Печеночные клетки называются. Гепатоциты это

💖 Нравится? Поделись с друзьями ссылкой

Важнейшее значение печени в обмене веществ в первую очередь определяется тем, что она является как бы большой промежуточной станцией между портальным и общим кругом кровообращения. Более 70% крови в печень человека поступает через воротную вену, остальная часть крови попадает в печень через печеночную артерию. Кровь воротной вены омывает всасывающую поверхность кишечника, и в результате (кроме липидов, транспорт которых в основном осуществляется через лимфатическую систему) большая часть веществ, всасывающихся в кишечнике, проходит через печень (рис. 120).

Таким образом, печень прежде всего функционирует как первичный регулятор содержания в крови веществ, поступающих в организм с пищей. Доказательством справедливости данного положения является следующий общеизвестный факт: несмотря на то что всасывание питательных веществ из кишечника в кровь происходит прерывисто, непостоянно, в связи с чем в портальном круге кровообращения может наблюдаться временами более высокая или более низкая концентрация, например, таких веществ, как глюкоза, аминокислоты и др., в общем же круге кровообращения изменения в концентрации указанных соединений незначительны. Все это подтверждает важную роль печени в поддержании постоянства внутренней среды организма. Печень выполняет также крайне важную экскреторную функцию, теснейшим образом связанную с ее детоксикационной функцией.

В целом же без преувеличения можно сказать, что в организме, пожалуй, нет путей обмена веществ, которые прямо или косвенно не контролировались бы печенью, в связи с чем многие важные функции печени уже обсуждены в соответствующих главах учебника. Поэтому в данной главе будет сделана попытка дать обобщающие представления о роли печени в обмене веществ целостного организма.

СТРУКТУРА И ХИМИЧЕСКИЙ СОСТАВ ПЕЧЕНИ

У взрослого здорового человека масса печени составляет в среднем 1,5 кг. Ряд исследователей считают, что эту величину следует рассматривать как нижнюю границу нормальной при диапазоне колебаний в пределах 20-60 г на 1 кг массы тела.

Основой морфологического строения печени является печеночная долька, диаметр которой равен 0,5-2,0 мм. В печени приблизительно 500 000 этих долек. В свою очередь печеночная долька содержит сотни тысяч печеночных клеток - гепатоцитов; диаметр их 14-20 мкм.

Гепатоцит построен чрезвычайно сложно. Сложность начинается с мембраны, которая имеет микроворсинки, увеличивающие ее контакт с так называемыми синусоидами, содержащими портальную (венозную) и артериальную кровь.

Как уже отмечалось, печень получает кровь из воротной вены и из печеночной артерии, а отводится кровь через печеночные вены. Концевые ветви воротной вены (vv. interlobularis), расширяясь, образуют синусоиды (рис. 121), в которых скорость кровообращения сравнительно низка (из этих синусоидов кровь затем через v. centralis попадает в печеночные вены). Стенка синусоидов состоит из синцития эндотелиальных клеток (так называемых купферовских звездчатых клеток). Купферовские клетки по своему количеству являются наиболее значительной составной частью ретикулоэндотелиальной системы и составляют приблизительно 30% всех клеточных элементов печени человека. Печеночная артерия разветвляется в интралобулярные артериолы, которые или на периферии, или в центре печеночных долек вливаются в синусоиды. Поэтому каждый синусоид содержит как портальную, так и артериальную кровь. Между эндотелием синусоидов и печеночными клетками в норме не существует преформированной щели. При гипоксии повышается проницаемость эндотелия синусоидов и между синусоидами и печеночными клетками возникает содержащее белок "пространство Диссе" (см. рис. 121). Желчные капилляры расположены между печеночными клетками, образуя сеть густых анастомозов. Стабильность печеночной структуры обеспечивается также соединительнотканным волокнистым остовом. При некоторых патологических процессах (циррозы) относительное содержание в печени соединительнотканных элементов (в основном коллагена) увеличивается, что может привести к сдавлению кровеносных сосудов, а также к нарушению оттока желчи. Особенно при циррозах страдает портальное кровообращение.

В табл. 42 представлены некоторые данные о химическом составе печени в норме.

Как видно из табл. 42, около 70% массы печени составляет вода. Однако следует помнить, что масса печени и ее состав подвержены значительным колебаниям как в норме, так и особенно при патологических состояниях. Например, при отеках количество воды может составлять до 80% массы печени, а при избыточном отложении жира количество воды в печени может снизиться до 55%. Более половины сухого остатка печени приходится на долю белков, причем примерно 90% из них - на долю глобулинов. Печень также богата различными ферментами. Около 5% массы печени составляют липиды: нейтральные жиры, фосфолипиды, холестерин и др. При выраженном ожирении содержание липидов может достигать 20% от массы органа, а при жировом перерождении печени количество липидов в этом органе может составлять 50% от сырой массы.

В печени может содержаться 150-200 г гликогена. Как правило, при тяжелых паренхиматозных поражениях печени количество гликогена в ней уменьшается. Напротив, при некоторых гликогенозах содержание гликогена может достигать 20% и более от массы печени.

Разнообразен и минеральный состав печени. Количество железа, меди, марганца, никеля и некоторых других элементов превышает их содержание в других органах и тканях. Ниже будет рассмотрена роль печени в разных видах обмена веществ.

РОЛЬ ПЕЧЕНИ В УГЛЕВОДНОМ ОБМЕНЕ

Основная роль печени в углеводном обмене заключается прежде всего в обеспечении постоянства концентрации глюкозы в крови. Это достигается регуляцией соотношения между синтезом и распадом гликогена, депонируемого в печени.

Синтез гликогена в печени и его регуляция в основном аналогичны тем процессам, которые протекают в других органах и тканях, в частности в мышечной ткани. Синтез гликогена из глюкозы обеспечивает в норме временный резерв углеводов, необходимый для поддержания концентрации глюкозы в крови в тех случаях, когда ее содержание значительно уменьшается (например, у человека это происходит при недостаточном поступлении углеводов с пищей или в период ночного "голодания").

Говоря об утилизации глюкозы печенью, необходимо подчеркнуть важную роль фермента глюкокиназы в этом процессе. Глюкокиназа, подобно гексокиназе, катализирует фосфорилирование глюкозы с образованием глюкозо-6-фосфата (см. Синтез гликогена). При этом активность глюкокиназы в печени почти в 10 раз превышает активность гексокиназы. Важное различие между этими двумя ферментами заключается в том, что глюкокиназа в противоположность гексокиназе имеет высокое значение K m для глюкозы и не ингибируется глюкозо-6-фосфатом.

После приема пищи содержание глюкозы в воротной вене резко возрастает; в тех же пределах увеличивается и внутрипеченочная концентрация сахара (При всасывании сахара из кишечника содержание глюкозы в крови воротной вены может повышаться до 20 ммоль/л, а в периферической крови ее содержится не более 5 ммоль/л (90 мг/100 мл).) . Повышение концентрации глюкозы в печени вызывает существенное увеличение активности глюкокиназы и автоматически увеличивает поглощение глюкозы печенью (образовавшийся глюкозо-6-фосфат либо затрачивается на синтез гликогена, либо расщепляется).

Считают, что основная роль расщепления глюкозы в печени сводится прежде всего к запасанию метаболитов-предшественников, необходимых для биосинтеза жирных кислот и глицерина, и в меньшей степени к окислению до СО 2 и Н 2 0. Синтезированные в печени триглицериды в норме выделяются в кровь в составе липопротеидов и транспортируются в жировую ткань для более "постоянного" хранения.

С помощью пентозофосфатного пути в печени образуется НАДФН 2 , используемый для восстановительных реакций в процессах синтеза жирных кислот, холестерина и других стероидов. Кроме того, в ходе пентозофосфатного пути генерируются пентозофосфаты, необходимые для синтеза нуклеиновых кислот.

Наряду с утилизацией глюкозы в печени, естественно, происходит и ее образование. Непосредственным источником глюкозы в печени служит гликоген. Распад гликогена в печени в основном происходит фосфоролитическим путем. В регуляции скорости гликогенолиза в печени большое значение имеет система циклических нуклеотидов (см. Распад гликогена и освобождение глюкозы). Кроме того, глюкоза в печени образуется также в процессе глюконеогенеза. Глюконеогенез в организме в основном протекает в печени и корковом веществе почек.

Основными субстратами глюконеогенеза служат лактат, глицерин и аминокислоты. Принято считать, что почти все аминокислоты, за исключением лейцина, могут пополнять пул предшественников глюконеогенеза.

