Преобразование энергии в клетке. Основные источники энергии в клетке Энергии в клетке

💖 Нравится? Поделись с друзьями ссылкой

Любое свойство живого, и любое проявление жизни связано с определёнными химическими реакциями в клетке. Эти реакции идут либо с затратой, либо с освобождением энергии. Вся совокупность процессов превращения веществ в клетке, а также в организме, называется метаболизмом.

Анаболизм

Клетка в процессе жизни поддерживает постоянство своей внутренней среды, называемое гомеостазом. Для этого она синтезирует вещества в соответствии со своей генетической информацией.

Рис. 1. Схема метаболизма.

Эта часть метаболизма, при которой создаются характерные для данной клетки высокомолекулярные соединения, называется пластическим обменом (ассимиляцией, анаболизмом).

К реакциям анаболизма относится:

  • синтез белков из аминокислот;
  • образование крахмала из глюкозы;
  • фотосинтез;
  • синтез жиров из глицерина и жирных кислот.

Эти реакции возможны только при затратах энергии. Если для фотосинтеза затрачивается внешняя (световая) энергия, то для остальных - ресурсы клетки.

ТОП-4 статьи которые читают вместе с этой

Количество затрачиваемой на ассимиляцию энергии больше, чем запасается в химических связях, т. к. часть её используется на регуляцию процесса.

Катаболизм

Другая сторона обмена веществ и превращения энергии в клетке - энергетический обмен (диссимиляция, катаболизм).

Реакции катаболизма сопровождаются выделением энергии.
К этому процессу относятся:

  • дыхание;
  • распад полисахаридов на моносахариды;
  • разложение жиров на жирные кислоты и глицерин, и другие реакции.

Рис. 2. Процессы катаболизма в клетке.

Взаимосвязь процессов обмена

Все процессы в клетке тесно связаны между собой, а также с процессами в других клетках и органах. Превращения органических веществ зависят от наличия неорганических кислот, макро- и микроэлементов.

Процессы катаболизма и анаболизма идут в клетке одновременно и являются двумя противоположными составляющими метаболизма.

Обменные процессы связаны с определёнными структурами клетки:

  • дыхание - с митохондриями;
  • синтез белков - с рибосомами;
  • фотосинтез - с хлоропластами.

Для клетки характерны не отдельные химические процессы, а закономерный порядок, в котором они осуществляются. Регуляторами обмена являются белки-ферменты, которые направляют реакции и изменяют их интенсивность.

АТФ

Особую роль в метаболизме играет аденозинтрифосфорная кислота (АТФ). Она является компактным химическим аккумулятором энергии, используемым для реакций синтеза.

Рис. 3. Схема строения АТФ и превращения её в АДФ.

За счёт своей неустойчивости АТФ образует молекулы АДФ и АМФ (ди- и монофосфат) с выделением большого количества энергии для процессов ассимиляции.

Из клеток состоят все живые организмы, кроме вирусов. Они обеспечивают все необходимые для жизни растения или животного процессы. Клетка и сама может быть отдельным организмом. И разве может такая сложная структура жить без энергии? Конечно, нет. Так как же происходит обеспечение клеток энергией? Оно базируется на процессах, которые мы рассмотрим ниже.

Обеспечение клеток энергией: как это происходит?

Немногие клетки получают энергию извне, они вырабатывают ее сами. обладают своеобразными "станциями". И источником энергии в клетке является митохондрия — органоид, который ее вырабатывает. В нем происходит процесс клеточного дыхания. За счет него и происходит обеспечение клеток энергией. Однако присутствуют они только у растений, животных и грибов. В клетках бактерий митохондрии отсутствуют. Поэтому у них обеспечение клеток энергией происходит в основном за счет процессов брожения, а не дыхания.

Строение митохондрии

Это двумембранный органоид, который появился в эукариотической клетке в процессе эволюции в результате поглощения ею более мелкой Этим можно объяснить то, что в митохондриях присутствует собственная ДНК и РНК, а также митохондриальные рибосомы, вырабатывающие нужные органоидам белки.

Внутренняя мембрана обладает выростами, которые называются кристы, или гребни. На кристах и происходит процесс клеточного дыхания.

То, что находится внутри двух мембран, называется матрикс. В нем расположены белки, ферменты, необходимые для ускорения химических реакций, а также молекулы РНК, ДНК и рибосомы.

Клеточное дыхание — основа жизни

Оно проходит в три этапа. Давайте рассмотрим каждый из них более подробно.

Первый этап — подготовительный

Во время этой стадии сложные органические соединения расщепляются на более простые. Так, белки распадаются до аминокислот, жиры — до карбоновых кислот и глицерина, нуклеиновые кислоты — до нуклеотидов, а углеводы — до глюкозы.

Гликолиз

Это бескислородный этап. Он заключается в том, что вещества, полученные во время первого этапа, расщепляются далее. Главные источники энергии, которые использует клетка на данном этапе, — молекулы глюкозы. Каждая из них в процессе гликолиза распадается до двух молекул пирувата. Это происходит во время десяти последовательных химических реакций. Вследствие первых пяти глюкоза фосфорилируется, а затем расщепляется на две фосфотриозы. При следующих пяти реакциях образуется две молекулы и две молекулы ПВК (пировиноградной кислоты). Энергия клетки и запасается именно в виде АТФ.

Весь процесс гликолиза можно упрощенно изобразить таким образом:

2НАД+ 2АДФ + 2Н 3 РО 4 + С 6 Н 12 О 6 2Н 2 О + 2НАД. Н 2 +2С 3 Н 4 О 3 + 2АТФ

Таким образом, используя одну молекулу глюкозы, две молекулы АДФ и две фосфорной кислоты, клетка получает две молекулы АТФ (энергия) и две молекулы пировиноградной кислоты, которую она будет использовать на следующем этапе.

