Плавный пуск электродвигателя 12в постоянного тока. Электрические схемы бесплатно

💖 Нравится? Поделись с друзьями ссылкой

20.Способы пуска двигателя постоянного тока.

Возможны три способа пуска двигателя в ход:

1) прямой пуск, когда цепь якоря приключается непосредственно к сети на ее полное напряжение;

2) пуск с помощью пускового реостата или пусковых сопротивлений, включаемых последовательно в цепь якоря;

3) пуск при пониженном напряжении цепи якоря.

прямой пуск применяется только для двигателей мощностью до нескольких сотен ватт, у которых Ra относительно велико и поэтому при пуске процесс пуска длится не более 1-2 сек.

Самым распространенным является пуск с помощью пускового реостата или пусковых сопротивлений

Способы пуска двигателя постоянного тока

1. Прямой пуск - обмотка якоря подключается непосредственно к сети.

Ток якоря двигателя определяется формулой . (4.1) Если считать, что при прямом пуске значения напряженияпитания U и сопротивления якорной обмотки R я остаются неизменными, то ток якоря зависит от противо - ЭДС Е . В начальный момент пуска якоря двигатель неподвижен (=0) и в его обмотке Е=0 .Поэтому при подключении к сети в обмотке возникает пусковой ток
. (4.2) Обычно сопротивлениеR я невелико, особенно у двигателей большой мощности, поэтому значение пускового тока достигает 20 раз превышающих номинальный ток двигателя.недопустимо больших значений, в 10 При этом создается опасность поломки вала машины и появляется сильное искрение под щетками коллектора. По этой причине такой пуск применяется только для двигателей малой мощности, у которых R я относительно велико.

2)Реостатный пуск - в цепь якоря включается пусковой реостат для ограничения тока. В начальный момент пуска при =0 и R п =мах ток якоря будет равен


. (4.3) Максимальное значение R п подбирают так, чтобы для машин большой и средней мощности ток якоря при пуске
, а для машин малой мощности
. Рассмотрим процесс реостатного пуска на примере двигателя с параллельным возбуждением рис 4.1. В начальный момент пуск осуществляется по реостатной характеристике 4, соответствующей максимальному значению сопротивленияR п , при этом двигатель развивает максимальный пусковой момент М пmax .Регулировочный реостат R р выводится так, чтобы I в и Ф были максимальными. По мере разгона момент двигателя уменьшается, так как с увеличением скорости вращения ротора растет и ЭДС Е , а как следствие, уменьшается ток якоря, определяющий его величину. При достижении некоторого значения М пmin часть сопротивления R п выводится, вследствие чего момент снова возрастает до М пmax , двигатель переходит на работу по реостатной характеристике 3 и разгоняется до значения М пmin . Таким образом, уменьшая постепенно сопротивление пускового реостата, осуществляют разгон двигателя по отдельным отрезкам реостатной характеристики до выхода на естественную характеристику 1.Средний вращающий момент при пуске определяется из выражения
. (4.4) двигатель при этом разгоняется с некоторым постоянным ускорением.

Аналогичный пуск возможен и для двигателей последовательного возбуждения. Количество ступеней пуска зависит от жесткости естественной характеристики и требований предъявляемых к плавности пуска. Пусковые реостаты рассчитываются на кратковременную работу под током.

В реальных устройствах пуск осуществляется автоматически. Микроконтроллер, по заданному алгоритму, управляет коммутирующими элементами (релейное управление), отключая секции пускового реостата и практически реализуя описанный выше процесс.

Алгоритм управления может быть построен с использованием трех основных принципов:

1) Принцип ЭДС

2) Принцип тока

3) Принцип времени.

Идею реализации данных принципов можно пояснить с помощью пусковой схемы на электромагнитных реле (что практически применялось до широкого внедрения микропроцессорных систем управления) рисунок 4.3. К якорю машины подключается параллельно ряд реле, которые с ростом скорости вращения, а значит, ЭДС, последовательно срабатывают и своими контактами выводят из работы секции пускового реостата, постепенно уменьшая сопротивление якорной цепи.