При оценке углеводной функции печени необходимо иметь в виду, что соотношение между процессами утилизации и образования глюкозы регулируется прежде всего нейрогуморальным путем при участии желез внутренней секреции. Как видно из приведенных данных, центральную роль в превращениях углеводов и саморегуляции углеводного обмена в печени играет глюкозо-6-фосфат. Он резко тормозит фосфоролитическое расщепление гликогена, активирует ферментативный перенос глюкозы с уридиндифосфоглюкозы на молекулу синтезирующегося гликогена, является субстратом для дальнейших гликолитических превращений, а также окисления глюкозы, в том числе по пентозофосфатному пути. Наконец, расщепление глюкозо-6-фосфата фосфатазой обеспечивает поступление в кровь свободной глюкозы, доставляемой током крови во все органы и ткани:

Рассматривая промежуточный обмен углеводов в печени, необходимо также остановиться на превращениях фруктозы и галактозы. Поступающая в печень фруктоза может фосфорилироваться в положении 6 во фруктозо-6-фосфат под действием гексокиназы, обладающей относительной специфичностью и катализирующей фосфорилирование, кроме глюкозы и фруктозы, еще и маннозы. Однако в печени существует и другой путь: фруктоза способна фосфорилироваться при участии и более специфичного фермента - кетогексокиназы. В результате образуется фруктозо-1-фосфат. Эта реакция не блокируется глюкозой. Далее фруктозо-1-фосфат под действием специфической кетозо-1-фосфатальдолазы расщепляется на две триозы: диоксиацетонфосфат и глицериновый альдегид (глицеральдегид). (Активность кетозо-1-фосфатальдолазы в сыворотке (плазме) крови резко увеличивается при заболеваниях печени, что является важным диагностическим тестом.) Под влиянием соответствующей киназы (триозокиназы) и при участии АТФ глицериновый альдегид подвергается фосфорилированию до 3-фосфоглицеринового альдегида. Образовавшийся 3-фосфоглицериновый альдегид (в последний легко переходит и диоксиацетонфосфат) подвергается обычным превращениям, в том числе с образованием в качестве промежуточного продукта пировиноградной кислоты.

Что же касается галактозы, то в печени она сначала фосфорилируется при участии АТФ и фермента галактокиназы с образованием галактозо-1-фосфата. Далее в печени имеются два пути метаболизма галактозо-1-фосфата с образованием УДФ-галактозы. Первый путь предусматривает участие фермента гексозо-1-фосфат-уридилилтрансферазы, второй - связан с ферментом галактозо- 1-фосфат-уридилилтрансферазой.

В норме в печени новорожденных гексозо-1-фосфат-уридилилтрансфераза содержится в больших количествах, а галактозо-1-фосфат-уридилилтрансфераза - в следовых. Наследственная утрата первого фермента приводит к галактоземии - заболеванию, для которого характерны умственная отсталость и катаракта хрусталика. В этом случае печень новорожденных теряет способность метаболизировать D-галактозу, входящую в состав лактозы молока.

РОЛЬ ПЕЧЕНИ В ОБМЕНЕ ЛИПИДОВ

Ферментативные системы печени способны катализировать все или подавляющее большинство реакций метаболизма липидов. Совокупность этих реакций лежит в основе таких процессов, как синтез высших жирных кислот, триглицеридов, фосфолипидов, холестерина и его эфиров, а также липолиз триглицеридов, окисление жирных кислот, образование ацетоновых (кетоновых) тел и т. д.

Напомним, что ферментативные реакции синтеза триглицеридов в печени и жировой ткани сходны. А именно, КоА-производные жирной кислоты с длинной цепью взаимодействуют с глицерол-3-фосфатом с образованием фосфатидной кислоты, которая затем гидролизуется до диглицерида.

Путем присоединения к образовавшемуся диглицериду еще одной молекулы КоА-производного жирной кислоты образуется триглицерид. Синтезированные в печени триглицериды либо остаются в печени, либо секретируются в кровь в форме липопротеидов. Секреция происходит с известной задержкой (у человека - 1-3 ч). Задержка секреции, вероятно, соответствует времени, необходимому для образования липопротеидов.

Как уже отмечалось, основным местом образования плазменных пре-β-липопротеидов (липопротеидов очень низкой плотности - ЛПОНП) и α-липопротеидов (липопротеидов высокой плотности - ЛПВП) является печень. К сожалению, пока нет точных данных о последовательности сборки липопротеидных частиц в гепатоцитах, не говоря уже о механизмах этого процесса.

У человека основная масса β-липопротеидов (липопротеидов низкой плотности - ЛПНП) образуется в плазме крови из пре-β-липопротеидов (ЛПОНП) при действии липопротеидлипазы. В ходе этого процесса образуются сначала промежуточные короткоживущие липопротеиды (ПрЛП). Через стадию образования промежуточных липопротеидов формируются частицы, обедненные триглицеридами и обогащенные холестерином, т. е. образуются β-липопротеиды (рис. 122).

При высоком содержании жирных кислот в плазме их поглощение печенью возрастает, усиливается синтез триглицеридов, а также окисление жирных кислот, что может привести к повышенному образованию кетоновых тел.

Следует подчеркнуть, что кетоновые тела образуются в печени в ходе так называемого β-гидрокси-β-метилглутарил-КоА пути. Прежние представления о том, что кетоновые тела являются промежуточными продуктами окисления жирных кислот в печени, оказались ошибочными [Ньюсхолм Э., Старт К., 1977]. Установлено, что β-гидроксибутирил-КоА, образующийся в печени при β-окислении жирных кислот, имеет L-конфигурацию, в то время как β-гидроксибутират (кетоновое тело), обнаруживаемый в крови, представляет D-изомер (именно этот изомер синтезируется в печени в результате расщепления β-гидрокси-β-метилглутарил-КоА). Из печени кетоновые тела током крови доставляются в ткани и органы (мышцы, почки, мозг и др.), где они быстро окисляются при участии соответствующих ферментов. В самой же ткани печени кетоновые тела не окисляются, т. е. в этом плане по сравнению с другими тканями печень является исключением.

В печени происходит как интенсивный распад фосфолипидов, так и их синтез. Помимо глицерина и жирных кислот, которые входят в состав нейтральных жиров, для синтеза фосфолипидов необходимы неорганические фосфаты и азотистые основания, в частности холин для синтеза фосфатидилхолина. Неорганические фосфаты в печени имеются в достаточном количестве. Другое дело - холин. При недостаточном образовании или недостаточном поступлении его в печень синтез фосфолипидов из компонентов нейтрального жира становится либо невозможным либо резко снижается, и нейтральный жир отлагается в печени. В этом случае говорят о жировой инфильтрации печени, которая может затем перейти в ее жировую дистрофию. Иными словами, синтез фосфолипидов лимитируется количеством азотистых оснований, т. е. для синтеза фосфатидов необходимы либо холин, либо соединения, которые могут являться донорами метальных групп и участвовать в образовании холина (например, метионин). Последние соединения получили название липотропных веществ. Отсюда становится ясным, почему при жировой инфильтрации печени весьма полезен творог, содержащий белок казеин, в составе которого имеется большое количество остатков аминокислоты метионина.

Перейдем к рассмотрению роли печени в обмене стероидов, в частности холестерина. Часть холестерина поступает в организм с пищей, но значительно большее количество его синтезируется в печени из ацетил-КоА. Биосинтез холестерина в печени подавляется экзогенным холестерином, т. е. получаемым с пищей.

Таким образом, биосинтез холестерина в печени регулируется по принципу отрицательной обратной связи. Чем больше холестерина поступает с пищей, тем меньше его синтезируется в печени и наоборот. Принято считать, что действие экзогенного холестерина на биосинтез его в печени связано с торможением β-гидрокси-β-метилглутарил-КоА-редуктазной реакции:

Часть синтезированного в печени холестерина выделяется из организма совместно с желчью, другая часть превращается в желчные кислоты. Часть холестерина используется в других органах для синтеза стероидных гормонов и других соединений.

В печени холестерин может взаимодействовать с жирными кислотами (в виде ацил-КоА) с образованием эфиров холестерина.

Синтезированные в печени эфиры холестерина поступают в кровь, в которой содержится также определенное количество свободного холестерина. В норме отношение содержания эфиров холестерина и свободного холестерина равно 0,5-0,7. При паренхиматозных поражениях печени синтетическая активность ее клеток ослаблена, в связи с чем концентрация холестерина, особенно эфиров холестерина, в плазме крови снижается. В этом случае указанный коэффициент понижается до 0,3-0,4, причем прогрессирующее его снижение является неблагоприятным прогностическим признаком.

РОЛЬ ПЕЧЕНИ В БЕЛКОВОМ ОБМЕНЕ

Печень играет центральную роль в обмене белков. Она выполняет следующие основные функции: синтез специфических белков плазмы; образование мочевины и мочевой кислоты; синтез холина и креатина; переаминирование и дезаминирование аминокислот, что весьма важно для взаимных превращений аминокислот, а также для процесса глюконеогенеза и образования кетоновых тел. Все альбумины плазмы, 75-90% α-глобулинов и 50% β-глобулинов, синтезируется гепатоцитами. (Печень здорового человека может ежедневно синтезировать 13-18 г альбуминов.) Лишь γ-глобулины продуцируются не гепатоцитами, а ретикулоэндотелиальной системой, к которой относятся звездчатые ретикулоэндотелиоциты (купферовские клетки печени). В основном же γ-глобулины образуются вне печени. Печень является единственным органом, где синтезируются такие важные для организма белки, как протромбин, фибриноген, проконвертин и проакцелерин.