Третий этап — окисление

Данная стадия происходит только при наличии кислорода. Химические реакции этого этапа происходят в митохондриях. Именно это и есть основная часть во время которой высвобождается больше всего энергии. На этом этапе вступая в реакцию с кислородом, расщепляется до воды и углекислого газа. Кроме того, при этом образуется 36 молекул АТФ. Итак, можно сделать вывод, что главные источники энергии в клетке — глюкоза и пировиноградная кислота.

Суммируя все химические реакции и опуская подробности, можно выразить весь процесс клеточного дыхания одним упрощенным уравнением:

6О 2 + С 6 Н 12 О 6 + 38АДФ + 38Н 3 РО 4 6СО 2 + 6Н2О + 38АТФ.

Таким образом, в ходе дыхания из одной молекулы глюкозы, шести молекул кислорода, тридцати восьми молекул АДФ и такого же количества фосфорной кислоты клетка получает 38 молекул АТФ, в виде которой и запасается энергия.

Разнообразие ферментов митохондрий

Энергию для жизнедеятельности клетка получает за счет дыхания — окисления глюкозы, а затем пировиноградной кислоты. Все эти химические реакции не могли бы проходить без ферментов — биологических катализаторов. Давайте рассмотрим те из них, которые находятся в митохондриях — органоидах, отвечающих за клеточное дыхание. Все они называются оксидоредуктазами, потому что нужны для обеспечения протекания окислительно-восстановительных реакций.

Все оксидоредуктазы можно разделить на две группы:

  • оксидазы;
  • дегидрогеназы;

Дегидрогеназы, в свою очередь, делятся на аэробные и анаэробные. Аэробные содержат в своем составе кофермент рибофлавин, который организм получает из витамина В2. Аэробные дегидрогеназы содержат в качестве коферментов молекулы НАД и НАДФ.

Оксидазы более разнообразны. В первую очередь они делятся на две группы:

  • те, которые содержат медь;
  • те, в составе которых присутствует железо.

К первым относятся полифенолоксидазы, аскорбатоксидаза, ко вторым — каталаза, пероксидаза, цитохромы. Последние, в свою очередь, делятся на четыре группы:

  • цитохромы a;
  • цитохромы b;
  • цитохромы c;
  • цитохромы d.

Цитохромы а содержат в своем составе железоформилпорфирин, цитохромы b — железопротопорфирин, c — замещенный железомезопорфирин, d — железодигидропорфирин.

Возможны ли другие пути получения энергии?

Несмотря на то что большинство клеток получают ее в результате клеточного дыхания, существуют также анаэробные бактерии, для существования которых не нужен кислород. Они вырабатывают необходимую энергию путем брожения. Это процесс, в ходе которого с помощью ферментов углеводы расщепляются без участия кислорода, вследствие чего клетка и получает энергию. Различают несколько видов брожения в зависимости от конечного продукта химических реакций. Оно бывает молочнокислое, спиртовое, маслянокислое, ацетон-бутановое, лимоннокислое.

Для примера рассмотрим Его можно выразить вот таким уравнением:

С 6 Н 12 О 6 С 2 Н 5 ОН + 2СО 2

То есть одну молекулу глюкозы бактерия расщепляет до одной молекулы этилового спирта и двух молекул оксида (IV) карбона.

АТФ - универсальная энергетическая «валюта» клетки. Одно из наиболее удивительных «изобретений» природы - это молекулы так называемых «макроэргических» веществ, в химической структуре которых имеется одна или несколько связей, которые выполняют функцию накопителей энергии. В живой природе найдено несколько подобных молекул, но в организме человека встречается только одна из них - аденозинтрифосфорная кислота (АТФ). Это довольно сложная органическая молекула, к которой присоединены 3 отрицательно заряженных остатка неорганической фосфорной кислоты PO . Именно эти фосфорные остатки связаны с органической частью молекулы «макроэргическими» связями, легко разрушающимися при разнообразных внутриклеточных реакциях. Однако энергия этих связей не рассеивается в пространстве в виде тепла, а используется на движение или химическое взаимодействие других молекул. Именно благодаря этому свойству АТФ выполняет в клетке функцию универсального накопителя (аккумулятора) энергии, а также универсальной «валюты». Ведь почти каждое химическое превращение, происходящее в клетке, либо поглощает, либо высвобождает энергию. Согласно закону сохранения энергии, общее количество энергии, образованное в результате окислительных реакций и запасенное в виде АТФ, равно количеству энергии, которое может использовать клетка на свои синтетические процессы и выполнение любых функций. В качестве «оплаты» за возможность произвести то или иное действие клетка вынуждена расходовать свой запас АТФ. При этом следует особо подчеркнуть: молекула АТФ столь крупна, что она не способна проходить через клеточную мембрану. Поэтому АТФ, образованная в одной клетке, не может быть использована Другой клеткой. Каждая клетка тела вынуждена синтезировать АТФ Для своих нужд самостоятельно в тех количествах, в которых она необходима для выполнения ее функций.

Три источника ресинтеза АТФ в клетках организма человека. По-видимому, далекие предки клеток человеческого организма существовали много миллионов лет назад в окружении растительных клеток, которые в избытке снабжали их углеводами, причем кислорода было недостаточно или не было еще вовсе. Именно углеводы - наиболее употребимая для производства энергии в организме составная часть питательных веществ. И хотя большинство клеток человеческого тела приобрело способность использовать в качестве энергетического сырья также белки и жиры, некоторые (например, нервные, красные кровяные, мужские половые) клетки способны производить энергию только за счет окисления углеводов.

