Свойства сложения, умножения, вычитания и деления целых чисел. Вычитание натуральных чисел

💖 Нравится? Поделись с друзьями ссылкой

Понятие вычитания лучше всего рассмотреть на примере. Вы решили попить чай с конфетами. В вазе лежало 10 конфет. Вы съели 3 конфеты. Сколько конфет осталось в вазе? Если мы от 10 вычтем 3 то, в вазе останется 7 конфет. Запишем задачу математически:

Подробно разберем запись:
10 – это число от которого мы отнимаем или которое уменьшаем, поэтому его называют уменьшаемым .
3 – это число, которое мы вычитаем. Поэтому его называют вычитаемым .
7 – это число результат вычитания или еще его называют разностью . Разность показывает на сколько первое число (10) больше второго числа (3) или насколько второе число (3) меньше первого числа (10).

Если вы сомневаетесь правильно ли нашли разность, нужно сделать проверку . К разности прибавить второе число: 7+3=10

При вычитании л уменьшаемое не может быть меньше вычитаемого.

Делаем вывод из сказанного. Вычитание – это действие, с помощью которого по сумме и одному из слагаемых находится второе слагаемое.

В буквенном виде это выражение будет выглядеть так:

a — b = c

a – уменьшаемое,
b – вычитаемое,
c – разность.

Свойства вычитания суммы из числа.

13 — (3 + 4)=13 — 7=6
13 — 3 — 4 = 10 — 4=6

Пример можно решить двумя способами. Первый способ, найти сумму чисел (3+4), а потом вычесть от общего числа (13). Второй способ, от общего числа (13) вычесть первое слагаемое(3), а потом из полученной разности отнять второе слагаемое(4).

В буквенном виде свойство вычитания суммы из числа будет выглядеть так:
a — (b + c) = a — b — c

Свойство вычитания числа из суммы.

(7 + 3) — 2 = 10 — 2 = 8
7 + (3 — 2) = 7 + 1 = 8
(7 — 2) + 3 = 5 + 3 = 8

Чтобы вычесть из суммы число, можно это число вычесть из одного слагаемого, а потом к полученному результату разности прибавить второе слагаемое. При условии слагаемое будет больше вычитаемого числа.

В буквенном виде свойство вычитания числа из суммы будет выглядеть так:
(7 + 3) — 2 = 7 + (3 — 2)
(a + b) — c= a + (b — с) , при условии b > c

(7 + 3) — 2=(7 — 2) + 3
(a + b) — c=(a — c) + b , при условии a > c

Свойство вычитания с нулем.

10 — 0 = 10
a — 0 = a

Если из числа вычесть нуль то, будет тоже самое число.

10 — 10 = 0
a — a = 0

Если из числа вычесть тоже самое число то, будет нуль.

Вопросы по теме:
В примере 35 — 22 = 13 назовите уменьшаемое, вычитаемое и разность.
Ответ: 35 – уменьшаемое, 22 – вычитаемое, 13 – разность.

Если числа одинаковые, чему равна их разность?
Ответ: нуль.

Сделайте проверку вычитания 24 — 16 = 8?
Ответ: 16 + 8 = 24

Таблица вычитания натуральных чисел от 1 до 10.

Примеры на задачи по теме «Вычитание натуральных чисел».
Пример №1:
Вставьте пропущенное число: а)20 — … = 20 б) 14 — … + 5 = 14
Ответ: а) 0 б) 5

Пример №2:
Можно ли выполнить вычитание: а) 0 — 3 б) 56 — 12 в) 3 — 0 г) 576 — 576 д) 8732 — 8734
Ответ: а) нет б) 56 — 12 = 44 в) 3 — 0 = 3 г) 576 — 576 = 0 д) нет

Пример №3:
Прочитайте выражение: 20 — 8
Ответ: “От двадцати отнять восемь” или “из двадцати вычесть восемь”. Правильно произносить слова

Прибавить одно число к другому довольно просто. Рассмотрим пример, 4+3=7. Это выражение означает, что к четырем единицам добавили три единицы и в итоге получили семь единиц.
Числа 3 и 4, которые мы сложили называется слагаемыми . А результат сложение число 7 называется суммой .