В связи с изложенным при заболеваниях печени определение фракционного состава белков плазмы (или сыворотки) крови нередко представляет интерес как в диагностическом, так и в прогностическом плане. Известно, что патологический процесс в гепатоцитах резко снижает их синтетические возможности; в результате содержание альбуминов в плазме крови резко падает, что может привести к снижению онкотического давления плазмы крови, развитию отеков, а затем асцита. Отмечено, что при циррозах печени, протекающих с явлениями асцита, содержание альбуминов в сыворотке крови на 20% ниже, чем при циррозах без асцита.

Нарушение синтеза ряда белковых факторов системы свертывания крови при тяжелых заболеваниях печени может приводить к геморрагическим явлениям.

При поражениях печени нарушается также процес дезаминирования аминокислот, что приводит к увеличению их концентрации в крови и моче. Так, если в норме количество аминоазота в сыворотке крови составляет примерно 2,9-4,3 ммоль/л, то при тяжелых заболеваниях печени (атрофические процессы) концентрация аминокислот в крови увеличивается до 21 ммоль/л, что приводит к аминоацидурии. Например, при острой атрофии печени содержание тирозина в суточном количестве мочи может достигать 2 г.

В организме образование мочевины в основном происходит в печенн. Синтез мочевины связан с затратой довольно значительного количества энергии (на образование 1 моль мочевины расходуется 3 моль АТФ). При заболеваниях печени, когда количество АТФ в гепатоцитах уменьшено, синтез мочевины нарушается. Показательно в этих случаях определение в сыворотке отношения азота мочевины к аминоазоту. В норме это отношение равно 2:1, а при тяжелом поражении печени оно становится 1:1.

Большая часть мочевой кислоты у человека также образуется в печени. Печень очень богата ферментом ксантиноксидазой, при участии которого гидроксипурины (гипоксантин и ксантин) превращаются в мочевую кислоту. Нельзя забывать о роли печени и в синтезе креатина. Имеется два источника, обусловливающих нахождение креатина в организме. Существует экзогенный креатин, т. е. креатин пищевых продуктов (мясо, печень и др.), и эндогенный креатин, образующийся в процессе синтеза в тканях. Синтез креатина в основном происходит в печени (в синтезе участвуют три аминокислоты: аргинин, глицин и метионин), откуда он с током крови поступает в мышечную ткань. Здесь креатин, фосфорилируясь, превращается в креатинфосфат, а уже из последнего образуется креатинин.

ДЕТОКСИКАЦИЯ РАЗЛИЧНЫХ ВЕЩЕСТВ В ПЕЧЕНИ

Чужеродные вещества в печени нередко превращаются в менее токсичные, а подчас индифферентные вещестза. По-видимому, только в этом смысле можно говорить об "обезвреживании" их в печени. Происходит это путем окисления, восстановления, метилирования, ацетилирования и конъюгации с теми или иными веществами. Необходимо заметить, что в печени осуществляют окисление, восстановление и гидролиз чужеродных соединений в основном микросомальные ферменты.

В печени широко представлены также "защитные" синтезы, например синтез мочевины, в результате которого обезвреживается весьма токсичный аммиак . В результате гнилостных процессов, протекающих в кишечнике, из тирозина образуются фенол и крезол, а из триптофана - скатол и индол. Эти вещества всасываются и с током крови поступают в печень, где механизм их обезвреживания заключается в образовании парных соединений с серной или глюкуроновой кислотой.

Обезвреживание фенола, крезола, скатола и индола в печени происходит в результате взаимодействия этих соединений не со свободными серной и глюкуроновой кислотами, а с их так называемыми активными формами: 3"-фосфоаденозин-5"-фосфосульфатом (ФАФС) и уридиндифосфоглюкуроновой кислотой (УДФГК). (Индол и скатол, прежде чем вступить во взаимодействие с ФАФС или УДФГК, окисляются в соединения, содержащие гидроксильную группу (индоксил и скатоксил). Поэтому парными соединениями будут скатоксилсерная кислота или соответственно скатоксилглюкуроновая кислота.)

Глюкуроновая кислота участвует не только в обезвреживании продуктов гниения белковых веществ, образовавшихся в кишечнике, но и в связывании ряда других токсических соединений, образующихся в процессе обмена в тканях. В частности, свободный, или непрямой, билирубин, обладающий значительной токсичностью, в печени взаимодействует с глюкуроновой кислотой, образуя моно- и диглюкурониды билирубина. Нормальным метаболитом является и гиппуровая кислота, образующаяся в печени из бензойной кислоты и глицина (В почках также может происходить синтез гиппуровой кислоты.) .

Учитывая, что синтез гиппуровой кислоты у человека протекает преимущественно в печени, в клинической практике довольно часто для выяснения антитоксической функции печени применяли пробу Квика (при нормальной функциональной способности почек). Проба заключается в нагрузке бензоатом натрия с последующим определением в моче образовавшейся гиппуровой кислоты. При паренхиматозных поражениях печени синтез гиппуровой кислоты затруднен.

В печени широко представлены процессы метилирования. Так, перед выделением с мочой амид никотиновой кислоты (витамин РР) метилируется в печени; в результате образуется N-метилникотинамид. Наряду с метилированием интенсивно протекают и процессы ацетилирования (В печени содержание кофермента ацетилирования (HS-KoA) в 20 раз превышает его концентрацию в мышечной ткани.) . В частности, в печени ацетилированию подвергаются различные сульфаниламидные препараты.

Примером обезвреживания токсических продуктов в печени путем восстановления является превращение нитробензола в парааминофенол. Многие ароматические углеводороды обезвреживаются путем окисления с образованием соответствующих карбоновых кислот.

Печень также принимает активное участие в инактивации различных гормонов. В результате попадания гормонов с током крови в печень активность их в большинстве случаев ослабляется или полностью утрачивается. Так, стероидные гормоны, подвергаясь микросомальному окислению, инактивируются, превращаясь затем в соответствующие глюкурониды и сульфаты. Под влиянием аминооксидаз в печени происходит окисление катехоламинов и т. д. В целом же, скорее всего, это физиологический процесс.

Как видно из приведенных примеров, печень способна инактивировать ряд сильнодействующих физиологических и чужеродных (токсических) веществ.

РОЛЬ ПЕЧЕНИ В ПИГМЕНТНОМ ОБМЕНЕ

В данном разделе речь пойдет лишь о гемохромогенных пигментах, которые образуются в организме при распаде гемоглобина (в значительно меньшей степени при распаде миоглобина, цитохромов и др.) Распад гемоглобина протекает в клетках ретикулоэндотелиальной системы, в частности в звездчатых ретикулоэндотелиоцитах (купферовские клетки печени), а также в гистиоцитах соединительной ткани любого органа.

Как уже отмечалось, начальным этапом распада гемоглобина является разрыв одного метинового мостика с образованием вердоглобина. В дальнейшем от молекулы вердоглобина отщепляются атом железа и белок глобин. В результате образуется биливердин, который представляет собой цепочку из четырех пиррольных колец, связанных метановыми мостиками. Затем биливердин, восстанавливаясь, превращается в билирубин - пигмент, выделяемый с желчью и поэтому называемый желчным пигментом (см. Распад гемоглобина в тканях (образование желчных пигментов)). Образовавшийся билирубин называется непрямым билирубином. Он нерастворим в воде, дает непрямую реакцию с диазореактивом, т. е. реакция получается только после предварительной обработки спиртом. По-видимому, правильнее этот билирубин называть свободным, или неконъюгированным, билирубином.

В печени билирубин соединяется (конъюгирует) с глюкуроновой кислотой. Эта реакция катализируется ферментом УДФ - глюкуронилтрансферазой. При этом глюкуроновая кислота вступает в реакцию в активной форме, т. е. в виде уридиндифосфоглюкуроновой кислоты. Образующийся глюкуроиид билирубина получил название прямого билирубина (конъюгированного билирубина). Он растворим в воде и дает прямую реакцию с диазореактивом. Большая часть билирубина соединяется с двумя молекулами глюкуроновой кислоты, образуя диглюкуронид билирубина.

Образовавшийся в печени прямой билирубин вместе с очень небольшой частью непрямого билирубина выводится с желчью в тонкий кишечник. Здесь от прямого билирубина отщепляется глюкуроновая кислота и происходит его восстановление с последовательным образованием мезобилирубина и мезобилиногена (уробилиногена). Принято считать, что около 10% билирубина восстанавливается до мезобилиногена на пути в тонкий кишечник, т. е. во внепеченочных желчцых путях и желчном пузыре. Из тонкого кишечника часть образовавшегося мезобилиногена (уробилиногена) резорбируется через кишечную стенку, попадает в v. portae и током крови переносится в печень, где расщепляется полностью до ди- и трипирролов. Таким образом, в норме в общий круг кровообращения и в мочу мезобилиноген (уробилиноген) не попадает.

Основное количество мезобилиногена из тонкого кишечника поступает в толстый кишечник, где восстанавливается до стеркобилиногена при участии анаэробной микрофлоры. Образовавшийся стеркобилиноген в нижних отделах толстого кишечника (в основном в прямой кишке) окисляется до стеркобилина и выделяется с калом. Лишь небольшая часть стеркобилиногена всасывается в нижних участках толстого кишечника в систему нижней полой вены (попадает сначала в vv. haemorrhoidalis) и в дальнейшем выводится почками с мочой. Следовательно, в норме моча человека содержит следы стеркобилиногена (за сутки его выделяется с мочой 1-4 мг). К сожалению, до последнего времени в клинической практике стеркобилиноген, содержащийся в нормальной моче, продолжают называть уробилиногеном. Это неверно. На рис. 123 схематично показаны пути образования уробилиногеновых тел в организме человека.

