«Презентация на тему:» Интегралы и их применение в жизни человека. Презентация на тему "интеграл и его применение"

💖 Нравится? Поделись с друзьями ссылкой

Владимир 2002 год

Владимирский государственный университет, Кафедра общей и прикладной физики

Вступление

Символ интеграла введен с 1675г., а вопросами интегрального исчисления занимаются с 1696г. Хотя интеграл изучают, в основном, ученые–математики, но и физики внесли свой вклад в эту науку. Практически ни одна формула физики не обходится без дифференциального и интегрального исчислений. Поэтому, я и решила исследовать интеграл и его применение.

История интегрального исчисления

История понятия интеграла тесно связана с задачами нахождения квадратур. Задачами о квадратуре той или иной плоской фигуры математики Древней Греции и Рима называли задачи на вычисление площадей. Латинское слово quadratura переводится как “придание квадратной формы”. Необходимость в специальном термине объясняется тем, что в античнoe время (и позднее, вплоть до XVIII столетия) еще не были достаточно развиты представления о действительных числах. Математики оперировали с их геометрическими аналогами или скалярными величинами, которые нельзя перемножать. Поэтому и задачи на нахождение площадей приходилось формулировать, например, так: «Построить квадрат, равновеликий данному кругу». (Эта классическая задача “о квадратуре круга” круга» не может, как известно, быть решена с помощью циркуля и линейки.)

Символ ò введен Лейбницем (1675 г.). Этот знак является изменением латинской буквы S (первой буквы слова summ a). Само слово интеграл придумал Я. Б е р у л л и (1690 г.) Вероятн о, оно происходит от латинского integro , которое переводится как приводи ь в прежнее состояние, восстанавливать. (Действительно, операция интегрирования восстанавливает функцию, дифференцированием которой получена подынтегральная функция.) Возможно, происхождение термина инт грал иное: слово integer означает целый.

В современной литературе множество всех первообразных для функции f(х) называется также неопределенным интегралом. Это понятие выделил Лейбниц, который заметил, что в е первообразные функции отличаются на произвольн ю постоянн ю. b

называют определенным интегралом (обо начение ввел К. Фурье (1768-1830), но пределы интегрирования указывал уже Эй лер).

Многие значительные достижения математиков Древней Греции в решении задач на нахождение квадратур (т. е. вычисление площадей) плоских фигур, а также кубатур (вычисление объемов) тел связаны с применением метода исчерпывания, предложенным Евдоксом Книдским (ок. 408 - ок. 355 до н.э.). С помощью этого метода Евдокс доказал, например, что площади двух кругов относятся как квадраты их диаметров, а объем конуса равен 1/3 объёма цилиндра, имеющего такие же основание и высоту.

Метод Евдокса был усовершенствован Архимедом. Основные этапы, характеризующие метод Архимеда: 1) доказывается, что площадь круга меньше площади любого описанного около него правильного многоугольника, но больше площади любого вписанного; 2) доказывается, что при неограниченном удвоении числа сторон разность площадей этих многоугольн иков стремится к нулю; 3) для вычисления площади круга остается найти значение, к которому стремится отношение площади правильного многоугольника при неограниченном удвоении числа его сторон.

С помощью метода исчерпывания, целого ряда других остроумных соображений (в том числе с привлечением моделей механики) Архимед решил многие задачи. Он дал оценку числа p (3.10/71

Архимед предвосхитил многие идеи интегрального исчисления. (Добавим, что практически и первые теоремы о пределах были доказаны им.) Но потребовалось более полутора тысяч лет, прежде чем эти идеи нашли четкое выражение и были доведены до уровня исчисления.

Математики XVII столетия, получившие многие новые результаты, учились на трудах Архимеда. Активно применялся и другой метод - метод неделимых, который также зародился в Древней Греции (он связан в первую очередь с атомистическими воззрениями Демокрита). Например, криволинейную трапецию (рис. 1, а) они представляли себе составленной из вертика ьных отрезков длиной f(х), которым тем не менее приписывали площадь, равн ю бесконечно малой величине f(х) . В соответствии с таким пониманием искомая площадь считалась равной сумме

бесконечно большого числа бесконечно малых площадей. Иногда даже подчеркивалось, что отдельные слагаемые в этой сумме - нули, но нули особого рода, которые, сложенные в бесконечном числе, дают вполне определенную положительную сумму.

