События происходящие при делении митоза и мейоза. Жизненный цикл клетки

💖 Нравится? Поделись с друзьями ссылкой

Так дотошно расписанные в любом учебнике. Неужели здесь нужно добавлять что-то ещё?

Но не спешите с выводами, а положитесь, пожалуйста, на мой опыт репетитора по биологии. То, о чем мы сегодня поговорим, может оказаться многим полезным. А говорить мы будем о тех недоразумениях, которые возникают на экзаменах при ответе на эти вопросы.

И вообще о возможных ошибках молодости, когда самую главную жизненную информацию порой пропускаем «мимо ушей»…

Опять, возможно, начну с долей критики в адрес учебников. Тема деления, настолько важна, что ей уделяется действительно много места. Казалось бы, что еще может быть лучше: для объяснения процессов приводится груда цветных иллюстраций и всевозможных схем.

Митоз — четыре этапа деления. Мейоз — аж восемь этапов деления с указанием не только самих названий процессов, но и с подробнейшим описанием того, что с какой клеточной «бякой» на каждом этапе происходит.

Согласен, что для сдачи экзамена все эти «дотошности» приходится выучить, а вернее вызубрить. То есть — это все запоминается на короткую память. Но из-за груды частных мелочей ускользает самое главное, не помнится потом сама суть и значение явлений.

А что должно действительно остаться в голове надолго, чтобы в итоге не делать самых простых ошибок ни на экзаменах, ни, что еще важнее, в своей жизни.

1. Хотя бы не путать сами названия процессов друг с другом

А то получается как с понятиями — сами названия процессов помнятся, но в 50% случаев с точностью до наоборот.

После «растаскивания» к полюсам материнской клетки в анафазе митоза одно хроматидных хромосом, во вновь образующихся двух дочерних клетках содержание ДНК становится идентичным исходной материнской клетке — 2n2с .

Поскольку в результате митоза из одной исходной клетки (говорят «материнской клетки») образуются две полноценные клетки, с совершенно идентичной исходной клетке генетической информацией, то митоз можно назвать термином «размножение» — это бесполое размножение.

А какова суть мейоза?

Само слово «мейоз» можно произнести мягко, нараспев (м-е-е-е-й-оз) — это тип редукционного деления клетки, приводящий к образованию из одной клетки четырех, но с половинным, гаплоидным набором хромосом (1n1с ).

И вот сейчас, запомните мою крамольную мысль. Мейоз в отличие от митоза — это не размножение. Это способ образования гаплоидных клеток (спор — у растений и половых клеток гамет — у животных). Гаметы лишь после процесса оплодотворения, который в данном случае и является половым размножением, послужат образованию нового организма.

Еще раз обращаю ваше внимание, что у животных организмов мейозом делятся клетки специализированных тканей гонад, из которых образуются гаметы или половые клетки. А у растений мейозом образуются споры, у уже потом путем митозов образуются гаметы.

Мейозу, как и митозу, предшествует удвоение генетического материала клетки, но мейоз протекает в два этапа мейоз I и мейоз II.

Сама редукция числа хромосом, то есть уменьшение их количества в два раза происходит уже после первого этапа мейоза, поскольку а профазу мейоза I происходила коньюгация гомологичных хромосом, но хромосомы в двух образовавшихся гаплоидных клетках остаются еще двухроматидными (1n2c ).

Между мейозом I и мейозом II проходит очень мало времени, дополнительного удвоения ДНК не происходит и снова каждая клетка образует две гаплоидные клетки (1n ), но они уже «нормальные» — однохроматидные ().

2. Что еще очень важно помнить любому, особенно молодым людям — потенциальным родителям

Именно при мейозе при созревании половых клеток могут происходить в результате коньюгации гомологичных хромосом всякие «перетасовки» генетического материала между гомологичными хромосомами в профазу I мейоза — кроссинговер.

И в этот момент образования и яйцеклеток, и сперматозоидов особенно важно, что бы не было воздействия на организм человека никаких неблагоприятных факторов (нервных потрясений, больших доз лекарственных препаратов, алкоголя, никотина и других наркотических средств), способных привести к ошибкам кроссинговера при мейозе (а, значит, и к появлению генетически неполноценного потомства).