Определение в клинике содержания общего билирубина и его фракций, а также уробилиногеновых тел имеет важное значение при дифференциальной диагностике желтух различной этиологии. При гемолитической желтухе гипербилирубинемия возникает в основном в результате образования непрямого (свободного) билирубина. Вследствие усиленного гемолиза происходит интенсивное образование в ретикулоэндотелиальной системе непрямого билирубина из разрушающегося гемоглобина. Печень оказывается неспособной образовать столь большое количество билирубин-глюкуронидов, что приводит к накоплению непрямого билирубина в крови и тканях (рис. 124). Известно, что непрямой билирубин не проходит через почечный порог, поэтому билирубин в моче при гемолитической желтухе, как правило, не определяется.

При паренхиматозной желтухе наступает деструкция печеночных клеток, нарушается экскреция прямого билирубина в желчные капилляры и он попадает непосредственно в кровь, где содержание его значительно увеличивается. Кроме того, снижается способность печеночных клеток синтезировать билирубин-глюкурониды; вследствие этого количество непрямого билирубина в сыворотке крови также увеличивается. Поражение гепатоцитов сопровождается нарушением их способности разрушать до ди- и трипирролов всосавшийся из тонкого кишечника мезо-билиноген (уробилиноген). Последний попадает в большой круг кровообращения и выделяется почками с мочой.

При обтурационной желтухе нарушено желчевыделение, что приводит к резкому увеличению содержания прямого билирубина в крови. Несколько повышается в крови концентрация и непрямого билирубина. Резко снижается содержание стеркобилиногена (стеркобилина) в кале. Полная обтурация желчного протока сопровождается отсутствием желчных пигментов в кале (ахолический стул). Характерные изменения лабораторных показателей пигментного обмена при различных желтухах представлены в табл. 43.

Таблица 43. Дифференциальная диагностика различных типов желтух [по Генри, 1969]
Желтуха Моча Кал Кровь
билирубин уро- билиноген стерко- билиноген прямой билирубин непрямой билирубин отношение прямого билирубина к общему билирубину
Гемолитическая не определяется снижено или норма повышено норма повышено 0,20
Паренхиматозная определяется повышено норма или снижено повышено повышено 0,20-0,70
Обтурационная определяется снижено или норма резко снижено повышено повышено 0,50

ЖЕЛЧЬ

Желчь - жидкий секрет желтовато-коричневого цвета, отделяемый печеночными клетками. В сутки у человека образуется 500-700 мл желчи (10 мл на кг массы тела). Желчеобразование происходит непрерывно, хотя интенсивность этого процесса на протяжении суток резко колеблется. Вне пищеварения печеночная желчь переходит в желчный пузырь, где происходит ее сгущение в результате всасывания воды и электролитов. Относительная плотность печеночной желчи 1,01, а пузырной - 1,04. Концентрация основных компонентов в пузырной желчи в 5-10 раз выше, чем в печеночной (табл. 44).

Таблица 44. Содержание основных компонентов желчи человека
Компоненты Печеночная желчь Пузырная желчь
Вода, % 97,4 86,65
Плотные вещества, %: 2,6 13,35
желчнокислые соли 1,03 9,14
пигменты и муцин 0,53 2,98
холестерин 0,06 0,26
жирные кислоты и липиды 0,14 0,32
неорганические соли 0,84 0,65
Ионы, ммоль/л:
катионы:
Na + 145 130
К + 5 9
Са 2+ 2,5 6
анионы:
Cl - 100 75
СlO 3 - 28 10

Предполагают, что образование желчи начинается с активной секреции гепатоцитами воды, желчных кислот и билирубина, в результате которой в желчных канальцах появляется так называемая первичная желчь. Последняя, проходя по желчным ходам, вступает в контакт с плазмой крови, в результате чего между желчью и плазмой устанавливается равновесие электролитов, т. е. в образовании желчи принимают участие в основном два механизма - фильтрация и секреция.

В печеночной желчи можно выделить две группы веществ. Первая группа - это те вещества, которые присутствуют в желчи в количествах, мало отличающихся от их концентрации в плазме крови (например, Na + , К + , креатинин и др.), что в какой-то мере служит доказательством наличия фильтрационного механизма. Ко второй группе относятся соединения, концентрация которых в печеночной желчи во много раз превышает их содержание в плазме крови (билирубин, желчные кислоты и др.), что свидетельствует о наличии секреторного механизма. В последне время появляется все больше данных о преимущественной роли активной секреции в механизме желчеобразования.

Как уже указывалось, холестерин, подобно высшим жирным кислотам, представляет собой нерастворимое в воде соединение, которое удерживается в желчи в растворенном состоянии лишь благодаря присутствию в ней солей желчных кислот и фосфатидилхолина. При недостатке желчных кислот холестерин выпадает в осадок, способствуя образованию камней.

Обычно камни имеют внутреннее ядро, состоящее из белка и окрашенное желчным пигментом. Чаще всего встречаются камни, у которых ядро окружено чередующимися слоями холестерина и билирубината кальция. Такие камни содержат до 80% холестерина.

Интенсивное образование камней имеет место при застое желчи и наличии инфекции. При застое желчи встречаются камни, содержащие 90-95% холестерина. В случае наличия инфекции могут образовываться камни, состоящие из билирубината кальция. Принято считать, что присутствие бактерий сопровождается увеличением β-глюкуронидазной активности желчи, что приводит к расщеплению конъюгатов билирубина, и освобождающийся билирубин служит субстратом для образования камней.

В желчи обнаружен целый ряд ферментов, из которых особо следует отметить щелочную фосфатазу печеночного происхождения. При нарушении оттока желчи активность данного фермента в сыворотке крови возрастает. Заметим, что в сыворотке крови имеется также щелочная фосфатаза костного происхождения, т. е. синтезируемая остеобластами. Это другая изоформа щелочной фосфатазы, активность которой увеличивается в сыворотке крови при поражении костей.

Гепатоциты (Г) в печеночной пластинке (ПП) несколько отделены друг от друга. На рисунке один из них срезан, чтобы продемонстрировать его внутреннюю структуру.


Гепатоцит - полигональная клетка печени с двумя видами поверхности. Синусоидальные поверхности ориентированы в направлении печеночных синусоидных капилляров (СК) и покрыты микроворсинками (Мв). Почти гладкие желчные поверхности , каждая из которых расположена между двумя синусоидальными поверхностями, формируют половину стенки желчных канальцев (ЖК).


Гепатоциты - большие клетки размером 15-30 мкм. Около 25% из них - двуядерные; 70 % - одноядерных гепатоцитов тетраплоидны и около 2 % - октаплоидны, т. е. с 4- или 8-кратным диплоидным набором хромосом.


Каждое ядро (Я) округлое и имеет одно или более ядрышек. Цитоплазма включает около 800 эллиптических или удлиненных митохондрий (М).


Хорошо развитый мультипластинчатый комплекс Гольджи (КГ) (до 50 комплексов) группируется обычно рядом с ядром и желчными канальцами. Удлиненные цистерны гранулярной эндоплазматической сети (ГЭС) часто продолжаются в трубочки агранулярной эндоплазматической сети (аГЭС). Лизосомы (Л), пероксисомы (П), частички гликогена (ЧГ), липидные капельки (ЛК) и свободные рибосомы находятся в большом количестве в цитоплазме гепатоцита.


По средней линии между двумя синусоидальными поверхностями гепатоцитов находится бороздка, которая идет вокруг тела клетки. Эта бороздка и соответствующая бороздка противоположного гепатоцита формируют канал шириной 0,5-1,5 мкм - желчный каналец (ЖК), или желчный капилляр. Желчные канальцы здесь не имеют собственных стенок. Канальцы могут иметь короткие ответвления, их внутренняя поверхность усеяна микроворсинками. Главной функцией гепатоцитов является секреция желчи в желчные канальцы с помощью механизма, который до сих пор не изучен. Чтобы предотвратить проникновение желчи в кровь, желчные канальцы закрыты замыкающими поясками (ЗП) - непроницаемыми плотными соединениями, которые идут вдоль них. В дополнение к ним пояски слияния (ПС) укрепляют кромки канальцев. Они располагаются в форме узкого пояса снаружи от замыкающего пояска.


Сверх того, гепатоциты соединены множеством нексусов (Н) и маленькими шишковидными интердигитациями (указаны стрелками).


Желчные канальцы продолжаются в терминальные желчные канальцы на периферии долек. Между желчными канальцами соседних долек нет анастомозов.


Печеночные пластинки ограничены с обеих сторон печеночными синусоидными капиллярами с эндотелиальными клетками (ЭК), которые имеют решетчатые пластинки (РП) и большие отверстия (О). Печеночные синусоидные капилляры не имеют базальной мембраны, поэтому микроворсинки видимы через эти отверстия. Диаметр этих отверстий обычно меньше, чем диаметр тромбоцитов и эритроцитов (Э), так что только плазма крови проходит через них и вступает в контакт с гепатоцитами.