На такой кажущейся теперь по меньшей мере сомнительной основе И. Кеплер (1571-1630) в своих сочинениях “Новая астрономия”.

(1609 г.) и «Стереометрия винных бочек» (1615 г.) правильно вычислил ряд площадей (например, площадь фигуры ограниченной эллипсом) и объемов (тело разрезалось на 6ecконечно тонкие пластинки). Эти исследования были продолжены итальянскими математиками Б. Кавальери (1598-1647) и Э.Торричелли (1608-1647). Сохраняет свое значение и в наше время сформулированный Б. Кавальери принцип, введенный им при некоторых дополнительных предположениях.

Пусть требуется найти площадь фигуры, изображенной на рисунке 1,б, где кривые, ограничивающие фигуру сверху и снизу, имеют уравнения y = f(x) и y=f(x)+c.

Представляя фигуру составленной из «неделимых», по терминологии Кавальери, бесконечно тонких столбиков, замечаем, что все они имеют общую длину с. Передвигая их в вертикальном направлении, можем составить из них прямоугольник с основанием b-а и высотой с. Поэтому искомая площадь равна площади полученного прямоугольника, т.е.

S = S1 = c (b – а).

Общий принцип Кавальери для площадей плоских фигур формулируется так: Пусть прямые некоторого пучка параллельных пересекают фигуры Ф1 и Ф2 по отрезкам равной длины (рис. 1,в). Тогда площади фигур Ф1 и Ф2 равны.

Аналогичный принцип действует в стереометрии и оказывается полезн м при нахождении объемов.

В XVII в. были сделаны многие открытия, относящиеся к интегральному исчислению. Так, П.Ферма уже в 1629 г. задачу квадратуры любой кривой у = хn, где п - целое (т.е по существу вывел формулу ò хndx = (1/n+1)хn+1), и на этой основе решил ряд задач на нахождение центров тяжести. И. Кеплер при выводе своих знаменитых законов движения планет фактически опирался на идею приближенного интегрирования. И. Барроу (1630-1677), учитель Ньютона, близко подошел к пониманию связи интегрирования и дифференцирования. Большое значение имели работы по представлению функций в виде степенных рядов.

Однако при всей значимости результатов, полученных многими чрезвычайно изобретательными математиками XVII столетия исчисления еще не было. Необходимо было выделить общие идеи лежащие в основе решения многих частных задач, а также установить связь операций дифференцирования и интегрирования, дающую достаточно общий алгоритм. Это сделали Ньютон и Лейбниц, открывшие независимо друг от друга факт, известным под названием формулы Ньютона - Лейбница. Тем самым окончательно оформился общий метод. Предстояло еще научится находить первообразные многих функций, дать логические нового исчисления и т. п. Но главное уже было сделано: дифференциальное и интегральное исчисление создано.

Методы математического анализа активно развивались в следующем столетии (в первую очередь следует назвать имена Л. Эйлера, завершившего систематическое исследование интегрирования элементарных функций, и И. Бернулли). В развитии интегрального исчисления приняли участие русские математики М.В.Остроградский (1801-1862), В.Я.Буняковский (1804-1889), П.Л.Ч бышев (1821-1894). Принципиальное значение имели, в частности, результаты Чебышева, доказавшего, что существуют интегралы, не выразимые через элементарные функции.

Строгое изложение теории интеграла появилось только в прошлом веке. Решение этой задачи связано с именами О.Коши, одного из крупнейших математиков, немецкого ученого Б.Римана (1826-1866), французского математика Г.Дарбу (1842-1917).

Ответы на многие вопросы, связанные с существованием площадей и объемов фигур, были получены с созданием К. Жорданом (1838-1922) теории меры.