Сумма — это сложение чисел. Знак плюс “+”.
В буквенном виде этот пример будет выглядеть так:

a+ b= c

Компоненты сложения:
a — слагаемое, b — слагаемые, c – сумма.
Если мы к 3 единицам добавим 4 единицы, то в результате сложения получим тот же результат он будет равен 7.

Из этого примера делаем вывод, что как бы мы не меняли местами слагаемые ответ остается неизменным:

Называется такое свойство слагаемых переместительным законом сложения .

Переместительный закон сложения.

От перемены мест слагаемых сумма не меняется.

В буквенной записи переместительный закон выглядит так:

a+ b= b+ a

Если мы рассмотрим три слагаемых, например, возьмем числа 1, 2 и 4. И выполним сложение в таком порядке, сначала прибавим 1+2, а потом выполним сложение к получившейся сумме 4, то получим выражение:

(1+2)+4=7

Можем сделать наоборот, сначала сложить 2+4, а потом к полученной сумме прибавить 1. У нас пример будет выглядеть так:

1+(2+4)=7

Ответ остался прежним. У обоих видов сложения одного и того же примера ответ одинаковый. Делаем вывод:

(1+2)+4=1+(2+4)

Это свойство сложения называется сочетательным законом сложения .

Переместительный и сочетательный закон сложения работает для всех неотрицательных чисел.

Сочетательный закон сложения.

Чтобы к сумме двух чисел прибавить третье число, можно к первому числу прибавить сумму второго и третьего числа.

(a+ b)+ c= a+(b+ c)

Сочетательный закон работает для любого количества слагаемых. Этот закон мы используем, когда нам нужно сложить числа в удобном нам порядке. Например, сложим три числа 12, 6, 8 и 4. Удобнее будет сначала сложить 12 и 8, а потом прибавить к полученной сумме сумму двух чисел 6 и 4.
(12+8)+(6+4)=30

Свойство сложения с нулем.

При сложении числа с нулем, в результате сумма будет тем же самым числом.

3+0=3
0+3=3
3+0=0+3

В буквенном выражение сложение с нулем будет выглядеть так:

a+0= a
0+ a= a

Вопросы по теме сложение натуральных чисел:
Таблица сложения, составьте и посмотрите как работает свойство переместительного закона?
Таблица сложения от 1 до 10 может выглядеть так:

Второй вариант таблицы сложения.

Если посмотрим на таблицы сложения, видно как работает переместительный закон.

В выражении a+b=c суммой, что будет являться?
Ответ: сумма — это результат сложения слагаемых. a+b и с.

В выражении a+b=c слагаемыми, что будет являться?
Ответ: a и b. Слагаемые – это числа, которые мы складываем.

Что произойдет с числом если к нему прибавить 0?
Ответ: ничего, число не поменяется. При сложении с нулем, число остается прежнем, потому что нуль это отсутствие единиц.

Сколько слагаемых должно быть в примере, чтобы было можно применить сочетательный закон сложения?
Ответ: от трех слагаемых и больше.

Запишите переместительный закон в буквенном выражении?
Ответ: a+b=b+a

Примеры на задачи.
Пример №1:
Запишите ответ у представленных выражений: а) 15+7 б) 7+15
Ответ: а) 22 б) 22

Пример №2:
Примените сочетательный закон к слагаемым: 1+3+5+2+9
1+3+5+2+9=(1+9)+(5+2)+3=10+7+3=10+(7+3)=10+10=20
Ответ: 20.

Пример №3:
Решите выражение:
а) 5921+0 б) 0+5921
Решение:
а) 5921+0 =5921
б) 0+5921=5921


Мы определили сложение, умножение, вычитание и деление целых чисел. Эти действия (операции) обладают рядом характерных результатов, которые называются свойствами. В этой статье мы рассмотрим основные свойства сложения и умножения целых чисел, из которых следуют все остальные свойства этих действий, а также свойства вычитания и деления целых чисел.

Навигация по странице.

Для сложения целых чисел характерны еще несколько очень важных свойств.

Одно из них связано с существованием нуля. Это свойство сложения целых чисел утверждает, что прибавление к любому целому числу нуля не изменяет это число . Запишем данное свойство сложения с помощью букв: a+0=a и 0+a=a (это равенство справедливо в силу переместительного свойства сложения), a – любое целое число. Можно услышать, что целое число нуль называют нейтральным элементом по сложению. Приведем пару примеров. Сумма целого числа −78 и нуля равна −78 ; если к нулю прибавить целое положительное число 999 , то в результате получим число 999 .