Процессы первичного окисления углеводов - вернее, глюкозы, которая и составляет, собственно, основной субстрат окисления в клетках, - происходят непосредственно в цитоплазме: именно там расположены ферментные комплексы, благодаря которым молекула глюкозы частично разрушается, а освободившаяся энергия запасается в виде АТФ. Этот процесс называется гликолиз, он может проходить во всех без исключения клетках организма человека. В результате этой реакции из одной 6-углеродной молекулы глюкозы образуется две 3-углеродные молекулы пировиноградной кислоты и две молекулы АТФ.


Гликолиз - весьма быстрый, но сравнительно малоэффективный процесс. Образовавшаяся в клетке после завершения реакций гликолиза пировиноградная кислота почти тут же превращается в молочную кислоту и порой (например, во время тяжелой мышечной работы) в весьма больших количествах выходит в кровь, так как это небольшая молекула, способная свободно проходить через клеточную мембрану. Такой массированный выход кислых продуктов обмена в кровь нарушает гомеостаз, и организму приходится включать специальные гомеостатические механизмы, чтобы справиться с последствиями мышечной работы или другого активного действия.

Образовавшаяся в результате гликолиза пировиноградная кислота содержит в себе еще много потенциальной химической энергии и может служить субстратом для дальнейшего окисления, но для этого нужны специальные ферменты и кислород. Этот процесс происходит во многих клетках, в которых содержатся специальные органеллы - митохондрии. Внутренняя поверхность мембран митохондрий сложена из крупных липидных и белковых молекул, среди которых большое количество окислительных ферментов. Внутрь митохондрии проникают образовавшиеся в цитоплазме 3-углеродные молекулы - обычно это бывает уксусная кислота (ацетат). Там они включаются в непрерывно идущий цикл реакций, в процессе которых от этих органических молекул поочередно отщепляются атомы углерода и водорода, которые, соединяясь с кислородом, превращаются в углекислый газ и воду. В этих реакциях выделяется большое количество энергии, которая запасается в виде АТФ. Каждая молекула пировиноградной кислоты, пройдя полный цикл окисления в митохондрии, позволяет клетке получить 17 молекул АТФ. Таким образом, полное окисление 1 молекулы глюкозы обеспечивает клетку 2+17x2 = 36 молекулами АТФ. Не менее важно, что в процесс митохондриального окисления могут включаться также жирные кислоты и аминокислоты, т. е. составляющие жиров и белков. Благодаря этой способности митохондрии делают клетку сравнительно независимой от того, какими продуктами питается организм: в любом случае необходимое количество энергии будет добыто.

Некоторая часть энергии запасается в клетке в виде более мелкой и подвижной, чем АТФ, молекулы креатинфосфата (КрФ). Именно эта маленькая молекула может быстро переместиться из одного конца клетки в другой - туда, где в данный момент более всего нужна энергия. КрФ не может сам отдавать энергию на процессы синтеза, мышечного сокращения или проведение нервного импульса: для этого требуется АТФ. Но зато КрФ легко и практически без потерь способен отдать всю заключенную в нем энергию молекуле аденазиндифосфата (АДФ), которая сразу же превращается в АТФ и готова к дальнейшим биохимическим превращениям.

Таким образом, затраченная в ходе функционирования клетки энергия, т.е. АТФ, может возобновляться за счет трех основных процессов: анаэробного (бескислородного) гликолиза, аэробного (с участием кислорода) митохондриального окисления, а также благодаря передаче фосфатной группы от КрФ к АДФ.

Креатинфосфатный источник - самый мощный, поскольку реакция КрФ с АДФ протекает очень быстро. Однако запас КрФ в клетке обычно невелик - например, мышцы могут с максимальным усилием работать за счет КрФ не более 6-7 с. Этого обычно достаточно, чтобы запустить второй по мощности - гликолитический - источник энергии. В этом случае ресурс питательных веществ во много раз больше, но по мере работы происходит все большее напряжение гомеостаза из-за образования молочной кислоты, и если такую работу выполняют крупные мышцы, она не может продолжаться более 1,5-2 мин. Зато за это время почти полностью активируются митохондрии, которые способны сжигать не только глюкозу, но также жирные кислоты, запас которых в организме почти неисчерпаем. Поэтому аэробный митохондриальный источник может работать очень долго, правда, мощность его сравнительно невелика - в 2-3 раза меньше, чем гликолитического источника, и в 5 раз меньше мощности креатинфосфатного.

Особенности организации энергопродукции в различных тканях организма. Разные ткани обладают различной насыщенностью митохондриями. Меньше всего их в костях и белом жире, больше всего - в буром жире, печени и почках. Довольно много митохондрий в нервных клетках. Мышцы не обладают высокой концентрацией митохондрий, но ввиду того, что скелетные мышцы - самая массивная ткань организма (около 40 % от массы тела взрослого человека), именно потребности мышечных клеток во многом определяют интенсивность и направленность всех процессов энергетического обмена. И.А.Аршавский называл это «энергетическим правилом скелетных мышц».

С возрастом происходит изменение сразу двух важных составляющих энергетического обмена: изменяется соотношение масс тканей, обладающих разной метаболической активностью, а также содержание в этих тканях важнейших окислительных ферментов. В результате энергетический обмен претерпевает достаточно сложные изменения, но в целом его интенсивность с возрастом снижается, причем весьма существенно.

Живой клетке внутренне присуща неустойчивая и почти неправдоподобная организация; клетка способна сохранять весьма специфичную и прекрасную в своей сложности упорядоченность своей хрупкой структуры только благодаря непрерывному потреблению энергии.