Чтобы посмотреть презентацию с картинками, оформлением и слайдами, скачайте ее файл и откройте в PowerPoint на своем компьютере.
Текстовое содержимое слайдов презентации:
Интеграл и его применение в жизни человека.
Цель: изучение и использование интеграла в деятельности человека. Задачи: узнать что такое интеграл; выявить все сферы деятельности человека где применяется интеграл;выяснить какое значение интеграл занимает в жизни человека. Ученый, создавший интеграл.Евдокс Книдский. Дал полное доказательство теоремы об объёме пирамиды; теоремы о том, что площади двух кругов относятся как квадраты их радиусов. При доказательстве он использовал так называемый метод «исчерпывания» их радиусов. Через две тысячи лет метод «исчерпывания» был преобразован в метод интегрирования. Что такое интеграл? Интеграл (от лат.Integer – целый) –интегралом называется величина, обратная дифференциалу функции. Многие физические и другие задачи сводятся к решению сложных дифференциальных или интегральных уравнений. Для этого необходимо знать, что представляют собой дифференциальное и интегральное исчисление.𝑓𝑥𝑑𝑥 Символ  введен Готфрид Лейбницем (1675г.). Этот знак является изменением латинской буквы S (первой буквы слова summa). Само слово интеграл придумал Якоб Бернулли (1690 г.). Оно происходит от латинского integro, которое переводится как восстанавливать. Я. БернуллиГ. Лейбниц Применение интеграла. В геометрии.Площадь плоской фигуры.Определение: Фигура, ограниченная графиком непрерывной, знакопостоянной функции 𝑓(𝑥), осью абсцисс и прямыми 𝑥=𝑎, 𝑥=𝑏, называется криволинейной трапецией.Теорема. Если 𝑓(𝑥) непрерывная и неотрицательная функция на отрезке [𝑎;𝑏], то площадь соответствующей криволинейной трапеции равна определенному интегралу на этом отрезке.𝑆 =𝑎𝑏𝑓𝑥𝑑𝑥= 𝐹(𝑏)–𝐹(𝑎) Объем фигур вращения.Тело, полученное в результате вращения плоской фигуры, относительно какой-то оси, называют фигурой вращения.Функция 𝑆(𝑥)𝑓(𝑥) фигуры вращения есть круг.𝑆сеч = 𝑟2 Sсеч(𝑥)=𝜋𝑓 2(𝑥)𝑉= 𝑎𝑏𝑓 2(𝑥)𝑑𝑥 В физике.Координаты центра масс.Центр масс – точка, через которую проходит равнодействующая сил тяжести при любом пространственном расположении тела. Пусть материальная однородная пластина имеет форму криволинейной трапеции 𝑥;𝑦 𝑎≤𝑥≤𝑏; 0≤𝑦≤𝑓(𝑥)} и функция 𝑦=𝑓(𝑥) непрерывна на [𝑎;𝑏], а площадь этой криволинейной трапеции равна 𝑆, тогда координаты центра масс пластины о находят по формулам:𝑥0 = 1𝑆 𝑎𝑏𝑥 𝑓(𝑥) 𝑑𝑥; 𝑦0 = 12𝑆 𝑎𝑏𝑓 2(𝑥) 𝑑𝑥; Работа силы 𝐴=𝐹𝑆𝑐𝑜𝑠, 𝑐𝑜𝑠 1. Если на частицу действует сила 𝐹, кинетическая энергия не остается постоянной. В этом случае согласно𝑑(𝑚2/2) = 𝐹𝑑𝑠приращение кинетической энергии частицы за время dt равно скалярному произведению 𝐹𝑑𝑠, где 𝑑𝑠 – перемещение частицы за время 𝑑𝑡. Величина𝑑𝐴=𝐹𝑑𝑠называется работой, совершаемой силой F.А = 𝑎𝑏𝑓𝑥𝑑𝑥 Путь, пройденный материальной точкой.Если материальная точка движется прямолинейно со скоростью 𝑣=𝑣(𝑡) и за время 𝑇= 𝑡2–𝑡1 (𝑡2>𝑡1) прошла путь 𝑆, то 𝑆=𝑡1𝑡2𝑣(𝑡)𝑑𝑡. В экономикеВ курсе микроэкономики часто рассматривают так называемые предельные величины, т.е. для данной величины, представляемой некоторой функцией 𝑦 =𝑓(𝑥), рассматривают ее производную 𝑓′(𝑥). Например, если дана функция издержек С в зависимости от объема q выпускаемого товара 𝐶= 𝐶(𝑞), то предельные издержки будут за­даваться производной этой функции МС=С′(q). Ее экономический смысл – это издержки на производство дополнительной единицы выпускаемого товара. Поэтому часто приходится находить функ­цию издержек по данной функции предельных издержек. В биологииСредняя длина пролета.Нас интересует средняя длина пролета. Так как круг симметричен относительно любого своего диамет­ра, нам достаточно ограничиться лишь теми птицами, которые ле­тят в каком-нибудь одном направлении, параллельном оси Оу. Тогда средняя длина пролета - это среднее расстоя­ние между дугами АСВ и 𝐴𝐶1𝐵. Иными словами, это среднее зна­чение функции 𝑓1𝑥−𝑓2𝑥, где 𝑦=𝑓1𝑥 – уравнение верхней дуги, а 𝑦=𝑓2𝑥 уравнение нижней дуги, т. е.𝐿=𝑎𝑏𝑓1𝑥−𝑓2𝑥𝑑𝑥𝑏−𝑎 Так как 𝑎𝑏𝑓1𝑥𝑑𝑥 равен площади криволинейной трапеции аАСВb, 𝑎𝑏𝑓2𝑥𝑑𝑥 равен площади криволинейной трапеции аА𝐶1Вb, то их разность равна площади круга, т. е. 𝜋𝑅2. Разность 𝑏−а равна 2R. Подставив это в 𝐿=𝑎𝑏𝑓1𝑥−𝑓2𝑥𝑑𝑥𝑏−𝑎 , получим: 𝐿=𝜋𝑅22𝑅=𝜋2𝑅