3. На что еще следует обратить внимание

Даже если хорошо помнится, что митозом размножаются все соматические клетки организма, а мейоз — способ образования половых клеток, допускается следующая ошибка.

Да, мейоз — способ образования половых клеток, но… Но только у организмов!!! Снова хочу подчеркнуть, что у всех высших (мхов, папоротников, голосеменных и покрытосеменных растений) мейотическому делению подвергаются споры! В дальнейшем из гаплоидных спор путем митозов растений — гаметы.

Авторам школьных учебников следовало бы именно на это обратить внимание, поскольку составители тестовых заданий любят (и они правы) включать вопросы по основополагающим процессам функционирования живых систем. А способы размножения клеток живых организмов и способы полового размножения организмов разных таксонов как раз и относятся к таким процессам.

_______________________________________________________________________________

Сейчас пишу и думаю, как все-таки жаль, что этот блог в интернете пока невидимка (надеюсь, что «пока»). Ведь информация этого поста полезна всем, особенно молодому поколению, чтобы из-за незнания потом всю жизнь не расплачиваться здоровьем своих детей.

Сопровождающееся уменьшением числа хромосом вдвое. Он состоит из двух последовательно идущих деле­ний, имеющих те же фазы, что и митоз. Однако, как показано в таблице «Сравнение митоза и мейоза» , продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от процессов, происходящих при митозе.

Эти отличия в основном состоят в следующем.

В мейозе профаза I более продолжительна. В ней происходит конъюгация (соединение гомологичных хромосом) и обмен генетической информацией . В анафазе I центроме­ры , скрепляющие хроматиды, не делятся , а к полюсам отходит одна из гомологмейоза митоза и ичных хромосом. Интерфаза перед вторым делением очень короткая , в ней ДНК не синтезируется . Клетки (галиты ), образующиеся в результате двух мейотических делений, содержат гаплоидный (одинарный) набор хромосом. Диплоидность восстанавливается при слиянии двух клеток - материнской и отцовской. Опло­дотворенную яйцеклетку называют зиготой .

Митоз и его фазы

Митоз, или непрямое деление , наиболее широко рас­пространен в природе. Митоз лежит в основе деления всех неполовых клеток (эпителиальных, мышечных, нервных, костных и др.). Митоз состоит из четырех последователь­ных фаз (см. далее таблицу). Благодаря митозу обеспечи­вается равномерное распределение генетической информа­ции родительской клетки между дочерними. Период жизни клетки между двумя митозами называют интерфазой . Она в десятки раз продолжительнее митоза. В ней совершается ряд очень важных процессов, предшествующих делению клетки: синтезируются молекулы АТФ и белков , удваивается каждая хромосома, образуя две сестринские хроматиды , скрепленные общей центромерой , увеличивается число основных органоидов цитоплазмы.

В профазе спиралируются и вследствие этого утолща­ются хромосомы , состоящие из двух сестринских хроматид, удерживаемых вместе центромерой. К концу профазы ядерная мембрана и ядрышки исчезают и хромосомы рас­средоточиваются по всей клетке, центриоли отходят к полюсам и образуют веретено деления . В метафазе проис­ходит дальнейшая спирализация хромосом. В эту фазу они наиболее хорошо видны. Их центромеры располагаются по экватору. К ним прикрепляются нити веретена деления.

В анафазе центромеры делятся, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена отходят к противоположным полюсам клетки.

В телофазе цитоплазма делится, хромосомы раскручи­ваются, вновь образуются ядрышки и ядерные мембраны. В животных клетках цитоплазма перешнуровывается, в растительных - в центре материнской клетки образуется перегородка. Так из одной исходной клетки (материнской) образу­ются две новые дочерние.

Таблица - Сравнение митоза и мейоза

Фаза Митоз Мейоз
1 деление 2 деление
Интерфаза

Набор хромосом 2n.

Идет интенсивный синтез белков, АТФ и других органических веществ.

Удваиваются хромосомы, каждая оказывается состоящей из двух сестринских хроматид, скрепленных общей центромерой.