Как только поступление энергии прекращается, сложная структура клетки распадается и она переходит в неупорядоченное и лишенное организации состояние. Помимо обеспечения химических процессов, необходимых для поддержания целостности клетки, в различных типах клеток за счет превращения энергии обеспечивается осуществление разнообразных механических, электрических, химических и осмотических процессов, связанных с жизнедеятельностью организма.

Научившись в сравнительно недавнее время извлекать энергию, заключенную в различных неживых источниках, для выполнения различной работы, человек начал постигать, как мастерски и с какой высокой эффективностью производит превращение энергии клетка. Превращение энергии в живой клетке подчиняется тем же самым законам термодинамики, которые действуют в неживой природе. Согласно первому закону термодинамики, общая энергия замкнутой системы при любом физическом изменении всегда остается постоянной. Согласно второму закону, энергия может существовать в двух формах: в форме «свободной», или полезной, энергии и в форме бесполезной рассеиваемой энергии. Тот же закон утверждает, что при любом физическом изменении наблюдается тенденция к рассеянию энергии, т. е. к уменьшению количества свободной энергии и к возрастанию энтропии. Между тем живая клетка нуждается в постоянном притоке свободной энергии.

Инженер получает необходимую ему энергию главным образом за счет энергии химических связей, заключенной в горючем. Сжигая горючее, он превращает химическую энергию в тепловую; затем он может использовать тепловую энергию для вращения, например, паровой турбины и таким путем получить электрическую энергию. Клетки также получают свободную энергию за счет освобождения энергии химических связей, заключенной в «горючем». Энергия запасается в этих связях теми клетками, которые синтезируют питательные вещества, служащие таким горючим. Однако клетки используют эту энергию весьма специфическим «образом. Поскольку температура, при которой живая клетка функционирует, примерно постоянна, клетка не может использовать тепловую энергию, чтобы производить работу. Для того чтобы за счет тепловой энергии могла происходить работа, теплота должна переходить от более нагретого тела к менее нагретому. Совершенно ясно, что клетка не может сжигать свое горючее при температуре сгорания угля (900°); не может она также выдержать воздействие перегретым паром или током высокого напряжения. Клетке приходится добывать и использовать энергию в условиях довольно постоянной и притом низкой температуры, разбавленной йодной среды и весьма незначительных колебаний концентрации водородных ионов. Для того чтобы приобрести возможность получать энергию, клетка на протяжении многовековой эволюции органического мира совершенствовала свои замечательные молекулярные механизмы, которые необыкновенно эффективно действуют в этих мягких условиях.

Механизмы клетки, обеспечивающие извлечение энергии, делятся на два класса, и на основании различия в этих механизмах все клетки можно разбить на два основных типа. Клетки первого типа называют гетеротрофными; к ним относятся все клетки организма человека и клетки всех высших животных. Этим клеткам необходим постоянный приток готового горючего весьма сложного химического состава. Таким горючим служат для них углеводы, белки и жиры, т. е. отдельные составные части других клеток и тканей. Гетеротрофные клетки получают энергию, сжигая или окисляя эти сложные вещества (вырабатываемые другими клетками) в процессе, который называется дыханием и в котором участвует молекулярный кислород (О 2) атмосферы. Гетеротрофные клетки используют эту энергию для выполнения своих биологических функций, выделяя при этом в атмосферу двуокись углерода в качестве конечного продукта.

Клетки, принадлежащие ко второму типу, называют автотрофными. Наиболее типичные автотрофные клетки - это клетки зеленых растений. В процессе фотосинтеза они связывают энергию солнечного света, используя ее для своих нужд. Кроме того, они при помощи солнечной энергии добывают углерод из атмосферной двуокиси углерода и используют его для построения простейшей органической молекулы - молекулы глюкозы. Из глюкозы клетки зеленых растений и других организмов создают более сложные молекулы, входящие в их состав. Чтобы обеспечить необходимую для этого энергию, клетки в процессе дыхания сжигают часть имеющегося в их распоряжении сырья. Из этого описания циклических превращений энергии в клетке становится ясно, что все живые организмы в конечном счете получают энергию от солнечного света, причем растительные клетки получают ее непосредственно от солнца, а животные - косвенным путем.

Изучение основных поставленных в этой статье вопросов упирается в необходимость подробного описания первичного механизма извлечения энергии, используемого клеткой. Большая часть ступеней сложных циклов дыхания и фотосинтеза уже исследована. Установлено, в каком именно органе клетки происходит тот или иной процесс. Дыхание осуществляется митохондриями, имеющимися в большом числе почти во всех клетках; фотосинтез обеспечивают хлоропласты - цитоплазматические структуры, содержащиеся в клетках зеленых растений. Молекулярные механизмы, которые находятся в этих клеточных образованиях, составляя их структуру и обеспечивая выполнение их функций, представляют собой следующий важный этап в изучении клетки.

Одни и те же хорошо изученные молекулы - молекулы аденозинтрифосфата (АТФ) - переносят полученную за счет питательных веществ или солнечного света свободную энергию от центров дыхания или фотосинтеза во все участки клетки, обеспечивая осуществление всех процессов, протекающих с потреблением энергии. Впервые АТФ был выделен из мышечной ткани Ломаном около 30 лет назад. Молекула АТФ содержит три связанные между собой фосфатные группы. В пробирке концевую группу можно отделить от молекулы АТФ путем реакции гидролиза, в результате которой получается аденозиндифосфат (АДФ) и неорганический фосфат. В процессе этой реакции свободная энергия молекулы АТФ превращается в тепловую энергию, а энтропия при этом в соответствии со вторым законом термодинамики возрастает. В клетке, однако, концевая фосфатная группа в процессе гидролиза не просто отделяется, но переносится на особую молекулу, служащую акцептором. Значительная часть свободной энергии молекулы АТФ при этом сохраняется благодаря фосфорилированию молекулы-акцептора, которая теперь за счет возросшей энергии приобретает возможность участвовать в процессах, протекающих с потреблением энергии, например, в процессах биосинтеза или мышечного сокращения. После отщепления одной фосфатной группы в процессе этой сопряженной реакции АТФ превращается в АДФ. В термодинамике клетки АТФ можно рассматривать как богатую энергией, или «заряженную», форму носителя энергии (аденозинфосфата), а АДФ - как бедную энергией, или «разряженную», форму.