Cлайд 1

МКОУ «Большеатлымская средняя общеобразовательная школа» Тема: «Интеграл и его практическое применение» Сближение теории с практикой дает самые благоприятные результаты, и не одна только практика от этого выигрывает, сами науки развиваются под влиянием ее. П. Л. Чебышев

Cлайд 2

Выполнил: Ершов Николай, ученик 11 класса. Руководитель: Дедовец Надежда Артемовна, учитель математики С. Большой Атлым 2012-2013 уч. год

Cлайд 3

Цель работы: Расширить область математических знаний. Развивать логическое мышление. Вывести общие формулы, позволяющие решать задачи интегрирования. Показать, что интеграл широко применяется в различных сферах жизнедеятельности.

Cлайд 4

Задачи исследования: - собрать, изучить и систематизировать материал об интеграле; - рассмотреть, как интеграл используется при решении различных жизненных ситуаций; - использование интеграла в различных сферах жизнедеятельности. Объект исследования: область математики – интегрирование.

Cлайд 5

Немного истории -1675 г, опубликовано в 1686 г ввел Г.Лейбниц - 1675 г, Ж Лагранж 5 век до н.э. др.гр. ученый Демокрит 3-4 век до н.э. Архимед ввел метод исчерпывания

Cлайд 6

Cлайд 7

«Интеграл» придумал Я.Бернулли (1690) «восстанавливать» от латинского integro «целый» от латинского integer

Cлайд 8

Cлайд 9

Лейбниц Готфрид Вильгельм (1646-1716) « Общее искусство знаков представляет чудесное пособие, так как оно разгружает воображение… Следует заботиться о том, чтобы обозначения были удобны для открытий. Обозначения коротко выражают и отображают сущность вещей. Тогда поразительным образом сокращается работа мысли.» Лейбниц

Cлайд 10

Cлайд 11

Cлайд 12

Площадь фигуры Объем тела вращения Работа электрического заряда Работа переменной силы Масса Перемещение Дифференциальное уравнение Давление Количество теплоты

Cлайд 13

Задача.Найти объём наклонной треугольной призмы с основанием S и высотой h. 1. Введём ось ОХ перпендикулярно основаниям призмы. 2. (АВС) OX=a, a=0, (A1B1C1) OX=b, b=h 3. Проведём плоскость перпендикулярно ОХ через точку с абсциссой х. А2В2С2-треугольник, равный основаниям. Площадь А2В2С2 равна S. Ответ: V=Sh 4. S(x) непрерывна на