При использования принципа тока применяются последовательно включенные реле тока, которые дают команду через свои нормально замкнутые контакты на последовательное включение соответствующих контакторов К i при снижении тока до заданного уровня.

Принцип времени предполагает применение реле времени, которые через расчетные уставки времени дают команду на шунтирование секций реостата.

4)Пуск путем плавного повышения питающего напряжения - пуск осуществляется от отдельного регулируемого источника питания. Применяется для двигателей большой мощности, где нецелесообразно применять громоздкие реостаты из-за значительных потерь электроэнергии.

Характерным для любого электродвигателя в процессе запуска является многократное превышение тока и механической нагрузки на приводимое в действие оборудование. При этом также возникают перегрузки питающей сети, создающие просадку напряжения и ухудшающие качество электроэнергии. Во многих случаях требуется устройство плавного пуска (УПП).

Необходимость плавного пуска электродвигателей

Статорная обмотка является катушкой индуктивности, состоящей из активного сопротивления и реактивного. Значение последнего зависит от частоты подаваемого напряжения. При запуске двигателя реактивное сопротивление изменяется от нуля, а пусковой ток имеет большую величину, многократно превышающую номинальный. Момент вращения также велик и может разрушить приводимое в движение оборудование. В режиме торможения также появляются броски тока, приводящие к повышению температуры статорных обмоток. При аварийной ситуации, связанной с перегревом двигателя, возможен ремонт, но параметры трансформаторной стали изменяются и номинальная мощность снижается на 30 %. Поэтому необходим плавный пуск.

Запуск электродвигателя переключением обмоток

Обмотки статора могут соединяться "звездой" и "треугольником". Когда у двигателя выведены все концы обмоток, можно снаружи коммутировать схемы "звезда" и "треугольник".

Устройство плавного пуска электродвигателя собирается из 3 контакторов, реле нагрузки и времени.

Электродвигатель запускается по схеме "звезда", когда контакты К1 и К3 замкнуты. Через интервал, заданный реле времени, К3 отключается и производится подключение схемы "треугольник" контактором К2. При этом двигатель выходит на полные обороты. Когда он разгоняется до номинальных оборотов, пусковые токи не такие большие.

Недостатком схемы является возникновение короткого замыкания при одновременном включении двух автоматов. Этого можно избежать, применив вместо них рубильник. Для организации реверса нужен еще один блок управления. Кроме того, по схеме "треугольник" электродвигатель больше нагревается и жестко работает.

Частотное регулирование скорости вращения

Вал электродвигателя вращается магнитным полем статора. Скорость зависит от частоты питающего напряжения. Электропривод будет работать эффективней, если дополнительно менять напряжение.

В состав устройства плавного пуска асинхронных двигателей может входить частотный преобразователь.

Первой ступенью устройства является выпрямитель, на который подается напряжение трехфазной или однофазной сети. Он собирается на диодах или тиристорах и предназначен для формирования пульсирующего напряжения постоянного тока.

В промежуточной цепи пульсации сглаживаются.

В инверторе выходной сигнал преобразуется в переменный заданной частоты и амплитуды. Он работает по принципу изменения амплитуды или ширины импульсов.

Все три элемента получают сигналы от электронной схемы управления.

Принцип действия УПП

Увеличение пускового тока в 6-8 раз и вращающего момента требуют применения УПП для выполнения следующих действий при запуске или торможении двигателя :

  • постепенное увеличение нагрузки;
  • снижение просадки напряжения;
  • управление запуском и торможением в определенные моменты времени;
  • снижение помех;
  • защита от скачков напряжения, при пропадании фазы и др.;
  • повышение надежности электропривода.

Устройство плавного пуска двигателя ограничивает величину напряжения, подаваемого в момент пуска. Оно регулируется путем изменения угла открытия симисторов, подключенных к обмоткам.