Вторичная «зарядка» носителя производится, конечно, тем или другим из двух механизмов, участвующих в извлечении энергии. В процессе дыхания животных клеток энергия, заключенная в питательных веществах, освобождается в результате окисления и расходуется на построение АТФ из АДФ и фосфата. При фотосинтезе в растительных клетках энергия солнечного света превращается в химическую энергию и расходуется на «зарядку» аденозинфосфата, т. е. на образование АТФ.

Эксперименты с использованием радиоактивного изотопа фосфора (Р 32) показали, что неорганический фосфат с большой скоростью включается в концевую фосфатную группу АТФ и вновь выходит из нее. В клетке почки обновление концевой фосфатной группы происходит так быстро, что ее период полупревращения занимает меньше 1 минуты; это соответствует чрезвычайно интенсивному обмену энергии в клетках этого органа. Следует добавить, что деятельность АТФ в живой клетке - отнюдь не черная магия. Химикам известны многие аналогичные реакции, при помощи которых происходит перенос химической энергии в неживых системах. Сравнительно сложная структура АТФ, по-видимому, возникла только в клетке - для обеспечения наиболее эффективной регуляции химических реакций, связанных с переносом энергии.

Роль АТФ в фотосинтезе удалось выяснить лишь недавно. Это открытие позволило в значительной мере объяснить, каким образом фотосинтезирующие клетки в процессе синтеза углеводов связывают солнечную энергию - первичный источник энергии всех живых существ.

Энергия солнечного света передается в виде фотонов, или квантов; свет различной окраски, или разной длины волны, характеризуется различной энергией. При падении света на некоторые металлические поверхности и поглощении его этими поверхностями фотоны в результате столкновения с электронами металла передают им свою энергию. Этот фотоэлектрический эффект можно измерить благодаря возникающему при этом электрическому току. В клетках зеленых растений солнечный свет с определенными длинами волн поглощается зеленым пигментом - хлорофиллом. Поглощенная энергия переводит электроны в сложной молекуле хлорофилла с основного энергетического уровня на более высокий уровень. Подобные «возбужденные» электроны стремятся вновь возвратиться на свой основной стабильный энергетический уровень, отдавая при этом поглощенную ими энергию. В чистом препарате хлорофилла, выделенного из клетки, поглощенная энергия вновь испускается в форме видимого света, аналогично тому, как это происходит в случае других фосфоресцирующих или флуоресцирующих органических и неорганических соединений.

Таким образом, хлорофилл, находясь в пробирке, сам по себе не способен запасать или использовать энергию света; энергия эта быстро рассеивается, как если бы произошло короткое замыкание. Однако в клетке хлорофилл стерически связан с другими специфическими молекулами; поэтому, когда он под влиянием поглощения света приходит в возбужденное состояние, «горячие», или богатые энергией, электроны не возвращаются в свое нормальное (невозбужденное) энергетическое состояние; вместо этого электроны отрываются от молекулы хлорофилла и переносятся молекулами - переносчиками электронов, которые передают их друг другу по замкнутой цепи реакций. Проделывая этот путь вне молекулы хлорофилла, возбужденные электроны постепенно отдают свою энергию и возвращаются на свои прежние места в молекуле хлорофилла, которая после этого оказывается готовой к поглощению второго фотона. Тем временем энергия, отданная электронами, используется на образование АТФ из АДФ и фосфата - иными словами, на «зарядку» аденозинфосфатной системы фотосинтезирующей клетки.

Переносчики электронов, служащие посредниками в этом процессе фотосинтетического фосфорилирования, еще не вполне установлены. Один из таких переносчиков, по-видимому, содержит рибофлавин (витамин В 2) и витамин К. Другие предварительно отнесены к цитохромам (белки, содержащие атомы железа, окруженные порфириновыми группами, которые по расположению и строению напоминают порфирин самого хлорофилла). По крайней мере два из этих переносчиков электронов способны обеспечить связывание части переносимой ими энергии для восстановления АТФ из АДФ.

Такова основная схема превращения энергии света в энергию фосфатных связей АТФ, разработанная Д. Арноном и другими учеными.

Однако в процессе фотосинтеза происходит, помимо связывания солнечной энергии, еще и синтез углеводов. В настоящее время полагают, что некоторые из «горячих» электронов возбужденной молекулы хлорофилла вместе с ионами водорода, происходящими из воды, вызывают восстановление (т. е. получение дополнительных электронов или атомов водорода) одного из переносчиков электронов - трифосфопиридиннуклеотида (ТПН, в восстановленной форме ТПН-Н).

В процессе ряда темновых реакций, названных так потому, что они могут происходить в отсутствие света, ТПН-Н вызывает восстановление двуокиси углерода до углевода. Большую часть необходимой для этих реакций энергии доставляет АТФ. Характер этих темновых реакций исследован главным образом М. Кальвином и его сотрудниками. Одним из побочных продуктов первоначального фотовосстановления ТПН служит ион гидроксила (ОН —). Хотя мы еще не располагаем полными данными, предполагается, что этот ион отдает свой электрон одному из цитохромов в цепи фотосинтетических реакций, конечным продуктом которых оказывается молекулярный кислород. Электроны движутся по цепи переносчиков, внося свой энергетический вклад в образование АТФ, и, в конце концов растратив всю свою избыточную энергию, попадают в молекулу хлорофилла.