Сейчас мы дадим формулировку еще одного свойства сложения целых чисел, которое связано с существованием противоположного числа для любого целого числа. Сумма любого целого числа с противоположным ему числом равна нулю . Приведем буквенную форму записи этого свойства: a+(−a)=0 , где a и −a – противоположные целые числа. Например, сумма 901+(−901) равна нулю; аналогично сумма противоположных целых чисел −97 и 97 равна нулю.

Основные свойства умножения целых чисел

Умножению целых чисел присущи все свойства умножения натуральных чисел . Перечислим основные из этих свойств.

Также как нуль является нейтральным целым числом относительно сложения, единица является нейтральным целым числом относительно умножения целых чисел. То есть, умножение любого целого числа на единицу не изменяет умножаемое число . Так 1·a=a , где a – любое целое число. Последнее равенство можно переписать в виде a·1=a , это нам позволяет сделать переместительное свойство умножения. Приведем два примера. Произведение целого числа 556 на 1 равно 556 ; произведение единицы и целого отрицательного числа −78 равно −78 .

Следующее свойство умножения целых чисел связано с умножением на нуль. Результат умножения любого целого числа a на нуль равен нулю , то есть, a·0=0 . Также справедливо равенство 0·a=0 в силу переместительного свойства умножения целых чисел. В частном случае при a=0 произведение нуля на нуль равно нулю.

Для умножения целых чисел также справедливо свойство, обратное к предыдущему. Оно утверждает, что произведение двух целых чисел равно нулю, если хотя бы один из множителей равен нулю . В буквенном виде это свойство можно записать так: a·b=0 , если либо a=0 , либо b=0 , либо и a и b равны нулю одновременно.

Распределительное свойство умножения целых чисел относительно сложения

Совместно сложение и умножение целых чисел нам позволяет рассматривать распределительное свойство умножения относительно сложения, которое связывает два указанных действия. Использование сложения и умножения совместно открывает дополнительные возможности, которых мы были бы лишены, рассматривая сложение отдельно от умножения.

Итак, распределительное свойство умножения относительно сложения гласит, что произведение целого числа a на сумму двух целых чисел a и b равно сумме произведений a·b и a·c , то есть, a·(b+c)=a·b+a·c . Это же свойство можно записать в другом виде: (a+b)·c=a·c+b·c .

Распределительное свойство умножения целых чисел относительно сложения вместе с сочетательным свойством сложения позволяют определить умножение целого числа на сумму трех и большего количества целых чисел, а далее – и умножение суммы целых чисел на сумму.

Также заметим, что все остальные свойства сложения и умножения целых чисел могут быть получены из указанных нами свойств, то есть, они являются следствиями указанных выше свойств.

Свойства вычитания целых чисел

Из полученного равенства, а также из свойств сложения и умножения целых чисел вытекают следующие свойства вычитания целых чисел (a , b и c – произвольные целые числа):

  • Вычитание целых чисел в общем случае НЕ обладает переместительным свойством: a−b≠b−a .
  • Разность равных целых чисел равна нулю: a−a=0 .
  • Свойство вычитания суммы двух целых чисел из данного целого числа: a−(b+c)=(a−b)−c .
  • Свойство вычитания целого числа из суммы двух целых чисел: (a+b)−c=(a−c)+b=a+(b−c) .
  • Распределительное свойство умножения относительно вычитания: a·(b−c)=a·b−a·c и (a−b)·c=a·c−b·c .
  • И все другие свойства вычитания целых чисел.

Свойства деления целых чисел

Рассуждая о смысле деления целых чисел , мы выяснили, что деление целых чисел – это действие, обратное умножению. Мы дали такое определение: деление целых чисел – это нахождение неизвестного множителя по известному произведению и известному множителю. То есть, целое число c мы называем частным от деления целого числа a на целое число b , когда произведение c·b равно a .