Пусковые токи необходимо снижать до величины, не более чем в 2-4 раза превышающей номинал. Наличие байпасного контактора предотвращает перегрев симисторов после его подключения после того, как двигатель раскрутится. Варианты включения бывают одно-, двух- и трехфазные. Каждая схема функционально отличается и имеет разную стоимость. Наиболее совершенным является трехфазное регулирование. Оно наиболее функционально.

Недостатки УПП на симисторах:

  • простые схемы применяются только с небольшими нагрузками или при холостом запуске;
  • продолжительный запуск приводит к перегреву обмоток и полупроводниковых элементов;
  • момент вращения вала снижается и двигатель может не запуститься.

Виды УПП

Наиболее распространены регуляторы без обратной связи по двум или трем фазам. Для этого предварительно устанавливается напряжение и время пуска. Недостатком является отсутствие регулирования момента по нагрузке на двигатель. Эту проблему решает устройство с обратной связью наряду с выполнением дополнительных функций снижения пускового тока, создания защиты от перекоса фаз, перегрузки и пр.

Наиболее современные УПП имеют цепи непрерывного слежения за нагрузкой. Они подходят для тяжело нагруженных приводов.

Выбор УПП

Большинство УПП - это регуляторы напряжения на симисторах, различающиеся функциями, схемами регулирования и алгоритмами изменения напряжения. В современных моделях софтстартеров применяются фазовые методы регулирования электроприводов с любыми режимами пуска. Электрические схемы могут быть с тиристорными модулями на разное количество фаз.

Одно из самых простых - это устройство плавного пуска с однофазным регулированием через один симистор, позволяющее только смягчать механические ударные нагрузки двигателей мощностью до 11 кВт.

Двухфазное регулирование также смягчает механические удары, но не ограничивает токовые нагрузки. Допустимая мощность двигателя составляет 250 кВт. Оба способа применяются из расчета приемлемых цен и особенностей конкретных механизмов.

Многофункциональное устройство плавного пуска с трехфазным регулированием имеет самые лучшие технические характеристики. Здесь обеспечивается возможность динамического торможения и оптимизации его работы. В качестве недостатков можно отметить только большие цены и габариты.

В качестве примера можно взять устройство плавного пуска Altistart. Можно подобрать модели для запуска асинхронных двигателей, мощность которых достигает 400 кВт.

Устройство выбирается по номинальной мощности и режиму работы (нормальный или тяжелый).

Выбор УПП

Основными параметрами, по которым выбираются устройства плавного пуска, являются:

  • предельная сила тока УПП и двигателя должны быть правильно подобраны и соответствовать друг другу;
  • параметр количества запусков в час задается как характеристика софтстартера и не должен превышаться при эксплуатации двигателя;
  • заданное напряжение устройства не должно быть меньше сетевого.

УПП для насосов

Устройство плавного пуска для насоса предназначено преимущественно для снижения гидравлических ударов в трубопроводах. Для работы с приводами насосов подходят УПП Advanced Control. Устройства практически полностью устраняют гидроудары при заполненных трубопроводах, позволяя увеличить ресурс оборудования.

Плавный запуск электроинструментов

Для электроинструмента характерны высокие динамические нагрузки и большие обороты. Его наглядным представителем является угловая шлифовальная машинка (УШМ). На рабочий диск действуют значительные силы инерции в начале вращения редуктора. Большие перегрузки по току возникают не только при запуске, но и при каждой подаче инструмента.

Устройство плавного пуска электроинструмента применяется только для дорогих моделей. Экономичным решением является его установка своими руками. Это может быть готовый блок, который помещается внутри корпуса инструмента. Но многие пользователи собирают простую схему самостоятельно и подключают ее в разрыв питающего кабеля.