Как и следовало ожидать на основании строго закономерного и последовательного Характера процесса фотосинтеза, молекулы хлорофилла расположены в хлоропластах не беспорядочно и, уж конечно, не просто суспендированы в наполняющей хлоропласты жидкости. Напротив, молекулы хлорофилла образуют в хлоропластах упорядоченные структуры - граны, между которыми располагается разделяющее их переплетение волокон или мембран. Внутри каждой граны плоские молекулы хлорофилла лежат стопками; каждую молекулу можно считать аналогичной отдельной пластинке (электроду) элемента, граны - элементам, а совокупность гран (т. е. весь хлоропласт) - электрической батарее.

Хлоропласты содержат также все те специализированные молекулы - переносчики электронов, которые вместе с хлорофиллом участвуют в извлечении энергии из «горячих» электронов и используют эту энергию для синтеза углеводов. Извлеченные из клетки хлоропласты могут осуществлять весь сложнейший процесс фотосинтеза.

Эффективность этих миниатюрных фабрик, работающих на солнечной энергии, поразительна. В лаборатории при соблюдении некоторых специальных условий можно показать, что в процессе фотосинтеза до 75% света, падающего на молекулу хлорофилла, превращается в химическую энергию; правда, цифру эту нельзя считать вполне точной, и по этому поводу еще происходят дебаты. В поле вследствие неодинаковой освещенности листьев солнцем, а также по ряду других причин эффективность использования солнечной энергии гораздо ниже - порядка нескольких процентов.

Таким образом, молекула глюкозы, представляющая собой конечный продукт фотосинтеза, должна содержать довольно значительное количество солнечной энергии, заключенной в ее молекулярной конфигурации. В процессе дыхания гетеротрофные клетки извлекают эту энергию, постепенно расщепляя молекулу глюкозы, с тем чтобы «законсервировать» содержавшуюся в ней энергию во вновь образующихся фосфатных связях АТФ.

Существуют разные типы гетеротрофных клеток. Одни клетки (например, некоторые морские микроорганизмы) могут жить без кислорода; другим (например, клеткам мозга) кислород абсолютно необходим; третьи (например, мышечные клетки) более разносторонни и способны функционировать как при наличии кислорода в среде, так и при его отсутствии. Кроме того, хотя большинство клеток предпочитает использовать в качестве основного горючего глюкозу, некоторые из них могут существовать исключительно за счет аминокислот или жирных кислот (главным сырьем для синтеза которых служит все та же глюкоза). Тем не менее расщепление молекулы глюкозы в клетках печени можно считать примером процесса получения энергии, типичным для большинства известных нам гетеротрофов.

Общее количество энергии, содержащейся в молекуле глюкозы, определить весьма просто. Сжигая определенное количество (пробу) глюкозы в лаборатории, можно показать, что при окислении молекулы глюкозы образуется 6 молекул воды и 6 молекул двуокиси углерода, причем реакция сопровождается выделением энергии в виде тепла (примерно 690 000 калорий на 1 грамм-молекулу, т. е. на 180 граммов глюкозы). Энергия в форме тепла, конечно, бесполезна для клетки, которая функционирует при практически постоянной температуре. Постепенное окисление глюкозы в процессе дыхания происходит, однако, таким образом, что большая часть свободной энергии молекулы глюкозы сохраняется в удобной для клетки форме.

В итоге клетка получает более 50% всей освободившейся при окислении энергии в форме энергии фосфатных связей. Такой высокий к. п. д. выгодно отличается от того, который обычно достигается в технике, где редко удается превратить в механическую или электрическую энергию более одной трети тепловой энергии, получаемой при сгорании топлива.

Процесс окисления глюкозы в клетке делится на две основные фазы. Во время первой, или подготовительной, фазы, называемой гликолизом, происходит расщепление шестиуглеродной молекулы глюкозы на две трехуглеродные молекулы молочной кислоты. Этот, казалось бы, простой процесс состоит не из одной, а по меньшей мере из 11 ступеней, причем каждая ступень катализируется своим особым ферментом. Может показаться, что сложность этой операции противоречит афоризму Ньютона «Natura entm simplex esi» («природа проста»); однако следует помнить, что назначение этой реакции заключается не в том, чтобы просто расщепить молекулу глюкозы пополам, а в том, чтобы выделить из этой молекулы заключенную в ней энергию. Каждый из промежуточных продуктов содержит фосфатные группы, и в итоге в процессе реакции используются две молекулы АДФ и две фосфатные группы. В конечном счете в результате расщепления глюкозы образуется не только две молекулы молочной кислоты, но, кроме того, еще и две новые молекулы АТФ.

К чему это приводит в энергетическом выражении? Термодинамические уравнения показывают, что при расщеплении одной грамм-молекулы глюкозы с образованием молочной кислоты выделяется 56 000 калорий. Поскольку при образовании каждой грамм-молекулы АТФ связывается 10000 калорий, эффективность процесса улавливания энергии составляет на этой ступени около 36 % - весьма внушительная цифра, если исходить из того, с чем обычно приходится иметь дело в технике. Однако эти 20 000 калорий, превращенные в энергию фосфатных связей, представляют собой лишь ничтожную часть (около 3%) всей энергии, заключенной в грамм-молекуле глюкозы (690 000 калорий). Между тем многие клетки, например, анаэробные клетки или мышечные клетки, находящиеся в состоянии активности (и в это время неспособные к дыханию), существуют за счет этого ничтожного по своей эффективности использования энергии.