Cлайд 14

Из эксперимента известно, что скорость размножения бактерий пропорциональна их количеству. За какое время количество бактерий увеличится в m раз по сравнению с начальным? Решение: Пусть x(t) – количество бактерий в момент времени t. x(0) = x0. Изменение количества бактерий со временем описывается уравнением x´(t) = kx(t), k>0, ln|x| = kt+ln|C|, x=ekteln|C| , x=Cekt - общее решение уравнения. ЗАДАЧА

Cлайд 15

Уже Архимед успешно находил площади фигур, несмотря на то, что в математике его времени не было понятия интеграла Но лишь интегральное исчисление дает общий метод решения задач из различных областей наук. Недаром даже поэты воспевали интеграл. Смысл- там, где змеи интеграла Меж цифр и букв, меж d и f. Там – власть, там творческие горны! Пред волей чисел все – рабы. И солнца путь вершат, покорны Немым речам и ворожбы. В.Брюсов.

Cлайд 18

Заключение Применение физических моделей при введении понятия интеграла, рассмотрении его свойств, отработке техники интегрирования и изучении приложений способствует осознанному качественному усвоению материала, развитию правильного представления об изучаемом понятии, его огромной значимости в различных науках, формированию мировоззрения, таких специальных качеств, как умение строить математические модели реальных процессов и явлений, исследовать и изучать их, а, следовательно, способствует развитию мышления, памяти, внимания и речи.

Девиз урока: “Математика – язык, на котором говорят все точные науки” Н.И. Лобачевский

Цель урока: обобщить знания учащихся по теме “Интеграл”, “Применение интеграла”;расширить кругозор, знания о возможном применении интеграла к вычислению различных величин; закрепить навыки использовать интеграл для решения прикладных задач; прививать познавательный интерес к математике, развивать культуру общения и культуру математической речи; уметь учиться выступать перед учащимися и учителями.

Тип урока: повторительно-обобщающий.

Вид урока: урок – защита проекта “Применение интеграла”.

Оборудование: магнитная доска, плакаты “Применение интеграла”, карточки с формулами и заданиями для самостоятельной работы.

План урока:

1. Защита проекта:

  1. из истории интегрального исчисления;
  2. свойства интеграла;
  3. применение интеграла в математике;
  4. применение интеграла в физике;

2. Решение упражнений.

Ход урока

Учитель: Мощным средством исследования в математике, физике, механике и других дисциплинах является определенный интеграл – одно из основных понятий математического анализа. Геометрический смысл интеграла – площадь криволинейной трапеции. Физический смысл интеграла – 1) масса неоднородного стержня с плотностью, 2) перемещение точки, движущейся по прямой со скоростью за промежуток времени.

Учитель: Ребята нашего класса провели большую работу, они подобрали задачи, где применяется определенный интеграл. Им слово.

2 ученик: Свойства интеграла

3 ученик: Применение интеграла (на магнитной доске таблица).

4 ученик: Рассматриваем применение интеграла в математике для вычисления площади фигур.

Площадь всякой плоской фигуры, рассматриваемая в прямоугольной системе координат, может быть составлена из площадей криволинейных трапеций, прилежащих к оси Ох и оси Оу. Площадь криволинейной трапеции, ограниченной кривой у = f(х), осью Ох и двумя прямыми х=а и х=b, где а х b , f(х) 0 вычисляется по формуле см. рис. Если криволинейная трапеция прилегает к оси Оу , то её площадь вычисляется по формуле , см. рис. При вычислении площадей фигур могут представиться следующие случаи: а)Фигура расположена над осью Ох и ограничена осью Ох, кривой у=f(х) и двумя прямыми х=а и х=b.(См. рис. ) Площадь этой фигуры находится по формуле 1 или 2. б) Фигура расположена под осью Ох и ограничена осью Ох, кривой у=f(х) и двумя прямыми х=а и х=b (см. рис. ). Площадь находится по формуле . в) Фигура расположена над и под осью Ох и ограничена осью Ох, кривой у=f(х) и двумя прямыми х=а и х=b(рис. ). г) Площадь ограничена двумя пересекающимися кривыми у=f(х) и у = (х) (рис. )

5 ученик: Решим задачу

х-2у+4=0 и х+у-5+0 и у=0

7 ученик: Интеграл, широко применяющийся в физике. Слово физикам.