Между гепатоцитами и стенкой печеночных синусоидных капилляров находится пространство Диссе (ПД), которое почти полностью заполнено микроворсинками гепатоцитов. Несколько ретикулярных и коллагеновых волокон (KB) проходят через пространство Диссе.

Самая большая железа в нашем организме – печень. Вес ее составляет 1,5 кг. Она располагается в верхней части брюшной полости, преимущественно в правом подреберье. Когда в этом месте мы чувствуем дискомфорт, мы говорим: «Болит печень». При этом считается, что если в правом подреберье нет боли, то с печенью все в порядке. Однако, это далеко не так. На самом деле, печень не болит, потому что в ней отсутствуют нервные окончания. По этой причине мы не знаем, что происходит с органом. Печень «молчит» даже тогда, когда в ней начинаются необратимые разрушительные процессы. Если же появляется боль в правом боку – это нарушения в работе желчного пузыря, желчных протоков.

Печень – удивительно трудолюбивый и уникальный орган, который неутомимо работает в течение всей жизни и помогает организму выполнять его основные функции. Конечно, у человека нет лишних или ненужных органов. Но без конечностей или одной почки, без части желудка или кишечника, даже без селезенки — человек может жить. Организм приспосабливается к жизни без какого-либо органа, компенсируя за счет своих резервов его отсутствие. И только без печени, как и без сердца, человеческий организм жить не сможет.

Основное назначение печени – главный фильтр в организме.

Это означает, что основная задача печени – детоксикация, т.е. утилизация и выведение токсинов из организма человека. Но наряду с этой функцией, она выполняет еще и ряд других:

  • выработка и выведение желчи – клетки печени участвуют в процессе образования желчи, которая через желчные протоки попадет непосредственно в желчный пузырь. В желчном пузыре происходит концентрация желчи. Каждый день печень вырабатывает от 800 до 1000 мл желчи, которая участвует в переваривании жиров в тонком кишечнике;
  • метаболическая функция – печень участвует в углеводном, жировом и белковом обмене веществ;
  • детоксикация – в организме человека много токсинов, продуктов распада и других вредных веществ. Печень обезвреживает их, чтобы они не могли нанести вред другим органам;
  • кроветворная функция – печень является одним из главных кроветворных органов;
  • свертываемость крови – все вещества, которые участвуют в процессе свертываемости крови, вырабатываются печенью;
  • иммунная функция – печень неразрывно связана с иммунитетом, поскольку она уничтожает вредные вещества, которые есть в организме;
  • функция регуляции объема крови – печень принимает активное участие в регуляции объема циркулирующей крови;
  • регуляция гидроэлектролитного процесса – здоровая печень помогает организму сохранять электролитный баланс.

Гепатоциты: что это?

Печень, как любая другая органическая ткань, состоит из клеток, которые называются гепатоцитами. Гепатоциты составляют от 60% до 85% всей массы печени. Это около 300 млрд клеток. Клетки в организме человека бывают стабильными, т.е. имеющими ограниченное количество делений, и лабильными, т.е. постоянно делящимися, как, например, клетки эпидермиса. Гепатоциты – это стабильные клетки, которые занимают главное место в промежуточном обмене веществ.

Клетки печени имеют шестигранную форму, содержат ядро и большое количество ферментов. Гепатоциты располагаются попарно и образуют столбики – печеночные балки, которые объединяются в печеночные дольки. Главная функция печеночной дольки – выработка желчи и вывод ее в желчные протоки.

У печеночных клеток есть контактные поверхности, которые обеспечивают плотное соединение и не дают перемешиваться крови и желчи. Клетки печени расположены вокруг центральной вены, образуя щели, которые заполняются кровью. Кровеносная система печени имеет достаточно сложное строение, т.к. через печень за 1 минуту проходит 1,5 литра крови.

Клетки печени бывают нескольких видов:

  • Эндотелиальные клетки – обеспечивают барьер между капиллярами и непосредственно гепатоцитами.
  • Звездчатые клетки – отвечают за отток тканевой жидкости в лимфатические сосуды.
  • Клетки Купфера – защищают печень при попадании в него инфекционных агентов или при травме печени.
  • Ямочные клетки – ликвидируют те гепатоциты, которые поражены вирусом, а также токсичны для онкологических клеток.

У печени есть уникальная способность к самовосстановлению. Только печень может регенерировать свои клетки. Иногда бывает, что для ее восстановления просто нужно убрать травмирующие факторы. Такой способности нет больше ни у одного органа. В мифах Древней Греции есть легенда о Прометее, прикованном к скале. Каждый день прилетал орел, который клевал печень Прометея. Но за ночь печень восстанавливалась, а днем вновь прилетал орел, чтобы клевать печень. Таким образом, мучения Прометея не прекращались. В этой сказке есть доля правды – клетки печени на самом деле могут восстанавливаться.

Самовосстановление печени еще не изучено до конца. Однако, новейшие исследования ученых помогли выяснить, что гепатоциты просто делятся обычным путем. Когда орган полностью восстанавливаются, процесс деления заканчивается, и клетки печени вновь становятся стабильными. Процесс восстановления печени – это длительный процесс. Конечно, у молодых он происходит быстрее, а с возрастом – замедляется. Но для того, чтобы начался процесс регенерации клеток необходимо одно условие – отсутствие травмирующих факторов. Часто этого бывает достаточно, чтобы начавшаяся болезнь отступила. Но это возможно в начальных стадиях заболеваний. Чем запущеннее состояние печени, тем медленнее идет процесс восстановления клеток, а при необратимых изменениях он уже невозможен.

Причины поражения гепатоцитов

Печень ежедневно подвергается негативным воздействиям. Как бы мы не пытались ее уберечь, плохая экологическая обстановка, нездоровое питание, многочисленные стрессы, малоподвижный образ жизни, недосыпание и другие факторы систематически нарушают работу этого уникального органа, а значит, и функции клеток печени.

Помимо выше перечисленных факторов, на нарушение функций гепатоцитов влияют следующие причины:

  • различные болезни печени воспалительного или инфекционного характера;
  • вредные привычки, особенно употребление алкоголя, никотина, наркотических веществ;
  • избыточный вес;
  • злоупотребление жирной, острой, жареной пищей;
  • прием медикаментов при лечении других заболеваний – антибиотики, НПВС, противоопухолевые препараты и многие другие;
  • самолечение;
  • поздний прием пищи;
  • физиологическое старение организма;
  • генетическая предрасположенность.

Когда гепатоциты подвергаются негативным воздействиям, то в них происходят патологические изменения, такие как дистрофия или некроз клеток. Некроз может вызвать гибель гепатоцитов. Патологические процессы в жизнедеятельности клеток приводят к нарушению функций печени и развитию ее заболеваний, например, воспалительные процессы, фиброз, жировая дистрофия и другим. Если поражено порядка 80% клеток печени, то развивается печеночная недостаточность, которая может привести к гибели человека.

Как помочь гепатоцитам

Несмотря на то, что печень никогда и ни у кого не болит, все-таки есть некоторые признаки, по которым можно понять, что с печенью не все в порядке. Это могут быть ощущение тяжести или дискомфорт в правом подреберье, различные высыпания на коже типа крапивницы, зуд, частые боли в спине, быстрое разрушение зубов, плохой сон, повышенная раздражительность, стенокардия, гипертоническая болезнь, боль или ограничение подвижности в, аллергические реакции и др. Общая слабость, повышенная утомляемость, плохой сон, частая раздражительность, плохой аппетит, снижение веса, периодические повышения температуры тела без видимых причин, незначительные изменения цвета кожи на сгибательных поверхностях – это тоже симптомы, на которые обязательно надо обращать внимание и обращаться к врачу, чтобы пройти обследование.

При первых проявлениях признаков нарушения работы печени, необходимо предпринять меры по ее восстановлению. Пока процесс не зашел сильно далеко, вполне может помочь правильное питание. В рационе должны присутствовать продукты, которые влияют на восстановление гепатоцитов.

Это рыба, морепродукты, цельнозерновой хлеб, кисломолочные продукты, куриные яйца, растительное масло, отварные овощи, свежие ягоды и фрукты, в которых нет мелких косточек и др. Питание должно быть дробным, т.е. 5-6 раз в день небольшими порциями.

Восстановить работу печени помогут и лекарственные средства, которые должен назначать только врач. Препараты должны способствовать защите и восстановлению гепатоцитов, стимулировать образование новых клеток печени, активизировать образование желчи и ее отток, а также очищать печень от токсинов и оказывать противовоспалительное действие.

Чаще всего, эти препараты изготавливаются из растительного сырья, но могут иметь и комбинированный состав. Когда разрушаются клетки печени, происходит замещение их ткани на фиброзную ткань. Задача гепатопротекторов – остановить процесс образования фиброзной ткани и ускорить ее разрушение. Большинство препаратов выполняет эту функцию косвенно, а тех, которые действуют на это процесс напрямую немного. Поэтому специалисты стараются выбрать именно те гепатопротекторы, у которых есть прямой противофибротический эффект.

