0,3) мм.

Прибор устанавливают по оси пробирки длиной около 200 мм и наружным диаметром около 40 мм.

Прибор прикрепляют к пробирке с помощью пробки, в которую вставлен термометр и которая имеет боковую прорезь. Отверстие чашечки должно находиться на расстоянии около 15 мм от дна пробирки. Все устройство погружают в стакан вместимостью около 1 л, заполненный водой. Дно пробирки должно находиться на расстоянии около 25 мм от дна стакана. Уровень воды должен достигать верхней части гильзы (А ). Для равномерного распределения температуры в стакане используют мешалку.

Рисунок 2

.Размеры приведены в мм

Методика. Заполняют чашечку до краев нерасплавленным испытуемым веществом, если нет других указаний в фармакопейной статье. Избыток вещества удаляют с обеих сторон шпателем. После соединения гильз (А ) и (Б ) проталкивают чашечку внутрь на ее место в гильзе (Б ) до упора. Удаляют шпателем вещество, выдавленное термометром. Прибор помещают на водяную баню, как описано выше. Водяную баню нагревают до температуры примерно на 10 ºС ниже предполагаемой температуры плавления и устанавливают скорость нагрева около 1 ºС в минуту. Отмечают температуру падения первой капли. Проводят не менее трех определений, каждый раз с новым образцом вещества. Разность между показаниями не должна превышать 3 °С. Рассчитывают среднее арифметическое из полученных значений.

Самое удивительное и благостное для живой природы свойство воды - это ее способность при "нормальных" условиях быть жидкостью. Молекулы очень похожих на воду соединений (например, молекулы H2S или H2Se) намного тяжелее, а образуют при тех же условиях газ. Тем самым вода как будто противоречит закономерностям таблицы Менделеева, которая, как известно, предсказывает, когда, где и какие свойства веществ будут близки. В нашем случае из таблицы следует, что свойства водородных соединений элементов (называемых гидридами), расположенных в одних и тех же вертикальных столбцах, с ростом массы атомов должны изменяться монотонно. Кислород - элемент шестой группы этой таблицы. В этой же группе находятся сера S (с атомным весом 32), селен Se (с атомным весом 79), теллур Te (с атомным весом 128) и поллоний Po (с атомным весом 209). Следовательно, свойства гидридов этих элементов должны меняться монотонно при переходе от тяжелых элементов к более легким, т.е. в последовательности H2Po > H2Te > H2Se > H2S > H2O. Что и происходит, но только с первыми четырьмя гидридами. Например, температуры кипения и плавления растут при увеличении атомного веса элементов. На рисунке крестиками отмечены температуры кипения этих гидридов, а кружочками - температуры плавления.

Как видно, при уменьшении атомного веса температуры снижаются совершенно линейно. Область существования жидкой фазы гидридов становится все более "холодной", и если бы гидрид кислорода Н2О был нормальным соединением, похожим на своих соседей по шестой группе, то жидкая вода существовала бы в диапазоне от -80° С до -95° С. При более высоких температурах Н2О всегда была бы газом. К счастью для нас и всего живого на Земле, вода аномальна, она не признает периодической закономерности а следует своим законам.

Объясняется это довольно просто - большая часть молекул воды соединена водородными связями. Именно этими связями отличается вода от жидких гидридов H2S, H2Se и H2Te. Если бы их не было, то вода кипела бы уже при минус 95 °C. Энергия водородных связей достаточно велика, и разорвать их можно лишь при значительно более высокой температуре. Даже в газообразном состоянии большое число молекул H2O сохраняет свои водородные связи, объединяясь в димеры (H2O)2. Полностью водородные связи исчезают только при температуре водяного пара 600 °C.

Напомним, что кипение заключается в том, что пузыри пара образуются внутри кипящей жидкости. При нормальном давлении чистая вода кипит при 100 "С. В случае подведения тепла через свободную поверхность будет ускоряться процесс поверхностного испарения, но объёмного парообразования, характерного для кипения, не возникает. Кипение может быть осуществлено и понижением внешнего давления, так как в этом случае давление пара, равное внешнему давлению, достигается при более низкой температуре. На вершине очень высокой горы давление и соответственно точка кипения настолько понижаются, что вода становится непригодной для варки пищи - не достигается требуемая температуры воды. При достаточно высоком давлении воду можно нагреть настолько, что в ней может расплавиться свинец (327 °С), и все же она не будет кипеть.

Помимо сверхбольших температур кипения плавления (причем последний процесс требует слишком большой для такой простой жидкости теплоты плавления), аномален сам диапазон существования воды - сто градусов, на которые разнятся эти температуры, - довольно большой диапазон для такой низкомолекулярной жидкости, как вода. Необычайно велики пределы допустимых значении переохлаждения и перегрева воды - при аккуратном нагревании или охлаждении вода остается жидкой от -40 °C до +200 °C. Тем самым температурный диапазон, в котором вода может оставаться жидкой, расширяется до 240 °C.

При нагревании льда сначала температура его повышается, но с момента образования смеси воды со льдом температура будет оставаться неизменной до того момента, пока не расплавится весь лёд. Это объясняется тем, что тепло, подводимое к тающему льду, прежде всего расходуется только на разрушение кристаллов. Температура тающего льда остаётся неизменной до тех пор, пока не произойдёт разрушение всех кристаллов (см. скрытую теплоту плавления).



Рассказать друзьям