Данное определение, а также все рассмотренные выше свойства операций над целыми числами позволяют установить справедливость следующих свойств деления целых чисел:

  • Никакое целое число нельзя делить на нуль.
  • Свойство деления нуля на произвольное целое число a , отличное от нуля: 0:a=0 .
  • Свойство деления равных целых чисел: a:a=1 , где a – любое целое число, отличное от нуля.
  • Свойство деления произвольного целого числа a на единицу: a:1=a .
  • В общем случае деление целых чисел НЕ обладает переместительным свойством: a:b≠b:a .
  • Свойства деления суммы и разности двух целых чисел на целое число: (a+b):c=a:c+b:c и (a−b):c=a:c−b:c , где a , b , и c такие целые числа, что и a и b делится на c , и c отлично от нуля.
  • Свойство деления произведения двух целых чисел a и b на целое число c , отличное от нуля: (a·b):c=(a:c)·b , если a делится на c ; (a·b):c=a·(b:c) , если b делится на c ; (a·b):c=(a:c)·b=a·(b:c) , если и a и b делятся на c .
  • Свойство деления целого числа a на произведение двух целых чисел b и c (числа a , b и c такие, что деление a на b·c возможно): a:(b·c)=(a:b)·c=(a:c)·b .
  • Любые другие свойства деления целых чисел.

Тема, которой посвящен этот урок, - «Свойства сложения».На нем вы познакомитесь с переместительным и сочетательным свойствами сложения, рассмотрев их на конкретных примерах. Узнаете, в каких случаях можно ими пользоваться, чтобы сделать процесс вычисления более простым. Проверочные примеры помогут определить, насколько хорошо вы усвоили изученный материал.

Урок: Свойства сложения

Внимательно посмотрите на выражение:

9 + 6 + 8 + 7 + 2 + 4 + 1 + 3

Нам нужно найти его значение. Давайте это сделаем.

9 + 6 = 15
15 + 8 = 23
23 + 7 = 30
30 + 2 = 32
32 + 4 = 36
36 + 1 = 37
37 + 3 = 40

Результат выражения 9 + 6 + 8 + 7 + 2 + 4 + 1 + 3 = 40.
Скажите, удобно ли было вычислять? Вычислять было не совсем удобно. Посмотрите еще раз на числа этого выражения. Нельзя ли их поменять местами так, чтобы вычисления были более удобными?

Если мы перегруппируем числа по-другому:

9 + 1 + 8 + 2 + 7 + 3 + 6 + 4 = …
9 + 1 = 10
10 + 8 = 18
18 + 2 = 20
20 + 7 = 27
27 + 3 = 30
30 + 6 = 36
36 + 4 = 40

Окончательный результат выражения 9 + 1 + 8 + 2 + 7 + 3 + 6 + 4 = 40.
Мы видим, что результаты выражений получились одинаковые.

Слагаемые можно менять местами, если это удобно для вычислений, и значение суммы от этого не изменится.

В математике существует закон: Переместительный закон сложения . Он гласит, что от перестановки слагаемых сумма не изменяется.

Дядя Федор и Шарик поспорили. Шарик находил значение выражения так, как оно записано, а дядя Федор сказал, что знает другой, более удобный способ вычисления. Видите ли вы более удобный способ вычисления?

Шарик решал выражение так, как оно записано. А дядя Федор, сказал, что знает закон, который разрешает менять слагаемые местами, и поменял местами числа 25 и 3.

37 + 25 + 3 = 65 37 + 25 = 62

37 + 3 + 25 = 65 37 + 3 = 40

Мы видим, что результат остался таким же, но считать стало гораздо проще.

Посмотрите на следующие выражения и прочитайте их.

6 + (24 + 51) = 81 (к 6 прибавить сумму 24 и 51)
Нет ли удобного способа для вычисления?
Мы видим, что если прибавить 6 и 24, то мы получим круглое число. К круглому числу всегда легче что-то прибавлять. Возьмем в скобки сумму чисел 6 и 24.
(6 + 24) + 51 = …
(к сумме чисел 6 и 24 прибавить 51)

Вычислим значение выражения и посмотрим, изменилось ли значение выражения?

6 + 24 = 30
30 + 51 = 81

Мы видим, что значение выражения осталось прежним.

Потренируемся еще на одном примере.