Печень – уникальный орган, здоровье которого во многом зависит от нас. Наша задача – бережно относится к нему, вовремя обращая внимание на возможные неполадки, и помогая клеткам печени функционировать в полную силу, не допуская их разрушения.

Гепатоцит - основная структурная клетка паренхимы печени человека и животных. Гепатоциты составляют около 60% всех клеток печени, но поскольку они больше других клетки печени, то их масса составляет 80% общей массы печени. По подсчетам, количество гепатоцитов составляет около 300 миллиардов.

Гистологический препарат тканей печени человека, окраска гематоксилином и эозином

Структура

Гепатоциты имеют вид полигональной клетки диаметром 13-30 микрометров. Средний объем гепатоцита составляет 3,4 x 10 -9 см 3. Гепатоцит имеет 6 или более поверхностей, и два полюса: синусоидальный, который ориентирован в направлении печеночных синусовидных капилляров и покрытые ворсинками; и желчный или билиарный, расположенных между двумя синусоидальными поверхностями и формируют стенку желчных канальцев. Через синусоидальный полюс проходит всасывания различных веществ из крови, а через билиарный полюс проходит желчь и другие веществ, производимых в гепатоцитах, в просвет желчных канальцев. Гепатоцит ограничен двухконтурной белково-липидной плазматической мембраной, имеет высокую ферментативную активность, в том числе содержит ферменты, которые катализируют активный транспорт ионов и молекул через мембрану как внутрь клетки, так и из клетки. У желчных канальцев клеточные мембраны гепатоцитов связанные плотным соединением. Между гепатоцитами и стенкой печеночных синусоидальных капилляров размещен пространство Диссе, почти полностью заполнен микроворсинками гепатоцитов. Своими латеральными поверхностями гепатоциты образуют печеночные балки, из которых состоят сегменты и доли печени.

Синусоидальный капилляр и гепатоцит на электронно-микроскопическом снимке печени крысы.

В центральной части гепатоцита размещено ядро диаметром от 7 до 16 микрометров, с одним или двумя ядрышками. Около 75% гепатоцитов имеют одно ядро, причем 70% от общего их количества является тетраплоидной, около 2% от общего количества является октаплоиднимы; а 25% от общего количества гепатоцитов являются двухъядерными. В гепатоцитах хорошо развитый эндоплазматический ретикулум, как гранулярная эндоплазматическая система, так и агранулярная эндоплазматическая система. В гранулярном эндоплазматический ретикулум размещено большое количество рибосом, в агранулярного эндоплазматическом ретикулуме рибосомы отсутствуют. В гепатоцитах хорошо развитый комплекс Гольджи (до 50 комплексов). По разным подсчетам, в гепатоцитах содержатся от 800 до 2000 митохондрий. Кроме перечисленных органелл, в цитоплазме гепатоцита содержатся лизосомы, пероксисомы, дольки гликогена, капли липидов и филаментозни структуры.

Функции

Основной функцией гепатоцита является секреция желчи, которая включает в себя захват, переработку и выведение компонентов желчи в желчные капилляры. Этот механизм пока не изучен до конца. Одной из составляющих синтеза желчи является конъюгация гидрофобного токсического билирубина с помощью фермента глюкуронилтрансферазы к водорастворимого нетоксичного глюкуронил билирубина, который выделяется в желчь. Для предупреждения попадания желчи в кровь желчные канальцы закрываются так называемыми замыкающими поясками - непроникающими плотными соединениями, которые проходят вдоль них, а как дополнение к ним крае канальцев укрепляют так называемые пояса слияния.

Другой важной функцией гепатоцитов является участие в обмене глюкозы. При увеличении поступления глюкозы в кровь гепатоциты под влиянием инсулина проводят переработку избытка глюкозы в гликоген, который откладывается в виде зерен в цитоплазме гепатоцитов. При недостатке глюкозы под действием фермента глюкозо-6-фосфатазы гликоген в гепатоцитах метаболизируется до глюкозы. гепатоциты также обеспечивают синтез глюкозы из других химических соединений, в частности липидов и аминокислот путем сложных ферментных преобразований, который носит название глюконеогенез.

Важную роль играют гепатоциты и в синтезе белков. Гепатоциты синтезируют альбумины, большую часть глобулинов, фибриноген, а также большую часть других белков, участвующих в свертывании крови. Гепатоциты не производят лишь иммуноглобулинов, которые производят плазматические клетки. Белки в гепатоцитах синтезируются в эндоплазматическом ретикулуме, и через комплекс Гольджи проходят в свободной поверхности клетки, откуда выделяются с помощью механизма экзоцитоза. В гепатоцитах преимущественно также происходит дезаминирование аминокислот с образованием мочевины, которая позже транспортируется почек и выводится ими из организма.

Значительная роль гепатоцитов также в обмене липидов и липопротеинов. Гепатоциты участвуют в удалении крупнейших липопротеидных частиц - ХМ - из крови после приема жирной пищи, позже в гепатоцитах под влиянием ферментов осуществляется синтез мелких частиц липопротеинов и преобразования их в пре-Р-липопротеины, а позже в Р-липопротеины, и другие более мелкие, структурные соединения клеток, в частности холестерин и фосфолипиды. В гепатоцитах также происходит накопление резервов лидидив в виде триглицеридов. В гепатоцитах происходит также накопление витаминов, особенно витамина A, которое в основном происходит в так называемых клетках Ито.

Важную роль играют гепатоциты также и в удалении токсичных веществ, которые попадают в организм извне или образующиеся в процессе метаболизма. Эта роль клеток печени обеспечивается ферментами микросомального окисления и происходит преимущественно в специальных образованиях - микросомах. Гепатоциты обеспечивают преобразования, в частности, аммиака, этанола, стероидных гормонов, а также лекарственных средств и других химических веществ, которые попадают в организм из разных источников.

Регенерация

Продолжительность жизни гепатоцита составляет от 200 до 400 дней, однако, несмотря на низкую скорость обновления клеток, печень обладает высокой способностью к регенерации. В частности, в экспериментах на животных при удалении до 75% объема печени она восстанавливает свои нормальные размеры течение нескольких дней. Правда, в восстановленной после хирургического удаления ткани печени меньше гепатоцитов, и больше соединительнотканных элементов. Механизм регенерации печени не исследован до конца. Долгое время считалось, что в печени отсутствуют стволовые клетки, а регенерация проходит на внутриклеточном уровне, а также за счет митоза полиплоидных гепатоцитов. Однако более поздними исследованиями в печени обнаружены стволовые клетки, которые расположены недалеко венозных сосудов в дольками печени, которые имеют способность к активному делению, а при повреждении печени перемещаются в пораженные участки. Некоторое время считалось, что активное размножение этих стволовых клеток может привести к возникновению рака печени, однако по данным последних исследований, это предположение не подтвердилось. Пока неясным остается механизм прекращения деления клеток, а именно, почему на этапе, когда достигнута предыдущий показатель массы органа, то деление клеток останавливается. На данный момент выдвинуто предположение о регуляции этого процесса определенными белковыми соединениями, в частности трансформирующий фактор роста.

Строение печени

Печень — паренхиматозный дольчатый орган. Ее строма представлена:

Внутри дольки строма представлена ретикулярными волокнами, лежащими между гемокапиллярами и печеночными балками. В норме у человека междольковая рыхлая волокнистая неоформленная соединительная ткань выражена слабо, в результате чего дольки определяются неотчетливо. При циррозе происходит утолщение соединительнотканных трабекул.

Непосредственно под капсулой лежит один ряд гепатоцитов, образующий так называемую наружную терминальную пластинку. Этот ряд гепатоцитов в области ворот печени внедряется внутрь органа и сопровождает ветвления сосудов (воротной вены и печеночной артерии).

Внутри органа эти гепатоциты лежат на периферии дольки, непосредственно контактируя с рыхлой волокнистой соединительной тканью в области триад и отделяя гепатоциты, расположенные внутри, от окружающей междольковой соединительной ткани.


а состоящая из одного ряда гепатоцитов зона называется внутренней терминальной пластинкой. Через эту пластинку, перфорируя ее, проходят кровеносные сосуды. Гепатоциты внутренней терминальной пластинки отличаются от остальных гепатоцитов дольки более выраженной базофилией цитоплазмы и меньшими размерами. Считается, что терминальная пластинка содержит камбиальные клетки для гепатоцитов и эпителиоцитов внутрипеченочных желчных протоков. При хроническом гепатите и циррозе терминальная пластинка может разрушаться, что свидетельствует об активности этих процессов.

Паренхима печени представлена совокупностью гепатоцитов, формирующих классическую дольку. Классическая долька — структурно-функциональная единица печени. Она имеет форму шестигранной призмы. Ширина печеночной дольки равна 1-1,5 мм, высота — 3-4 мм. По периферии дольки находятся триады или портальные тракты, в состав которых входят междольковые артерия, вена и желчный проток, а также лимфососуды и нервные стволы (в силу этого некоторые исследователи предлагают называть эти структуры не триадами, а пентодами). В центре дольки лежит центральная вена безмышечного типа. Основу дольки составляют печеночные балки или трабекулы. Они образованы двумя рядами гепатоцитов, соединенных десмосомами.