После расщепления глюкозы до молочной кислоты аэробные клетки продолжают извлекать большую часть оставшейся энергии в процессе дыхания, во время которого трехуглеродные молекулы молочной кислоты расщепляются на одноуглеродные молекулы двуокиси углерода. Молочная кислота, или, вернее, ее окисленная форма - пировиноградная кислота, претерпевает еще более сложный ряд реакций, причем каждая из этих реакций опять-таки катализируется особой ферментной системой. Сначала трехуглеродное соединение распадается с образованием активированной формы уксусной кислоты (ацетилкофермента А) и двуокиси углерода. Затем «двухуглеродный фрагмент» (ацетилкофермент А) соединяется с четырехуглеродным соединением, щавелевоуксусной кислотой, в результате чего получается лимонная кислота, содержащая шесть атомов углерода. Лимонная кислота в процессе ряда реакций вновь превращается в щавелевоуксусную кислоту, и три углеродных атома пировиноградной кислоты, «поданные» в этот цикл реакций, в конечном счете дают молекулы двуокиси углерода. Эта «мельница», которая «перемалывает» (окисляет) не только глюкозу, но также молекулы жиров и аминокислот, предварительно расщепленные до уксусной кислоты, известна под названием цикла Кребса или цикла лимонной кислоты.

Впервые цикл был описан Г. Кребсом в 1937 г. Открытие это представляет собой один из краеугольных камней современной биохимии, и его автор был удостоен в 1953 г. Нобелевской премии.

Цикл Кребса позволяет проследить окисление молочной кислоты до двуокиси углерода; однако одним этим циклом нельзя объяснить, каким образом заключенные в молекуле молочной кислоты большие количества энергии удается извлечь в форме, пригодной для использования в живой клетке. Этот процесс извлечения энергии, сопровождающий цикл Кребса, в последние годы интенсивно изучается. Общая картина более или менее выяснилась, однако многие детали еще предстоит исследовать. По-видимому, в течение цикла Кребса электроны при участии ферментов отрываются от промежуточных продуктов и передаются по ряду молекул-переносчиков, объединяемых под общим названием дыхательной цепи. Эта цепь ферментных молекул представляет собой конечный общий путь всех электронов, отторгнутых от молекул питательных веществ в процессе биологического окисления. В последнем звене этой цепи электроны в конце концов соединяются с кислородом и образуется вода. Таким образом, распад питательных веществ при дыхании представляет собой процесс, обратный процессу фотосинтеза, при котором удаление электронов из воды приводит к образованию кислорода. Более того, переносчики электронов в дыхательной цепи химически весьма сходны с соответствующими переносчиками, участвующими в процессе фотосинтеза. Среди них имеются, например, рибофлавиновые и цитохромные структуры, сходные с аналогичными структурами хлоропласта. Тем самым подтверждается афоризм Ньютона о простоте природы.

Как и при фотосинтезе, энергия электронов, переходящих по этой цепи к кислороду, улавливается и используется для синтеза АТФ из АДФ и фосфата. Собственно говоря, это происходящее в дыхательной цепи фосфорилирование (окислительное фосфорилирование) изучено лучше, чем фосфорилирование, происходящее при фотосинтезе, которое открыто сравнительно недавно. Твердо установлено, например, существование в дыхательной цепи трех центров, в которых происходит «зарядка» аденозинфосфата, т. е. образование АТФ. Таким образом, на каждую пару электронов, отщепленных от молочной кислоты в течение цикла Кребса, образуется в среднем по три молекулы АТФ.

На основании общего выхода АТФ в настоящее время можно рассчитать термодинамическую эффективность, с которой клетка извлекает энергию, ставшую ей доступной благодаря окислению глюкозы. Предварительное расщепление глюкозы на две молекулы молочной кислоты дает две молекулы АТФ. Каждая молекула молочной кислоты в конечном счете передает в дыхательную цепь шесть пар электронов. Поскольку каждая пара электронов, проходящая по цепи, вызывает превращение трех молекул АДФ в АТФ, в процессе собственно дыхания образуется 36 молекул АТФ. При образовании каждой грамм-молекулы АТФ связывается, как мы уже указывали, около 10 000 калорий и, следовательно, 38 грамм-молекул АТФ связывают примерно 380000 из 690000 калорий, содержавшихся в исходной грамм-молекуле глюкозы. Эффективность сопряженных процессов гликолиза и дыхания можно, таким образом, считать равной по крайней мере 55%.

Чрезвычайная сложность процесса дыхания служит еще одним указанием на то, что участвующие в нем ферментные механизмы не могли бы функционировать, если бы составные части были просто перемешаны в растворе. Подобно тому, как молекулярные механизмы, связанные с фотосинтезом, имеют определенную структурную организацию и заключены в хлоропласте, так и органы дыхания клетки - митохондрии - представляют собой такую же структурно упорядоченную систему.

В клетке в зависимости от ее типа и характера ее функции может находиться от 50 до 5000 митохондрий (клетка печени содержит, например, около 1000 митохондрий). Они достаточно велики (3-4 микрона в длину), чтобы их можно было видеть в обычный микроскоп. Однако ультраструктура митохондрий различима лишь в электронный микроскоп.