(27 + 19) + 1 = 47 (к сумме чисел 27 и 19 прибавить 1)
Какие числа удобно сгруппировать так, чтобы получился удобный способ?
Вы догадались, что это числа 19 и 1. Сумму чисел 19 и 1 возьмем в скобки.
27 + (19 + 1) = …
(к 27 прибавить сумму чисел 19 и 1)
Найдем значение этого выражения. Мы помним, что сначала выполняется действие в скобках.
19 + 1 = 20
27 + 20 = 47

Значение нашего выражения осталось таким же.

Сочетательный закон сложения : два соседних слагаемых можно заменить их суммой.

Теперь потренируемся пользоваться обоими законами. Нам нужно вычислить значение выражения:

38 + 14 + 2 + 6 = …

Сначала воспользуемся переместительным свойством сложения, которое разрешает менять слагаемые местами. Поменяем местами слагаемые 14 и 2.

38 + 14 + 2 + 6 = 38 + 2 + 14 + 6 = …

Теперь воспользуемся сочетательным свойством, которое разрешает нам два соседних слагаемых заменять их суммой.

38 + 14 + 2 + 6 = 38 + 2 + 14 + 6 = (38 + 2) + (14 + 6) =…

Сначала узнаем значение суммы 38 и 2.

Теперь сумму 14 и 6.

3. Фестиваль педагогических идей «Открытый урок» ().

Сделай дома

1. Вычислите сумму слагаемых по-разному:

а) 5 + 3 + 5 б) 7 + 8 + 13 в) 24 + 9 + 16

2. Вычислите результаты выражений:

а) 19 + 4 + 16 + 1 б) 8 + 15 + 12 + 5 в) 20 + 9 + 30 + 1

3. Вычислите сумму удобным способом:

а) 10 + 12 + 8 + 20 б) 17 + 4 + 3 + 16 в) 9 + 7 + 21 + 13


Итак, в общем случае вычитание натуральных чисел НЕ обладает переместительным свойством . Запишем это утверждение с помощью букв. Если a и b неравные натуральные числа, то a−b≠b−a . Например, 45−21≠21−45 .

Свойство вычитания суммы двух чисел из натурального числа.

Следующее свойство связано с вычитанием из натурального числа суммы двух чисел. Давайте рассмотрим пример, который даст нам понимание этого свойства.

Представим, что у нас в руках находится 7 монет. Мы сначала решаем сохранить 2 монеты, но, подумав, что этого будет мало, решаем сохранить еще одну монету. На основании смысла сложения натуральных чисел можно утверждать, что в этом случае мы приняли решение сохранить количество монет, которое определяется суммой 2+1 . Итак, берем две монеты, добавляем к ним еще одну монету и помещаем их в копилку. При этом количество монет, оставшихся у нас в руках, определяется разностью 7−(2+1) .

А теперь представим, что у нас есть 7 монет, и мы помещаем в копилку 2 монеты, а после этого - еще одну монету. Математически этот процесс описывается следующим числовым выражением: (7−2)−1 .

Если пересчитать монеты, которые остаются в руках, то и в первом и во втором случаях мы имеем 4 монеты. То есть, 7−(2+1)=4 и (7−2)−1=4 , следовательно, 7−(2+1)=(7−2)−1 .

Рассмотренный пример позволяет нам сформулировать свойство вычитания суммы двух чисел из данного натурального числа. Вычесть из данного натурального числа данную сумму двух натуральных чисел - это все равно, что из данного натурального числа вычесть первое слагаемое данной суммы, после чего из полученной разности вычесть второе слагаемое .

Напомним, что мы придали смысл вычитанию натуральных чисел лишь для случая, когда уменьшаемое больше, чем вычитаемое, или равно ему. Поэтому мы можем вычесть из данного натурального числа данную сумму лишь тогда, когда эта сумма не больше, чем уменьшаемое натуральное число. Заметим, что при выполнении этого условия, каждое из слагаемых не превосходит натурального числа, из которого вычитается сумма.

С помощью букв свойство вычитания суммы двух чисел из данного натурального числа записывается в виде равенства a−(b+c)=(a−b)−c , где a , b и c – некоторые натуральные числа, причем выполняются условия a>b+c или a=b+c .

Рассмотренное свойство, а также сочетательное свойство сложения натуральных чисел , позволяют выполнять вычитание суммы трех и большего количества чисел из данного натурального числа .

Свойство вычитания натурального числа из суммы двух чисел.