Набор хромосом 2n Наблюдаются те же процессы, что и в митозе, но более продолжительна, особенно при обра­зовании яйцеклеток. Набор хромосом гаплоидный (n). Синтез органических веществ отсутствует.
Профаза Непродолжительна, происходит спирализация хро­мосом, исчезают ядерная оболочка, ядрышко, образуется веретено деления. Более длительна. В начале фазы те же процессы, что и в митозе. Кроме того, происходит конъюгация хромосом, при которой гомологичные хромосомы сближаются по всей длине и скру­чиваются. При этом может происходить обмен генетической информацией (перекрест хромосом) - кроссинговер . Затем хромосомы расходятся. Короткая; те же процессы, что и в митозе, но при n хромосом.
Метафаза Происходит дальнейшая спирализация хромосом, их центромеры располагаются по экватору. Происходят процессы, аналогичные тем, что и в митозе.
Анафаза Центромеры, скрепляющие се­стринские хроматиды, делятся, каждая из них становится новой хромосомой и отходит к противоположным полюсам. Центромеры не делятся. К противоположным полюсам отходит одна из гомологичных хро­мосом, состоящая из двух хроматид, скрепленных общей центромерой. Происходит то же, что и в митозе, но при n хромосом.
Телофаза Делится цитоплазма, образуются две дочерние клетки, каждая с диплоидным набором хромосом. Исчезает веретено деления, формируются ядрышки. Длится недолго Гомологичные хро­мосомы попадают в разные клетки с гаплоидным набором хромосом. Цитоплазма делится не всегда. Делится цитоплазма. После двух мейотических делений образуется 4 клетки с гаплоидным набором хромосом.

Таблица сравнения митоза и мейоза.

Все клеточные структуры живых организмов в норме проходят несколько основных этапов развития. В ходе своего существовании каждая клетка в норме проходит этап размножения или деления. Оно может быть прямым, непрямым или редукционным. Деление – это нормальный этап жизнедеятельности структурных единиц различных организмов, который обеспечивает нормальное существование, рост и размножение всех живых существ на планете. Именно благодаря клеточному размножению в теле человека возможно обновление тканей, восстановление целостности поврежденного эпителия или дермы, наследование генетических данных, зачатие, эмбриогенез и множество других важнейших процессов.

Существует две основные разновидности размножения структурных единиц в организме многоклеточных существ: митоз и мейоз. Каждый из этих способов размножения имеет характерные особенности.

Внимание! Выделяют также деление клеток простым разделением надвое – амитоз. В организме человека этот процесс встречается в аномально измененных структурах, например, опухолях.

Митоз – вегетативное деление имеющих ядро клеток, наиболее часто встречающийся процесс воспроизведения. Этот способ также называют непрямым размножением или клонированием, так как сформированная в ходе него пара дочерних структур оказывается полностью идентичной материнской. С помощью клонирования размножаются соматические структурные единицы человеческого организма.

Внимание! Вегетативное деление направлено на формирование абсолютно одинаковых клеток из поколения в поколение. Подобным образом размножаются все клетки человеческого организма, кроме репродуктивных.

Клонирование составляет базу онтогенеза, то есть развития организма от зачатия до момента гибели. Митотическое деление необходимо для нормального функционирования различных органов и систем и формирование и сохранение определенных характеристик человека от рождения до смерти на морфологическом и биохимическом уровне. Продолжительность данного способа клеточного размножения составляет в среднем около 1-2 часов.

Течение митоза делится на четыре основные фазы:


В результате клонирования из материнской клетки формируются две дочерние, имеющие абсолютно аналогичный набор хромосом и сохраняющие все качественные и количественные характеристики исходной клетки. В организме человека за счет митоза происходит постоянное обновление тканей.

Внимание! Нормально течение митотических процессов обеспечивает нейрогуморальная регуляция, то есть совместное действие нервной и эндокринной систем.

Особенности течения редукционного деления

Мейотическое деление - процесс, итогом которого становится образование репродуктивных структурных единиц — гамет. При данном способе размножения образуется четыре дочерние клетки, причем каждая из них имеет 23 хромосомы. Так как образованные в результате этого способа гаметы обладают неполным хромосомным набором, он называется редукционным. У человека при гаметогенезе возможно образование двух типов структурных единиц:

  • сперматозоидов из сперматогониев;
  • яйцеклеток в фолликулах.