При замыкании цепи двигателя, на регулятор фазы КР1182ПМ1 подается напряжение и начинает заряжаться конденсатор С2. За счет этого симистор VS1 включается с задержкой, которая постепенно уменьшается. Ток двигателя плавно нарастает и обороты набираются постепенно. Двигатель разгоняется примерно за 2 сек. Мощность, отдаваемая в нагрузку, достигает 2,2 кВт.

Устройство можно применять для любого электроинструмента.

Заключение

Выбирая устройство плавного пуска, необходимо анализировать требования к механизму и характеристикам электродвигателя. Характеристики производителя находятся в прилагаемой к оборудованию документации. Ошибки при выборе быть не должно, поскольку нарушится функционирование устройства. Важен учет диапазона скоростей, чтобы выбрать лучшее сочетание преобразователя и двигателя.

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

КАФЕДРА СИСТЕМ АВТОМАТИЧНОГО УПРАВЛІННЯ І

ЕЛЕКТРОПРИВОДА

КУРСОВИЙ ПРОЕКТ

З ДИСЦИПЛІНИ: “ТЕОРІЯ ЕЛЕКТРОПРИВОДА”

НА ТЕМУ: “ПЛАВНИЙ ПУСК ДВИГУНА ПОСТІЙНОГО СТРУМУ

ПО СИСТЕМІ “ ШИРОТНО ІМПУЛЬСНИЙ ПЕРЕТВОРЮВАЧ – ДВИГУН

ПОСТІЙНОГО СТРУМУ“

Розробив:

Керівник:

КАЛЕНДАРНИЙ ПЛАН

Назва етапів курсового проекту Строк виконання етапів проекту
1 Аналіз технічного завдання і вибір широтно імпульсного перетворювача 15 жовтня 2002
2 Аналіз функціональної схеми та розробка технічної документації 30 жовтня 2002
3 Розробка системи управління транзистором та виготовлення печатної плати 20 листопада 2002
4 Розрахунок схеми заміщення 30 листопада 2002
5 Побудова статичних, механічних та швидкісних характеристик 5грудня 2002
6 Вибір силових елементів та розрахунок параметрів схеми 10 грудня 2002
7 Розрахунок енергетичних характеристик 25 грудня 2002
8 Математичне моделювання 10 січня 2003
9 Оформлення проекту 27 січня 2003

Студент _____________

Керівник _____________

“_______”______________________200 р

ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ

ШИП - широтно імпульсний перетворювач

ДПТ - двигун постійного струму

АД - асинхронний двигун

ИП - імпульсний перетворювач

ЭОМ – електронно-обчислювальна машина

ИДК - вимірювально діагностичний комплекс

ШД - шаговий двигун

ЧРП - частотно регульований привод

КПД - коефіцієнт корисної дії

ГПИ - генератор пилоподібних коливань

ЗАВДАННЯ

на курсовий проект студента

____________________________________

1. Тема роботи Плавний пуск двигуна постійного струму по системі “ Широтно імпульсний перетворювач – двигун постійного струму “. Основна частина – розробка системи плавного пуска двигуна постійного струму на базі мікроконтроллера PIC 16F 877

2. Строк здачі студентом закінченої роботи 28.01.03

3. Вихідні дані до роботи технічні характеристики двигуна, технічні характеристики існуючих систем широтно імпульсних модуляторів

4. Зміст розрахунково – пояснювальної записки аналіз існуючих імпульсних перетворювачів і вибір найбільш оптимальної, розробка технічної документації на стенд, розробка принципової та функціональної схем, вибір силових елементів.