1. ВЫЧИСЛЕНИЕ ПУТИ, ПРОЙДЕННОГО ТОЧКОЙ

Путь, пройденный точкой при неравномерном движении по прямой с переменной скоростью за промежуток времени от до вычисляется по формуле .

Примеры:

1. Скорость движения точки м/с. Найти путь, пройденный точкой за 4-ю секунду.

Решение: согласно условию, . Следовательно,

2. Два тела начали двигаться одновременно из одной точки в одном направлении по прямой. Первое тело движется со скоростью м/с, второе - со скоростью v = (4t+5) м/с. На каком расстоянии друг от друга они окажутся через 5 с?

Решение: очевидно, что искомая величина есть разность расстояний, пройденных первым и вторым телом за 5 с:

3. Тело брошено с поверхности земли вертикально вверх со скоростью и = (39,2-9,8^) м/с. Найти наибольшую высоту подъема тела.

Решение: тело достигнет наибольшей высоты подъема в такой момент времени t, когда v = 0, т.е. 39,2-9,8t = 0, откуда I = 4 с. По формуле (1) на ходим

2. ВЫЧИСЛЕНИЕ РАБОТЫ СИЛЫ

Работа, произведенная переменной силой f(х) при перемещении по оси Ох материальной точки от х = а до х=b, находится по формуле При решении задач на вычисление работы силы часто используется закон Г у к а: F=kx, (3) где F - сила Н; х -абсолютное удлинение пружины, м, вызванное силой F , а k -коэффициент пропорциональности, Н/м.

Пример:

1. Пружина в спокойном состоянии имеет длину 0,2 м. Сила в 50 Н растягивает пружину на 0,01 м. Какую работу надо совершить, чтобы растянуть ее от 0,22 до 0,32 м?

Решение: используя равенство (3), имеем 50=0,01k, т. е. kК = 5000 Н/м. Находим пределы интегрирования: а = 0,22 - 0,2 = 0,02 (м), b=0,32 - 0,2 = 0,12(м). Теперь по формуле (2) получим

3. ВЫЧИСЛЕНИЕ РАБОТЫ, ПРОИЗВОДИМОЙ ПРИ ПОДНЯТИИ ГРУЗА

Задача. Цилиндрическая цистерна с радиусом основания 0,5 м и высотой 2 м заполнена водой. Вычислить работу, которую необходимо произвести, чтобы выкачать воду из цистерны.

Решение: выделим на глубине х горизонтальный слой высотой dх (рис. ). Работа А, которую надо произвести, чтобы поднять слой воды весом Р на высоту х, равна Рх.

Изменение глубины х на малую величину dх вызовет изменение объема V на величину dV = пr 2 dх и изменение веса Р на величину * dР = 9807 r 2 dх; при этом совершаемая работа А изменится на величину dА=9807пr 2 хdх. Проинтегрировав это равенство при изменении x от 0 до Н, получим

4. ВЫЧИСЛЕНИЕ СИЛЫ ДАВЛЕНИЯ ЖИДКОСТИ

Значение силы Р давления жидкости на горизонтальную площадку зависит от глубины погружения х этой площадки, т. е. от расстояния площадки до поверхности жидкости.

Сила давления (Н) на горизонтальную площадку вычисляется по формуле Р =9807 S x,

где - плотность жидкости, кг/м 3 ; S - площадь площадки, м 2 ; х - глубина погружения площадки, м.

Если площадка, испытывающая давление жидкости, не горизонтальна, то давление на нее различно на разных глубинах, следовательно, сила давления на площадку есть функция глубины ее погружения Р (х).

5. ДЛИНА ДУГИ

Пусть плоская кривая АВ (рис.) задана уравнением у =f(x) (a x b), причем f(x) и f ?(x) - непрерывные функции в промежутке [а,b]. Тогда дифференциал dl длины дуги АВ выражается формулой или , а длина дуги АВ вычисляется по формуле (4)

где а и b-значения независимой переменной х в точках А и В. Если кривая задана уравнением х = (у)(с у d), то длина дуги АВ вычисляется по формуле (5) где с и д значения независимой переменной у в точках А и В.