Характерные особенности

Так как каждая полученная гамета имеет одинарный набор хромосом, то при слиянии с другой репродуктивной клеткой происходит обмен генетическим материалом и формирование зародыша, который получает полный хромосомный набор. Именно за счет мейоза обеспечивается комбинаторная изменчивость – это процесс, в результате которого образуется огромный перечень различных генотипов, а плод унаследует различные черты матери и отца.

В процессе образования гаплоидных структур также следует выделять четыре вышеперечисленные фазы, свойственные митозу. Основное отличие редукционного деления заключается в том, что эти этапы повторяются дважды.

Внимание! Первая телофаза заканчивается формирование двух клеток, обладающих полным генетическим набором из 46 хромосом. Затем начинается второе деление, благодаря которому формируются четыре репродуктивные клетки, каждая из которых обладает 23 хромосомами.

При мейотическом делении первый этап занимает большее количество времени. Во время той стадии происходит слияние хромосом и процесс обмена генетическими данными. Метафаза протекает так же, как и при митозе, но при одинарном наборе наследственных данных. При анафазе не происходит деление центромер, а к полюсам расходятся гаплоидные хромосомы.

Период между двумя делениями, то есть интерфаза, очень короткий, дезоксирибонуклеиновая кислота в это время не продуцируется. Поэтому получившиеся после второй телофазы клетки содержат гаплоидный, то есть одинарный, комплект хромосом. Диплоидный набор восстанавливается при слиянии двух репродуктивных клеток в ходе сингамии. Это процесс соединения мужской и женской гаметы, образованных в результате мейоза. По итогам редукционного деления образуется зигота, обладающая 46 хромосомами и полным набором наследственной информации, полученной от обоих родителей.

В ходе слияния гамет возможно формирование различных вариантов каких-либо признаков. Именно за счет мейоза дети унаследуют, например, цвет глаз одного из родителей. За счет рецессивного носительства каких-либо генов возможна передача признаков через одно или несколько поколений.

Внимание! Доминантные признаки – преобладающие, проявляющиеся обычно у первого поколения потомков. Рецессивные – скрытые или постепенно пропадающие у особей последующих поколений.

Роль митотического деления:

  1. Поддержание постоянства количества хромосом. Если бы полученные клетки имели полный набор хромосом, то у плода после зачатия их количество увеличивалось бы в два раза.
  2. Благодаря мейотическому делению формируются репродуктивные клетки с различными наборами наследственной информации.
  3. Рекомбинация наследственной информации.
  4. Обеспечение изменчивости организмов.

Сравнительная характеристика

Способ размножения Клонирование Гаметогенез
Виды клеток Соматические Репродуктивные
Количество делений Одно Два
Сколько дочерних структурных единиц формируется в итоге 2 4
Содержание наследственной информации в дочерних клетках Не изменяется Изменяется
Конъюгация Не свойственно
Не свойственно Отмечается во время первого деления

Отличия клонирования и редукционного деления

Клонирование и редукционное размножение клеток – достаточно сходные процессы. Мейотическое деление включает те же этапы, что и митотическое, однако их продолжительность и протекающие на различных его этапах процессы имеют значительные отличия.

Видео — Митоз и мейоз

Различия в течении полового и бесполого деления

Клетки, получающиеся в результате митотического деления и гаметогенеза, несут различную функциональную нагрузку. Именно поэтому в ходе мейоза отмечаются некоторые особенности течения:

  1. На первом этапе редукционного деления отмечается конъюгация и кроссинговер. Эти процессы необходимы для взаимного обмена генетической информацией.
  2. Во время анафазы отмечается сегрегация сходных хромосом.
  3. В периоде между двумя циклами делениями не происходит редупликации молекул дезоксирибонуклеиновой кислоты.

Внимание! Конъюгация – состояние постепенного схождения друг с другом гомологичных, то есть сходных, хромосом и следующее за этим формирование пар. Кроссинговер – переход определенных участков от одной хромосомы к другой.

Второй этап гаметогенеза протекает абсолютно так же, как и митоз.