5. Дата видачі завдання жовтня 200 р

КАЛЕНДАРНИЙ ПЛАН.. 2

ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ. 3

ЗАВДАННЯ.. 4

Введение. 6

1. Преимущества и недостатки системы ШИП – ДПТ. 8

1.1 Импульсные преобразователи постоянного напряжения (общие сведения) 8

1.2 Анализ существующих импульсных преобразователей. 8

2. Функциональная схема лабораторного стенда. 11

3. Разработка технической документации на лабораторный стенд системы ШИП – ДПТ. 13

3.1 Общий вид лабораторного стенда. 13

3.2 Принципиальная схема стенда после доработки. 15

3.3 Перечень функциональных возможностей лабораторного стенда. 16

3.4 Система управления на базе микроконтроллера PIC 16F 877. 17

4. Расчет схемы замещения. 24

5. Статические характеристики системы ШИП – ДПТ. 26

6. Выбор силовых элементов. 31

6.1 Выбор силового трансформатора. 31

6.2 Выбор силового транзистора. 32

6.3 Выбор обратного диода. 33

7. Расчет преобразователя. 35

8. Расчет энергетических характеристик. 42

9. Математическая модель системы ШИП – ДПТ. 45

Введение

Сохранение электрической энергии становится важной частью общей тенденции по защите окружающей среды. Электродвигатели, приводящие в действие системы в быту и на производстве, потребляют значительную часть производимой энергии. Большинство этих двигателей работают в нерегулируемом режиме и, следовательно, с низкой эффективностью. Недавний прогресс в полупроводниковой индустрии, особенно в силовой электронике и микроконтроллерах, сделали приводы с регулированием скорости более практичными и значительно менее дорогими. Сегодня приводы с регулировкой скорости требуются не только в высокопрофессиональных и мощных промышленных применениях, таких как обрабатывающие машины или подъемные краны, но все больше и больше в бытовой технике, например, в стиральных машинах, компрессорах, небольших насосах, кондиционерах воздуха и т.п. Эти приводы, управляемые по развитым алгоритмам с помощью микроконтроллеров, имеют ряд преимуществ:

увеличение энергетической эффективности системы (регулирование скорости снижает потери мощности в двигателях)

усовершенствование функционирования (цифровое управление может добавить такие свойства, как интеллектуальные замкнутые контуры, изменение частотных свойств, диапазона контролируемых неисправностей и способность к взаимодействию с другими системами)

упрощение электромеханического преобразования энергии (регулируемые приводы позволяют устранить необходимость в трансмиссиях, коробках передач, редукторах) простота обновления программного обеспечения системы на базе микроконтроллеров с флэш-памятью могут быстро изменять при необходимости увеличивается. Основным условием их использования является сохранение общей стоимости системы в обоснованных границах. Для ряда систем, особенно в быту, общая стоимость должна быть эквивалентна стоимости нерегулируемого варианта.

1. Преимущества и недостатки системы ШИП – ДПТ

1.1 Импульсные преобразователи постоянного напряжения (общие сведения)

Изменение величины напряжения потребителя посредством импульсных преобразователей (ИП) называют импульсным регулированием.

С помощью импульсного преобразователя источник напряжения периодически подключается к нагрузке. В результате на выходе преобразователя формируются импульсы напряжения. Регулирование напряжения на нагрузке можно осуществить тремя способами:

изменением интервала проводимости ключа при постоянной частоте переключения (широтно-импульсный)

изменением частоты переключения при постоянном интервале проводимости ключа (частотно-импульсный)

изменением частоты переключения и интервала проводимости ключа (время-импульсный)

При этом регулируется относительное время проводимости ключа, что приводит к плавному изменению среднего значения напряжения на нагрузке (в нашем случае на якоре ДПТ)

1.2 Анализ существующих импульсных преобразователей

Схема ШИП с параллельной емкостной коммутацией изображена на рисунке 1.1.


Рисунок 1.1. ШИП с параллельной емкостной коммутацией

Недостатком ШИП с параллельной емкостной коммутацией является то, что в процессе переключения напряжение на нагрузке достигает удвоенных значений питающего напряжения. Также недостатком является сложность настройки резонансного контура с конденсатором ‘C’ и дросселем ‘Др’.

На рисунке 1.2 изображена схема ШИП с дополнительным коммутирующим тиристором и линейным дросселем в узле коммутации.