жду гепатоцитами трабекулы проходит внутридольковый желчный капилляр, который не имеет собственной стенки. Его стенку образуют цитолеммы двух гепатоцитов, которые в этом месте инвагинируют. Печеночные балки радиально сходятся к центру дольки. Между соседними балками находятся синусоидные капилляры. Подобное представление об организации печеночной дольки является несколько упрощенным, поскольку печеночные балки далеко не всегда имеют радиальное направление: их ход может существенно изменяться, балки часто анастомозируют друг с другом. Поэтому на срезах не всегда удается проследить их ход с периферии до центральной вены.

Строение гепатоцита

Гепатоциты — основной вид клеток печени, выполняющий ее основные функции. Это крупные клетки полигональной или шестиугольной формы. Имеют одно или несколько ядер, при этом ядра могут быть полиплоидными. Многоядерные и полиплоидные гепатоциты отражают приспособительные изменения печени, поскольку эти клетки способны выполнять гораздо более интенсивно свои функции, чем обычные гепатоциты.

Каждый гепатоцит имеет две стороны:

Васкулярная сторона обращена в сторону синусоидного капилляра. Она покрыта микроворсинками, которые проникают через поры в эндотелиоците в просвет капилляра и прямо контактируют с кровью. От стенки синусоидного капилляра васкулярная сторона гепатоцита отделяется перисинусоидальным пространством Диссе.


этом щелевидном пространстве находятся микроворсинки гепатоцитов, отростки печеночных макрофагов (клеток Купфера), клетки Ито и иногда — Pit-клетки. В пространстве встречаются также единичные аргирофильные волокна, количество которых увеличивается на периферии дольки. Таким образом, в печени отсутствует типичный паренхиматозный барьер (имеется так называемый «прозрачный» барьер), что позволяет веществам, синтезируемым в печени, попадать прямо в кровь. С другой стороны, из крови в печень легко поступают питательные вещества и подлежащие обезвреживанию яды. Васкулярной стороной гепатоцит захватывает также из крови секреторные антитела, которые затем поступают в желчь и оказывают свой защитный эффект.

Билиарная сторона гепатоцита обращена в сторону желчного капилляра. Цитолемма контактирующих гепатоцитов здесь образует инвагинации и микроворсинки. Вблизи образовавшегося таким образом желчного капилляра цитолеммы контактирующих гепатоцитов соединяются при помощи опоясывающих десмосом, плотных и щелевидных контактов. Билиарной стороной гепатоцитов вырабатывается желчь, которая поступает в желчный капилляр и далеев отводящие протоки. Васкулярная сторона выделяет в кровь белки, глюкозу, витамины, липидные комплексы. В норме желчь никогда не поступает в кровь, потому что желчный капилляр отделен от синусоидного капилляра телом гепатоцита.

www.medkurs.ru

Строение гепатоцитов. Гистология, функции

Гепатоциты являются клетками многогранной формы с шестью или большим числом поверхностей и диаметром 20-30 мкм. На срезах, окрашенных гематоксилином и эозином, цитоплазма гепатоцита - эозинофильная, главным образом, из-за большого количества митохондрий и некоторого количества элементов аЭПС. Гепатоциты, расположенные на различном расстоянии от портальных пространств, различаются своими структурными, гистохимическими и биохимическими характеристиками.

Поверхность каждого гепатоцита находится в контакте со стенкой синусоидов через пространство Диссе, а также с поверхностью других гепатоцитов. В тех участках, где контактируют два гепатоцита, они ограничивают трубчатое пространство между ними, которое известно как желчный капилляр, или желчный каналец. Желчные капилляры, которые являются начальной частью системы желчных протоков, являются трубочками диаметром 1-2 мкм. Они ограничены только плазматическими мембранами двух гепатоцитов, причем в их просвет обращены немногочисленные микроворсинки.

Клеточные мембраны около этих капилляров прочно связаны плотными соединениями. Щелевые соединения часто встречаются между гепатоцитами и являются участками межклеточных соединений, обеспечивая важный процесс координации физиологической активности этих клеток. Желчные капилляры образуют сложные анастомозирующие сети, которые протягиваются вдоль пластинок печеночной дольки и заканчиваются в области портальных пространств. Таким образом, ток желчи происходит в направлении, противоположном направлению тока крови, т.е. от центра дольки к ее периферии. На периферии дольки желчь попадает в желчные проточки, или каналы Геринга, образованные кубическими клетками.


Проходя на небольшое расстояние , проточки пересекают ряд гепатоцитов, ограничивающих дольку, и переходят в желчные протоки в портальных пространствах. Желчные протоки выстланы кубическим или столбчатым эпителием и имеют отчетливую соединительнотканную оболочку. Они постепенно увеличиваются и сливаются, образуя правый и левый печеночные протоки, которые в дальнейшем выходят из печени.

Строение гепатоцитов

Поверхность гепатоцита , обращенная в пространство Диссе, покрыта многочисленными микроворсинками, которые выступают в это пространство, но всегда между ними и клетками стенки синусоидов остается зазор. Гепатоцит содержит одно или два круглых ядра с одним или двумя ядрышками. Некоторые ядра являются полиплоидными, т.е. они содержат четное количество гаплоидных наборов хромосом. Полиплоидные ядра характеризуются большими размерами, которые пропорциональны их плоидности. В гепатоците сильно развита ЭПС, как аЭПС, так и гранулярной эндоплазматической сети (грЭПС). ГрЭПС в гепатоците образует агрегаты, рассеянные по цитоплазме - базофильные тельца.


В этих структурах на полирибосомах синтезируется ряд белков (например, альбумин и фибриноген крови). Различные важные процессы происходят в аЭПС, которая диффузно распределена по всей цитоплазме. Эта органелла ответственна за процессы окисления, метилирования и конъюгации, необходимые для инактивации или детоксикации различных веществ до их выведения из организма. аЭПС является лабильной системой, быстро реагирующей на молекулы, попавшие в гепатоцит.

Одним из наиболее важных процессов , происходящих в аЭПС, является конъюгация гидрофобного (водонерастворимого) токсического билирубина глюкуронилтрансферазой с образованием водорастворимого нетоксического глюкуронида билирубина. Этот конъюгат выделяется гепатоцитами в желчь. Если не происходит экскреции билирубина или глюкуронида билирубина, могут развиться различные заболевания, которые характеризуются желтухой - наличием желчных пигментов в крови. Одной из серьезных причин желтухи у новорожденных является нередко встречающееся недоразвитие аЭПС в их гепатоцитах (неонатальная гипербилирубинемия). Современное лечение в таких случаях состоит в воздействии синим светом от обычных флюоресцентных ламп, которое вызывает трансформацию неконъюгированного билирубина в водорастворимый фотоизомер, который может удаляться почками.

Гепатоцит часто содержит гликоген.


от полисахарид выглядит под электронным микроскопом как крупные электронно-плотные гранулы, которые часто накапливаются в цитозоле вблизи аЭПС. Количество гликогена, имеющееся в печени, изменяется в соответствии с суточным ритмом; оно зависит также от состояния питания индивидуума. Гликоген печени является хранилищем глюкозы и мобилизуется, если уровень глюкозы в крови падает ниже нормального. Таким путем гепатоциты поддерживают постоянный уровень глюкозы в крови, которая является одним из главных источников энергии, используемой организмом.

Строение гепатоцитов

Каждый гепатоцит содержит приблизительно 2000 митохондрий. Другими распространенными клеточными компонентами являются липидные капельки, количество которых варьирует в широких пределах. Лизосомы гепатоцита важны для обновления и разрушения внутриклеточных органелл. Подобно лизосомам, пероксисомы являются содержащими ферменты органеллами, обильно представленными в гепатоцитах. Некоторыми из их функций являются окисление избытка жирных кислот, разрушение перекиси водорода, образованной окислением (посредством активности каталазы), расщепление избытка пуринов (АМФ, ГМФ) до мочевой кислоты и участие в синтезе холестерола, желчных кислот и некоторых липидов, используемых для образования миелина.

Комплекс Гольджи в гепатоцитах также является множественным - до 50 в одной клетке. Функции этой органеллы включают образование лизосом и секрецию белков плазмы (например, альбумина, белков системы комплемента), гликопротеинов (например, трансферрина) и липопротеинов (например, липопротеинов очень низкой плотности).


У человека встречаются ряд редких наследственных нарушений функций пероксисом, большей частью связанных с мутациями ферментов, которые обнаруживаются в пероксисомах. Например, связанная с Х-хромосомой адренолейкодистрофия (X-ALD) развивается вследствие неспособности нормально метаболизировать жирные кислоты, что приводит к изменениям миелиновых оболочек отростков нейронов. Попытка найти эффективное лечение этого заболевания стала сюжетом вышедшего в 1992 г. фильма «Масло Лоренцо».

Обычно гепатоциты не накапливают белки в своей цитоплазме в виде секреторных гранул, а непрерывно выделяют их в кровоток. Около 5% белка, секретируемого печенью, вырабатывается клетками макрофагальной системы (клетками Купфера); остальные синтезируются гепатоцитами.