Характерные отличия по результатам процесса деления:

  1. Результатом клонирования становится образование двух структурных единиц, а итогом редукционного деления – четыре.
  2. С помощью клонирования делятся соматические структурные единицы, входящие в состав различных тканей организма. В результате мейоза образуются только репродуктивные клетки: яйцеклетки и сперматозоиды.
  3. Клонирование приводит к образованию абсолютно одинаковых структурных единиц, а при мейотическом делении происходит перераспределение генетических данных.
  4. В результате редукционного деления количество наследственной информации в репродуктивных клетках сокращается на 50%. Это обеспечивает возможность последующего слияния генетических данных клеток матери и отца при оплодотворении.




Клонирование и редукционное деление – важнейшие процессы, обеспечивающие нормальное функционирование организма. Сформировавшиеся в результате клонирования дочерние клетки оказываются во всем, в том числе на уровне дезоксирибонуклеиновой кислоты, идентичны исходной. Это позволяет передавать хромосомный набор в неизменном виде из одного поколения клеток в другое. Митоз лежит в основе нормального роста тканей. Биологическое значение редукционного деления заключается в сохранении определенного количества хромосом у организмов, размножение которых происходит половым путем. При этом мейотическое деление позволяет проявляться важнейшему качеству различных многоклеточных организмов – комбинативной изменчивости. Благодаря ей возможна передача потомству различных признаков как отца, так и матери.

В последние два года в вариантах тестовых заданий ЕГЭ по биологии стало появляться все больше вопросов по способам размножения организмов, способам деления клеток, отличиям разных стадий митоза и мейоза, наборам хромосом (n) и содержанию ДНК (с) в различных стадиях жизни клеток.

Я согласен с авторами заданий. Чтобы хорошо вникнуть в суть процессов митоза и мейоза надо не только понимать, чем они отличаются друг от друга, но и знать как меняется набор хромосом (n ), а, главное, их качество (с ), на различных стадиях этих процессов.

Помним, конечно, что митоз и мейоз — это различные способы деления ядра клеток, а не деление самих клеток (цитокинез).

Помним и то, что благодаря митозу происходит размножение диплоидных (2n) соматических клеток и обеспечивается бесполое размножение, а мейоз обеспечивает образование гаплоидных (n) половых клеток (гамет) у животных или гаплоидных (n) спор у растений.

Для удобства восприятия информации

на рисунке ниже митоз и мейоз изображены вместе. Как мы видим, эта схема не включает , в ней нет и полного описания того, что происходит в клетках при митозе или мейозе. Цель данной статьи и этого рисунка обратить ваше внимание только на те изменения, которые происходят с самими хромосомами на разных стадиях митоза и мейоза. Именно на это делается упор в новых тестовых заданиях ЕГЭ.

Чтобы не перегружать рисунки, диплоидный кариотип в ядрах клеток представлен всего двумя парами гомологичных хромосом (то есть n = 2). Первая пара — более крупные хромосомы (красная и оранжевая ). Вторая пара — более мелкие (синяя и зеленая ). Если бы мы изображали конкретно, например, кариотип человека (n = 23), пришлось бы рисовать 46 хромосом.

Так каков был набор хромосом и их качество до начала деления в интерфазной клетке в период G1 ? Конечно он был 2n2c . Клеток с таким набором хромосом мы на этом рисунке не видим. Так как после S периода интерфазы (после репликации ДНК) количество хромосом, хотя и остается прежним (2n), но, так как каждая из хромосом теперь состоит из двух сестринских хроматид, то формула кариотипа клетки будет записываться уже так: 2n4c . И вот клетки с такими двойными хромосомами, готовые уже приступить к митозу или мейозу, и изображены на рисунке.

Данный рисунок позволяет нам ответить на следующие вопросы тестовых заданий

— Чем отличается профаза митоза от профазы I мейоза? В профазе I мейоза хромосомы не свободно распределены по всему объему бывшего клеточного ядра (ядерная оболочка в профазе растворяется), как в профазе митоза, а гомологи объединяются и коньюгируют (переплетаются) друг с другом. Это может привести к кроссинговеру: обмену некоторыми идентичными участками сестринских хроматид у гомологов.

— Чем отличается метафаза митоза от метафазы I мейоза? В метафазу I мейоза по экватору клетки выстраиваются не отдельные двухроматидные хромосомы как в метафазе митоза, в биваленты (по два гомолога вместе) или тетрады (тетра — четыре, по числу задействованных в коньюгации сестринских хроматид).