На электронных микрофотографиях можно видеть, что митохондрия имеет две мембраны, причем внутренняя мембрана образует складки, заходящие в тело митохондрии. Проведенное недавно исследование митохондрий, выделенных из клеток печени, показало, что молекулы ферментов, участвующих в цикле Кребса, расположены в матриксе, или растворимой части внутреннего содержимого митохондрий, тогда как ферменты дыхательной цепи в форме молекулярных «ансамблей» расположены в мембранах. Мембраны состоят из чередующихся слоев молекул белка и липидов (жиров); такое же строение имеют мембраны в гранах хлоропластов.

Таким образом, существует явное сходство в строении этих двух главных «силовых станций», от которых зависит вся жизнедеятельность клетки, ибо одна из них «запасает» солнечную энергию в фосфатных связях АТФ, а другая превращает энергию, заключенную в питательных веществах, в энергию АТФ.

Успехи современной химии и физики позволили недавно уточнить пространственное строение некоторых больших молекул, например, молекул ряда белков и ДНК, т. е. молекул, содержащих генетическую информацию.

Следующий важный этап изучения клетки состоит в том, чтобы выяснить расположение больших ферментных молекул (которые сами представляют собой белки) в мембранах митохондрий, где они находятся вместе с липидами - расположение, обеспечивающее надлежащую ориентацию каждой молекулы катализатора и возможность ее взаимодействия с последующим звеном всего рабочего механизма. «Монтажная схема» митохондрии уже ясна!

Современные сведения относительно силовых установок клетки показывают, что она оставляет далеко позади не только классическую энергетику, но и новейшие, гораздо более блистательные достижения техники.

Электроника достигла поразительных успехов в компоновке и уменьшении размеров составных элементов счетно-решающих устройств. Однако все эти успехи не идут ни в какое сравнение с совершенно невероятной миниатюрностью сложнейших механизмов превращения энергии, выработанных в процессе органической эволюции и имеющихся в каждой живой клетке.

Более миллиарда лет прошло от появления одноклеточных до «изобретения» ядра клетки и рождения ряда других новшеств. Только тогда открылась дорога к первым многоклеточным существам, давшим начало трём царствам животных, растений и грибов. Европейские учёные выдвинули новое объяснение этого преображения, идущее вразрез с существовавшими до сих пор представлениями.

Принято считать, что сначала от прокариот родились более совершенные ядерные клетки, полагавшиеся на старые энергетические механизмы, а уже позже новобранцы обзавелись митохондриями. Последним отводилась важная роль в дальнейшей эволюции эукариот, но не роль краеугольного камня, лежащего в самой её основе.

«Мы показали, что первый вариант не сработает. Для развития сложности клетки ей необходимы митохондрии», — поясняет Мартин. «Наша гипотеза опровергает традиционную точку зрения, будто переход к эукариотическим клеткам требовал только лишь надлежащих мутаций», — вторит ему Лейн.

Они развивались совместно, при этом эндосимбионт постепенно оттачивал одно умение — синтез АТФ . Внутренняя клетка уменьшалась в размерах и передавала часть своих второстепенных генов в ядро. Так митохондрии оставили у себя лишь ту часть исходной ДНК, что была им необходима для работы в качестве «живой электростанции».

Митохондрии внутри клетки (флуоресцируют зелёным). На врезках: Мартин (слева) и Лейн. Детали нового исследования можно найти в статье в Nature и пресс-релизе UCL (фотографии Douglas Kline, molevol.de, nick-lane.net).

Появление митохондрий в плане энергетики можно сравнить с изобретением ракеты после телеги, ведь ядерные клетки в среднем в тысячу раз больше по объёму, чем клетки без ядра.

Последние, казалось бы, тоже могут расти в размерах и сложности устройства (тут есть единичные яркие примеры). Но на этом пути крохотных существ ждёт подвох: по мере геометрического роста быстро падает отношение площади поверхности к объёму.

Между тем простые клетки генерируют энергию при помощи покрывающей их мембраны. Так что в крупной прокариотической клетке может быть полным-полно места для новых генов, но ей просто не хватит энергии для синтеза белков по этим «инструкциям».

Простое увеличение складок внешней мембраны положение не особо спасает (хотя и такие клетки известны). С данным способом наращивания мощности увеличивается и число ошибок в работе энергетической системы. В клетке накапливаются нежелательные молекулы, способные её погубить.

Число митохондрий (показаны красным) в одной клетке варьируется от единственного экземпляра (в основном в одноклеточных эукариотах) до двух тысяч (например, в клетках печени человека) (иллюстрация Odra Noel).

Митохондрии — блестящее изобретение природы. Увеличивая их количество, можно наращивать энергетические возможности клетки без роста её внешней поверхности. При этом каждая митохондрия обладает ещё и встроенными механизмами контроля и ремонта.

И ещё плюс инновации: митохондриальная ДНК невелика и очень экономна. Для её копирования не требуется много ресурсов. А вот бактериям, чтобы нарастить свои энергетические возможности, остаётся разве что создавать множество копий полного своего генома. Но такое развитие быстро приводит к энергетическому тупику.

Сравнение энергетики разных клеток и их схемы. a) – средний прокариот (Escherichia ), b) – очень крупный прокариот (Thiomargarita ) и (c) средний эукариот (Euglena ).
На диаграммах показаны (сверху вниз): мощность (ватты) на грамм клетки (d), мощность (фемтоватты) на один ген (e) и мощность (пиковатты) на гаплоидный геном (f) (иллюстрации Nick Lane, William Martin/Nature).

Авторы работы посчитали, что средняя эукариотическая клетка теоретически может нести в 200 тысяч раз больше генов, чем средняя бактерия. Эукариот можно представить как библиотеку с большим числом полок — заполняй книгами вволю. Ну а более протяжённый геном — это основа для дальнейшего совершенствования строения клетки и её метаболизма, появления новых регуляторных цепей.



Рассказать друзьям