Недостатком схемы является связь контура коммутации с цепью нагрузки. Эта особенность затрудняет коммутацию в режимах малых нагрузок и делает невозможной работу устройства на холостом ходу.

На рисунке 1.3 изображена схема нереверсивного ИП с последовательным ключевым элементом.



Рисунок 1.3. Нереверсивный ШИП

Данная схема является наиболее приемлемой для нашей цели, так как она отличается малым количеством элементов, простотой конструкции, достаточно высоким быстродействием и надежностью.

Принцип действия:

Когда транзистор VT отперт от источника питания потребляется энергия. При запирании транзистора VT ток нагрузки за счет Э.Д.С. самоиндукции сохраняет свое прежнее направление, замыкаясь через обратный диод VD. В связи с тем что источник питания, как правило, обладает индуктивностью, для защиты транзистора от перенапряжений, возникающих при разрывах цепи питания, на входе ИП ставится фильтр нижних частот, выходным звеном которого является конденсатор Свх.

2. Функциональная схема лабораторного стенда

Функциональная схема уже существующего лабораторного стенда представлена на рисунке 2.1


Рисунок 2.1 Функциональная схема стенда

На функциональной схеме изображены основные элементы стенда и функциональные взаимодействия между ними.

Основным элементом стенда есть преобразователь частоты ACS 300. Через него питание подается на асинхронный двигатель с короткозамкнутым ротором М1 – АОЛ2-21-4. Стенд предусматривает возможность работы асинхронного режим динамического торможения. Также предусмотрена возможность контроля скорости асинхронного двигателя, токи и напряжения как АД так и ДПТ.

В силовой цепи АД расположены трехфазный датчик тока и трехфазный датчик напряжения, данные с которых подаются через блок связи на ЭОМ. Блок связи и ЭОМ образуют измерительно-диагностический комплекс (ИДК). На ИДК подаются сигналы и с других датчиков и контролирующих элементов

3. Разработка технической документации на лабораторный стенд системы ШИП – ДПТ

3.1 Общий вид лабораторного стенда

Внешний вид проектируемого стенда показан на рисунке 3.1

1. Ручка нагрузочного резистора

2. Кнопка SB2 “Стоп АД”

До этого я никогда не делал устройство плавного пуска. Чисто теоретически, я представлял, как реализовать эту функцию на симисторе, правда такой вариант не без недостатков - потеря мощности и необходим теплоотвод.
Блуждая по пыльным китайским лабазам, в тщетных попытках в залежах контрафакта и неликвида отыскать что-нибудь стоящее, но не дорогое, наткнулся я на этот товар.

Бла-бла-бла

Покупка не была ради покупки, а осознанная необходимость. Задумал я написать обзор в стол поставить ручной фрезер. А он у меня без плавного пуска, стартует резко, саморазрушаясь и руша окружающее его. Мягкий старт и плавный пуск разве не одно и тоже? Сомнения конечно были, хотя я с терморезисторами дел не имел, видел их только в блоках питания компьютеров, всегда думал, что они реагируют на «скачки и всплески», т. е. быстро, но «the voltage to rise slowly» и «after about five seconds» зародили червь сомнения. Да еще и “or other high starting current machine applications.»
Поскольку отсутствие знаний делает нас расточительными и решительными, я заказал этот девайс и не на секунду об этом не пожалел.


Вот что пишет про него продавец:
Мягкий старт блока питания для усилителя класса А, обещая: 4 кВт мощности и 40 А через контакты реле при напряжении AC от 150 В до 280 В. Размер 67 мм x 61 мм x 30 мм, продавец называет его ультра-маленьким – а-ха-ха. Как бы мой фрезер по току в рамки попадает, даже если разделить китайские амперы на два, но в таком размере внутрь корпуса инструмента плата невпихуема.
И, да, это конструктор. Нужно паять!