— Чем отличается анафаза митоза от анафазы I мейоза? В анафазу митоза нитями веретена деления к полюсам клетки растаскиваются сестринские хроматиды (которые в это время уже следует называть однохроматидными хромосомами ). Обратите внимание, что в это время, поскольку из каждой двухроматидной хромосомы образовалось две однохроматидные хромосомы, а два новых ядра еще не образовались, то хромосомная формула таких клеток будет иметь вид 4n4c. В анафазу I мейоза нитями веретена деления к полюсам клетки растаскиваются двухроматидные гомологи. Кстати, на рисунке в анафазу I мы видим, что одна из сестринских хроматид оранжевой хромосомы имеет участки из красной хроматиды (и, соответственно, наоборот), а одна из сестринских хроматид зеленой хромосомы имеет участки из синей хроматиды (и, соответственно, наоборот). Поэтому мы можем утверждать, что в профазу I мейоза между гомологичными хромосомами происходила не только коньюгация, но и кроссинговер.

— Чем отличается телофаза митоза от телофазы I мейоза? В телофазу митоза в двух новых образовавшихся ядрах (двух клеток еще нет, они образуются в результате цитокинеза) будет содержаться диплоидный набор однохроматидных хромосом — 2n2c. В телофазу I мейоза в двух образующихся ядрах будет находиться гаплоидный набор двухроматидных хромосом — 1n2c. Таким образом, мы видим, что мейоз I уже обеспечил редукционное деление (количество хромосом снизилось вдвое).

— Что обеспечивает мейоз II ? Мейозом II называется эквационное (уравнительное) деление, в результате которого в четырех образовавшихся клетках будет находиться гаплоидный набор нормальных однохроматидных хромосом — 1n1c.

— Чем отличается профаза I от профазы II ? В профазу II ядра клеток не содержат гомологичных хромосом, как в профазу I, поэтому не происходит объединения гомологов.

— Чем отличается метафаза митоза от метафазы II мейоза? Очень «коварный» вопрос, так как из любого учебника вы запомните, что мейоз II в целом протекает как митоз. Но, обратите внимание, в метафазу митоза по экватору клетки выстраиваются двухроматидные хромосомы и у каждой хромосомы есть её гомолог. В метафазе II мейоза по экватору тоже выстраиваются двухроматидные хромосомы, но нет гомологичных. На цветном рисунке, как в этой статье выше, это хорошо видно, но на экзамене рисунки черно-белые. На этом черно-белом рисунке одного из тестовых заданий изображена метафаза митоза, так как здесь есть гомологичные хромосомы (большая черная и большая белая — одна пара; маленькая черная и маленькая белая — другая пара).

— Может быть и аналогичный вопрос по анафазе митоза и анафазе II мейоза .

— Чем отличается телофаза I мейоза от телофазы II ? Хотя набор хромосом в обоих случаях гаплоидный, но во время телофазы I хромосомы двухроматидные, а во время телофазы II они однохроматидные.

Когда писал на этом блоге подобную статью никак не думал, что за три года содержание тестов так сильно изменится. Очевидно, из-за сложностей создавать все новые и новые тесты, опираясь на школьную программу по биологии, авторы-составители уже не имеют возможности «копать вширь» (всё уже давно «вскопано») и они вынуждены «копать вглубь».

*******************************************
У кого будут вопросы по статье к репетитору биологии по Скайпу , прошу обращаться в комментариях.

При половом размножении дочерний организм возникает в результате слияния двух половых клеток (гамет ) и последующего развития из оплодотворенной яйцеклетки - зиготы.

Половые клетки родителей обладают гаплоидным набором (n ) хромосом, а в зиготе при объединении двух таких наборов число хромосом становится диплоидным (2n ): каждая пара гомологичных хромосом содержит одну отцовскую и одну материнскую хромосому .

Гаплоидные клетки образуются из диплоидных в результате особого клеточного деления - мейоза.

Мейоз - разновидность митоза, в результате которого из диплоидных (2п) соматических клеток половых же лез образуются гаплоидные гаметы (1 n ). При оплодотворении ядра гаметы сливаются, и восстанавливается диплоидный набор хромосом. Таким образом, мейоз обеспечивает сохранение постоянного для каждого вида набора хромосом и количества ДНК.