Переходим к следующему свойству, которое связано с вычитанием данного натурального числа из данной суммы двух натуральных чисел. Рассмотрим примеры, которые помогут нам «увидеть» это свойство вычитания натурального числа из суммы двух чисел.

Пусть у нас в первом кармане находятся 3 конфеты, а во втором – 5 конфет, и пусть нам нужно отдать 2 конфеты. Мы это можем сделать разными способами. Разберем их по очереди.

Во-первых, мы можем сложить все конфеты в один карман, после чего оттуда достать 2 конфеты и отдать их. Опишем эти действия математически. После того, как мы сложим конфеты в один карман, их количество будет определяться суммой 3+5 . Теперь из общего количества конфет мы отдадим 2 конфеты, при этом оставшееся у нас количество конфет будет определяться следующей разностью (3+5)−2 .

Во-вторых, мы можем отдать 2 конфеты, достав их из первого кармана. В этом случае разность 3−2 определяет оставшееся количество конфет в первом кармане, а общее количество оставшихся у нас конфет будет определяться суммой (3−2)+5 .

В-третьих, мы можем отдать 2 конфеты из второго кармана. Тогда разность 5−2 будет соответствовать количеству оставшихся конфет во втором кармане, а общее оставшееся количество конфет определит сумма 3+(5−2) .

Ясно, что во всех случаях у нас останется одинаковое количество конфет. Следовательно, справедливы равенства (3+5)−2=(3−2)+5=3+(5−2) .

Если бы нам пришлось отдать не 2 , а 4 конфеты, то мы могли бы это сделать двумя способами. Во-первых, отдать 4 конфеты, предварительно сложив их все в один карман. В этом случае оставшееся количество конфет определяется выражением вида (3+5)−4 . Во-вторых, мы могли отдать 4 конфеты из второго кармана. В этом случае общее количество конфет дает следующая сумма 3+(5−4) . Понятно, что и в первом и во втором случае у нас останется одинаковое количество конфет, следовательно, справедливо равенство (3+5)−4=3+(5−4) .

Проанализировав результаты, полученные при решении предыдущих примеров, мы можем сформулировать свойство вычитания данного натурального числа из данной суммы двух чисел. Вычесть из данной суммы двух чисел данное натуральное число – это все равно, что вычесть данное число из одного из слагаемых, после чего сложить полученную разность и другое слагаемое . Следует оговориться, что вычитаемое число НЕ должно быть больше, чем слагаемое, из которого это число вычитается.

Запишем свойство вычитания натурального числа из суммы с помощью букв. Пусть a , b и c – некоторые натуральные числа. Тогда при условии, что a больше или равно c , справедливо равенство (a+b)−c=(a−c)+b , а при выполнении условия, что b больше или равно c , справедливо равенство (a+b)−c=a+(b−c) . Если и a и b больше или равно c , то справедливы оба последних равенства, и их можно записать следующим образом: (a+b)−c=(a−c)+b= a+(b−c) .

По аналогии можно сформулировать свойство вычитания натурального числа из суммы трех и большего количества чисел. В этом случае данное натуральное число можно вычесть из любого слагаемого (конечно, если оно больше или равно вычитаемому числу), и к полученной разности прибавить оставшиеся слагаемые.

Чтобы наглядно представить озвученное свойство, можно представить, что у нас много карманов, и в них находятся конфеты. Пусть нам нужно отдать 1 конфету. Понятно, что мы можем отдать 1 конфету из любого кармана. При этом не важно, из какого именно кармана мы ее отдадим, так как это не влияет на то количество конфет, которое у нас останется.

Приведем пример. Пусть a , b , c и d – некоторые натуральные числа. Если a>d или a=d , то разность (a+b+c)−d равна сумме (a−d)+b+c . Если b>d или b=d , то (a+b+c)−d=a+(b−d)+c . Если же c>d или c=d , то справедливо равенство (a+b+c)−d=a+b+(c−d) .

Следует отметить, что свойство вычитания натурального числа из суммы трех и большего количества чисел не является новым свойством, так как оно следует из свойств сложения натуральных чисел и свойства вычитания числа из суммы двух чисел.

Список литературы.

  • Математика. Любые учебники для 1, 2, 3, 4 классов общеобразовательных учреждений.
  • Математика. Любые учебники для 5 классов общеобразовательных учреждений.


Рассказать друзьям