Товар пришел в таком виде, плюс еще для лучшей сохранности был завернут в обрывок газеты на китайском/корейском/японском языке, который пропал, опрос домочадцев и многочисленной челяди ясности не внес, кому и для каких надобностей этот клочек понадобился, поэтому фото газеты нет, сверху был еще пакетик без всякой пупырки.
Паять легко - все нарисовано и подписано.


Плата - может кому пригодится


Спаял:


Обратная сторона


Набросал принципиальную схему


Как работает: при включении у R2 сопротивление большое, напряжение на нагрузке меньше чем 220 V, терморезистор нагревается, сопротивление его стремится к нулю, а напряжение на нагрузке к 220 V. Соответственно двигатель набирает обороты.


Одновременно с этим выпрямленное и стабилизированное VD2 напряжение (24 V, хотя по первому попавшемуся даташиту должно быть 25, но вольт туда, вольт сюда…) запитывает схему включения реле. Через R1 заряжается конденсатор C3, емкость которого определяет время срабатывания реле. Через 5 секунд открывается транзистор VT2, контакты реле шунтируют терморезистор R2 и двигатель работает на максимальной мощности.
Гладко было на бумаге… В реальности подключение данного устройства никакого плавного пуска двигателю не обеспечивает, терморезистор нагревается мгновенно, мотор сразу молотит почем зря, только реле издевательски щелкает через 5 секунд. Пробовал двигатель на 150 Вт - эффект тот же.


Бла-бпа-бла

Ругал на чем свет стоит китайского купца. Домашние животные, дошколята и приживалки, наблюдавшие за экспериментом, разбежались и попрятались по темным углам, теща на всякий случай достала из рукава пестик. А вот не надо вводить в заблуждение доверчивых русских покупателей. Допил одонки из бутылки, оставшейся с позапрошлой коронации, закусил холодной кулебякой, успокоился… Достал из помойного ведра плату, обобрал с нее подсолнечную шелуху.


«Если работа проваливается, то всякая попытка ее спасти ухудшит дело», - утверждает Эдвард Мерфи. «Слишком много людей ломаются, даже не подозревая о том, насколько близко к успеху они были в тот момент, когда упали духом,» - спорит с ним Томас Эдисон. Эти две цитаты никакого отношения к делу не имеют, приведены здесь, чтобы показать, что автор отчета не просто охотник за халявой и тупой потребитель китайских товаров, а человек начитанный, приятный собеседник и интеллектуал. Фигли. Но к делу.
Завалялись у меня в чулане на антресолях в шляпной коробке пара микросхем К1182ПМ1Р.

Выжимка из даташита:

Непосредственное применение ИС - для плавного включения и выключения электрических ламп накаливания или регулировки их яркости свечения. Так же успешно ИС может применяться для регулировки скорости вращения электродвигателей мощностью до 150 Вт (например, вентиляторами) и для управления более мощными силовыми приборами (тиристорами) .


На одной из них я и собрал устройство плавного пуска, которое не лишено недостатков, но работает, как надо.


С1 задает время плавного включения, R1 величину напряжения на нагрузке. У меня максимальное напряжение при 120 ом получилось. При С1 100 мкФ время разгона около 2-х секунд. Поменяв R1 на переменный можно регулировать обороты коллекторного двигателя, без обратной связи естественно (хотя так реализовано на подавляющем большинстве продаваемого электроинструмента). Симистор VS1 любой нашедшейся, подходящий по мощности. У меня завалялся BTA16 600B.


Обратная сторона


Все работает.


Теперь осталось скрестить два устройства, которые взаимно дополняют друг друга, сводя на нет недостатки присущие каждому в отдельности.

Бла-бла-бла




В принципе задача несложная для живого, пытливого ума. Выпаял термистор, и выбросил его спрятал до лучших времен, на его место впаял два проводка идущие от катода и анода симистора второй платы. Уменьшил емкость С3 на первой плате до 22 мкФ, что бы реле замыкало катод и анод симистора не через 5 секунд, а примерно через две.