Мейоз представляет собой непрерывный процесс, состоящий из двух последовательных делений, называемых мейозом I и мейозом II. В каждом делении различают профазу, метафазу, анафазу и телофазу. В результате мейоза I число хромосом уменьшается вдвое (редукционное деление): при мейозе II гаплоидность клеток сохраняется (эквационное деление). Клетки, вступающие в мейоз, содержат генетическую информацию 2n2хр (рис. 1).

В профазе мейоза I происходит постепенная спирализация хроматина с образованием хромосом. Гомологичные хромосомы сближаются, образуя общую структуру, состоящую из двух хромосом (бивалент) и четырех хроматид (тетрада). Соприкосновение двух гомологичных хромосом по всей длине называется конъюгацией. Затем между гомологичными хромосомами появляются силы отталкивания, и хромосомы сначала разделяются в области центромер, оставаясь соединенными в области плеч, и образуют перекресты (хиазмы). Расхождение хроматид постепенно увеличивается, и перекресты смещаются к их концам. В процессе конъюгации между некоторыми хроматидами гомологичных хромосом может происходить обмен участками - кроссинговер, приводящий к перекомбинации генетического материала. К концу профазы растворяются ядерная оболочка и ядрышки, формируется ахроматиновое веретено деления. Содержание генетического материала остается прежним (2n2хр).

В метафазе мейоза I биваленты хромосом располагаются в экваториальной плоскости клетки. В этот момент спирализация их достигает максимума. Содержание генетического материала не изменяется (2п2хр).

В анафазе мейоза I гомологичные хромосомы, состоящие из двух хроматид, окончательно отходят друг от друга и расходятся к полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадает только одна - число хромосом уменьшается вдвое (происходит редукция). Содержание генетического материала становится 1n2хр у каждого полюса.

В телофазе происходит формирование ядер и разделение цитоплазмы - образуются две дочерние клетки. Дочерние клетки содержат гаплоидный набор хромосом, каждая хромосома - две хроматиды (1n2хр).

Интеркинез - короткий промежуток между первым и вторым мейотическими делениями. В это время не происходит репликации ДНК, и две дочерние клетки быстро вступают в мейоз II, протекающий по типу митоза.

Рис. 1. Схема мейоза (показана одна пара гомологичных хромосом). Мейоз I: 1, 2, 3. 4. 5 - профаза; 6 -метафаза; 7 - анафаза; 8 - телофаза; 9 - интеркинез. Мейоз II; 10 -метафаза; II -анафаза; 12 - дочерние клетки.

В профазе мейоза II происходят тс же процессы, что и в профазе митоза. В метафазе хромосомы располагаются в экваториальной плоскости. Изменений содержания генетического материала не происходит (1n2хр). В анафазе мейоза II хроматиды каждой хромосомы отходят к противоположным полюсам клетки, и содержание генетического метериала у каждого полюса становится lnlxp. В телофазе образуются 4 гаплоидные клетки (lnlxp).

Таким образом, в результате мейоза из одной диплоидной материнской клетки образуются 4 клетки с гаплоидным набором хромосом. Кроме того, в профазе мейоза I происходит перекомбинация генетического материала (кроссинговер), а в анафазе I и II - случайное отхождение хромосом и хроматид к одному или другому полюсу. Эти процессы являются причиной комбинативной изменчивости.

Биологическое значение мейоза :

1) является основным этапом гаметогенеза;

2) обеспечивает передачу генетической информации от организма к организму при половом размножении;

3) дочерние клетки генетически не идентичны материнской и между собой.

Атак же, биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гамет сливаются. Если бы указанной редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше. Однако это противоречит правилу постоянства числа хромосом. Благодаря мейозу половые клетки гаплоидны, а при оплодотворении в зиготе восстанавливается диплоидный набор хромосом (рис. 2 и 3).

Рис. 2. Схема гаметогенеза: ? - сперматогенез; ? - овогенез

Рис. 3. Схема, иллюстрирующая механизм сохранения диплоидного набора хромосом при половом размножении



Рассказать друзьям