6. ЦЕНТР МАСС

При нахождении центра масс пользуются следующими правилами:

1) Координата х? центра масс системы материальных точек А 1 , А 2 ,..., А n с массами m 1 , m 2 , ..., m n , расположенных на прямой в точках с координатами х 1 , х 2 , ..., х n , находятся по формуле

(*); 2) При вычислении координаты центра масс можно любую часть фигуры заменить на материальную точку, поместив ее в центр масс этой части, и приписать ей массу, равную массе рассматриваемой части фигуры. Пример. Пусть вдоль стержня-отрезка [а;b] оси Ох - распределена масса плотностью (х), где (х) - непрерывная функция. Покажем, что а) суммарная масса М стержня равна ; б) координата центра масс х" равна .

Разобьем отрезок [а; b] на n равных частей точками а= х 0 < х 1 < х 2 < ... <х n = b (рис. ). На каждом из n этих отрезков плотность можно считать при больших n постоянно и примерно равной (х k - 1) на k-м отрезке (в силу непрерывности (х). Тогда масса k-ого отрезка примерно равна а масса всего стержня равна

Тема исследования

Применение интегрального исчисления в планировании расходов семьи

Актуальность проблемы

Все чаще в социальных и экономических сферах при вычислении степени неравенства в распределении доходов используется математика, а именно, интегральное исчисление. Изучая практическое применение интеграла мы узнаем:

  • Как интеграл и вычисление площади с помощью интеграла помогает в распределении материальных затрат?
  • Как интеграл поможет в накоплении денег на отпуск.

Цель

спланировать расходы семьи с использованием интегрального вычисления

Задачи

  • Изучить геометрический смысл интеграла.
  • Рассмотреть методы интегрирования в социальной и экономической сферах жизни.
  • Составить прогноз материальных затрат семьи при ремонте квартиры с использованием интеграла.
  • Рассчитать объем потребления энергии семьи на год с учетом интегрального исчисления.
  • Расчитать сумму накопительного вклада в Сбербанк на отпуск.

Гипотеза

интегральное исчисление помогает в экономичных расчетах при планировании доходов и расходов семьи.

Этапы исследования

  • Изучили геометрический смысл интеграла и методы интегрирования в социальной и экономической сферах жизни.
  • Произвели расчет материальных затрат, необходимых при ремонте квартиры с помощью интеграла.
  • Расчитали объем потребления электроэнегрии в квартире и затраты на электроэнергию семьи на год.
  • Рассмотрели один из вариантов полонения доходов семьи через вклады в Сбербанк с помощью интеграла.

Объект исследования

инегральное исчисление в социальной и экономических сферах жизни.

Методы

  • Анализ литературы по теме "Практическое применение интгрального исчисления"
  • Изучение методов интегрирования при решении задач на вычисление площадей и объемов фигур с помощью интеграла.
  • Анализ расходов и доходов семьи с помощью интегрального вычисления.

Ход работы

  • Обзор литературы по теме "Практическое применение интегрального исчисления"
  • Решение системы задач на вычисление площадей и объемов фигур с помощью интеграла.
  • Расчет расходов и доходов семьи с помощью интегрального вычисления: ремонт комнаты, объем электроэнергии, вклады в Сбербанк на отпуск.

Наши результаты

Как интеграл и вычисление объема с помощью интеграла помогает в прогнозировании объемов потребления электроэнергии?

Выводы

  • Экономический расчет необходимых средств при ремонте квартиры можно быстрее и более точно выполнить с помощью интегрального вычисления.
  • Расход объемов электроэнергии семьи легче и быстрее рассчитать с помощью интегрального вычисления и программы Microsoft Office Excel, а значит прогнозировать затраты семьи на оплату электроэнергии на год.
  • Прибыль от вкладов в сбербанк можно рассчитать с помощью интегрального вычисления, значит спланировать отпуск семьи.

Список ресурсов

Печатные издания:

  • Учебник. Алгебра и начала анализа 10-11 класс. А.Г. Мордкович. Мнемозина. М: 2007
  • Учебник. Алгебра и начала анализа 10-11 класс. А. Колмогоров Просвещение. М: 2007
  • Математика для социологов и экономистов. Ахтямов А.М. М.: ФИЗМАТЛИТ, 2004. - 464 с.
  • Интегральное вычисление.Справочник по Высшей Математике М. Я. Выгодского, Просвещение, 2000


Рассказать друзьям