При температуре воздуха 30 град. С температура диодного моста 50 град., стабилитрона 65 град., реле 40 град.
Все - переделка закончена.

Бла-бла-бла

Другой бы, менее уверенный в своих силах, обрадовался бы результату, закатил бы пир горой, устроил бы праздник с медведями и цыганами. Я же просто открыл бутылочку шампанского, заставил девок плясать хороводы во дворе и отменил субботнюю порку.


Осталось только оформить это все в корпус, уже было хотел, но что-то дома нет пластинки металлической, с помощью которой корпус будет крепиться к столу. Выглядеть будет все примерно так:


Мои выводы неоднозначны, оценки предвзяты, рекомендации сомнительны.
Все устал, еще эти коты все время в кадр лезли – замучился гонять. Планирую купить +21 Добавить в избранное Обзор понравился +92 +163

Осложнен возникающими при пуске большими значениями пусковых токов и моментов. Но в отличие от асинхронных двигателей, в ДПТ пусковые токи превышают номинальные в 10-40 раз. Такое громадное превышение может привести к выводу двигателя из строя, повреждению связанных с двигателем механизмов и большим просадкам напряжения в сети, что может сказаться на других потребителях. Поэтому пусковые токи стараются ограничить до значений (1,5…2) Iн.

Для маломощных двигателей (до 1 кВт) при условии отсутствия нагрузки на валу, можно применить прямой пуск, то есть непосредственно от сети. Это связано с тем что масса движущихся частей двигателя не велика, а сопротивление обмотки относительно большое. При прямом пуске таких двигателей пусковые токи не превышают значений (3…5) Iн, что для таких двигателей не критично.

Когда двигатель работает при постоянном напряжении и сопротивлении обмотки якоря, ток в якоре можно найти с помощью формулы

В этой формуле U – напряжение питающей сети, Епр – противоЭДС, ∑r – сопротивление обмоток якоря. ПротивоЭДС Епр возникает при вращении якоря в магнитном поле статора, при этом в двигателе, она направлена против якоря. Но когда якорь не движется, Епр не возникает, а значит, выражение для тока примет следующий вид

Это и есть выражение для определения пускового тока.

Глядя на формулу можно прийти к выводу, что снижения пускового тока возможно либо снижением напряжения, либо увеличением сопротивления якорной обмотки.

Пуск двигателя снижением напряжения применяется, если питание двигателя организовано от независимого источника энергии, который можно регулировать. На практике такой пуск используется для двигателей средней и большой мощности.

Мы рассмотрим более подробно способ пуска двигателя постоянного тока с помощью введения дополнительного сопротивления в цепь якоря. При этом пусковой ток будет равен

Таким образом, можно добиться величины пускового тока, в нужном диапазоне, безопасном для двигателя. Добавочное сопротивление может быть как в виде реостата, так и в виде нескольких резисторов. Это нужно для того, чтобы в процессе запуска двигателя, менять сопротивление в якорной цепи.

Следует знать, что с дополнительным сопротивлением в обмотке якоря двигатель работает не на естественной, а на более мягкой искусственной характеристике, которая не подходит для нормальной работы двигателя.

Пуск двигателя осуществляется в несколько ступеней. После некоторого разгона двигателя, Епр ограничит ток, а следовательно пусковой момент, чтобы поддержать его на прежнем уровне, нужно уменьшить сопротивление, то есть переключить реостат или шунтировать резистор.

Допустим, что ступени у нас четыре, тогда механическая характеристика будет выглядеть следующим образом

На первой ступени, когда добавочное сопротивление максимально и равно R1+R2+R3 двигатель начинает свой разгон. После достижения определенной точки, которую получают с помощью расчетных данных, сопротивление R3 шунтируют. При этом двигатель переходит на новую характеристику, и разгоняется на ней все до той же точки. Таким образом, двигатель выходит на естественную характеристику, не пострадав от действия больших пусковых токов и моментов.



Рассказать друзьям