Синтез белка и накопление углеводов в печени. Углеводы накапливаются в виде гликогена, обычно в связи с агранулярной эндоплазматической сетью (аЭПС). При потребности в глюкозе гликоген расщепляется. При некоторых заболеваниях расщепление гликогена снижено, что приводит к его аномальному внутриклеточному накоплению. Белки, вырабатываемые гепатоцитами, синтезируются в гранулярной эндоплазматической сети (грЭПС); это объясняет, почему повреждения гепатоцитов или голодание приводят к снижению содержания альбумина, фибриногена и протромбина в крови пациента. Нарушение белкового синтеза вызывает ряд осложнений, так как большая часть этих белков являются переносчиками, важными для поддержания осмотического давления крови и ее свертывания.


Секреция желчи является экзокринной функцией в том смысле, что гепатоциты обеспечивают захват, переработку и выведение компонентов крови в желчные капилляры. Желчь содержит несколько других важных компонентов вдополнение к воде и электролитам: желчные кислоты, фосфолипиды, холестерол, лецитин и билирубин. Около 90% этих веществ получаются благодаря всасыванию эпителием дистальной кишки и транспортируются гепатоцитами из крови в желчные капилляры (энтеропеченочная рециркуляция). Примерно 10% желчных кислот синтезируются в аЭПС гепатоцита посредством конъюгации холевых кислот (синтезируемых печенью из холестерола) с аминокислотами глицином или таурином, в результате чего образуются гликохолевая или таурохолевая кислоты. Желчные кислоты обладают важной функцией в эмульгировании липидов в пищеварительном тракте, обеспечивая их более легкое переваривание липазами и последующее всасывание.

От 70 до 90% билирубина образуется вследствие разрушения гемоглобина стареющих циркулирующих эритроцитов, которое осуществляется, главным образом, в селезенке, но происходит также и во всей остальной периферической системе мононуклеарных фагоцитов, включая клетки Купфера в печени. В крови билирубин тесно связан с альбумином. После переноса в гепатоцит, вероятно, посредством механизма облегченного транспорта, гидрофобный билирубин конъюгируется в аЭПС с глюкуроновой кислотой, с образованием водорастворимого глюкуронида билирубина. На следующем этапе глюкуронид билирубина секретируется в желчные капилляры.


Часто используемыми функциональными тестами печени являются измерения уровня билирубина в сыворотке крови (показатель печеночной конъюгации и экскреции), альбумина и протромбино-вого времени (показатели белкового синтеза). Аномальные результаты этих тестов типичны для дисфункции печени.

Липиды и углеводы накапливаются в печени в форме триглицеридов и гликогена. Эта способность запасать метаболиты играет важную роль, потому что она обеспечивает организм энергией в промежутках между приемами пищи. Печень также служит главным местом накопления витаминов, особенно витамина А. Витамин А попадает в организм с пищей, достигает печени с другими пищевыми липидами в форме хиломикронов. В печени витамин А запасается в клетках Ито. Гепатоцит обеспечивает также синтез глюкозы из других метаболитов - таких, как липиды и аминокислоты, посредством сложного ферментного процесса, известного как глюконеогенез (греч. glykys - сладкий + neos - новый + genesis - выработка).

Он представляет собой также и главное место дезаминирования аминокислот, в результате чего вырабатывается мочевина. Мочевина транспортируется кровью к почкам и выделяется этими органами. Различные лекарственные препараты и вещества могут инактивироваться путем окисления, метилирования или конъюгации.

Секреция билирубина. Водонерастворимая форма билирубина образуется в результате обмена гемоглобина в макрофагах. Активность глюкуронилтрансферазы в гепатоцитах обусловливает конъюгацию билирубина с глюкуронидом в агранулярной эндоплазматической сети (аЭПС), в результате чего образуется водорастворимое соединение. При блокировании секреции желчи окрашенные вжелтый цветбилирубин или глюкуронид билирубина не выводятся, накапливаясь в крови и вызывая желтуху. Ряд нарушений процессов в гепатоцитах могут вызвать заболевания, которые приводят к желтухе: нарушение способности клетки к захвату и всасыванию билирубина (1), неспособность клетки конъюгировать билирубин вследствие дефицита глюкуронилтрансферазы (2), затруднения переносаи выведения глюкуронидабилирубинавжелчные капилляры (3). Одной из наиболее частых причин желтухи, хотя и не связанной с активностью гепатоцитов, является нарушение оттока желчи вследствие желчнокаменной болезни или опухоли поджелудочной железы.

Ферменты , участвующие в этих процессах, локализованы, главным образом, в аЭПС. Глюкуронилтрансфераза, фермент, который обеспечивает конъюгацию глюкуроновой кислоты с билирубином, также вызывает конъюгацию ряда других соединений, таких, как стероиды, барбитураты, антигистаминные и противосудорожные препараты. В некоторых условиях лекарственные препараты, которые инактивируются печенью, могут индуцировать увеличение объема аЭПС гепатоцитов, тем самым усиливая способность органа к детоксикации.

Введение барбитуратов лабораторным животным вызывает быстрое развитие аЭПС в гепатоцитах. Барбитураты могут также усилить синтез глюкуронилтрансферазы. Эти данные привели к использованию барбитуратов влечении недостаточности глюкуронилтрансферазы.

Регенерация печени

Несмотря на низкую скорость обновления клеток , печень обладает необычайной способностью к регенерации. Утрата ткани печени вследствие хирургического удаления или действия токсических веществ запускает механизм, благодаря которому гепатоциты начинают делиться, что продолжается до тех пор, пока не восстановится первоначальная масса ткани. У человека эта способность существенно ограничена, но все же остается достаточно выраженной, поэтому фрагменты печени могут быть использованы при хирургической трансплантации печени.

Ткань регенерировавшей печени обычно хорошо организована, в ней выявляется типичное дольковое строение, и функционально она замещает разрушенную ткань. Однако когда происходит непрерывное или повторное повреждение гепатоцитов в течение длительного периода времени, размножение клеток печени сопровождается существенным увеличением содержания соединительной ткани. Вместо образования нормальной ткани печени происходит формирование узелков различных размеров, большая часть которых видна невооруженным глазом. Эти узелки состоят из центральной массы дезорганизованных гепатоцитов, окруженных значительным количеством соединительной ткани, очень богатой коллагеновыми волокнами.

medicalplanet.su

Кровоснабжение печени

Печень получает кровь из двух сосудистых систем: печеночной артерии и воротной вены. По печеночной артерии в печень поступает около 20 % всей крови. Она доставляет органу кислород. Из системы воротной вены печень получает до 80 % крови. Это кровь от непарных органов брюшной полости (кишечника, селезенки, поджелудочной железы), богатая питательными веществами, гормонами, биологически активными веществами, антителами и веществами, подлежащими детоксикации. Сосуды обеих сосудистых систем распадаются на долевые, сегментарные, субсегментарные и, наконец, междольковые артерии и вены. Последние входят в состав триад. От междольковых артерий и вен отходят вокругдольковые сосуды. Они окружают дольку по периметру. От вокругдольковых артерий и вен начинаются короткие артериолы и венулы, которые входят в дольку, сливаются вместе и дают синусоидные капилляры. В капиллярах течет смешанная кровь, причем ее состав может регулироваться сфинктером в стенке вокругдольковой артерии. Синусоидные капилляры идут радиально к центру дольки, сливаются и образуют центральную вену. Из центральной вены кровь собирается в собирательные или поддольковые вены, далее в печеночные вены и в нижнюю полую вену.

Желчевыводящие пути служат для отведения желчи в двенадцатиперстную кишку. Желчь образуется гепатоцитами и поступает в желчные капилляры. Желчные капилляры имеют диаметр 0,5 1,5 мкм. На периферии классической дольки желчные капилляры впадают в короткие канальцы Геринга, выстланные плоским или кубическим эпителием. Канальцы Геринга впадают в холангиолы, которые окружают дольку по периметру. Из холангиол образуются междольковые выводные протоки, входящие в состав триад и выстланные однослойным кубическим, а более крупные - призматическим эпителием. Кроме эпителия в состав стенки междольковых выводных протоков входит собственная пластинка из рыхлой волокнистой соединительной ткани. Все перечисленные сосуды являются внутрипеченочными желчными путями. Междольковые выводные протоки продолжаются во внепеченочные желчные пути: правый и левый печеночные (долевые), общий печеночный проток, сливающийся с пузырным протоком с образованием общего желчного протока. Все эти протоки построены по типу слоистых органов: имеют слизистую оболочку (однослойный цилиндрический эпителий и собственная пластинка из рыхлой волокнистой соединительной ткани), мышечную и адвентициальную оболочки.

www.studfiles.ru

Гепатоциты (Г) в печеночной пластинке (ПП) несколько отделены друг от друга. На рисунке один из них срезан, чтобы продемонстрировать его внутреннюю структуру.

Гепатоцит - полигональная клетка печени с двумя видами поверхности. Синусоидальные поверхности ориентированы в направлении печеночных синусоидных капилляров (СК) и покрыты микроворсинками (Мв). Почти гладкие желчные поверхности , каждая из которых расположена между двумя синусоидальными поверхностями, формируют половину стенки желчных канальцев (ЖК).


Гепатоциты - большие клетки размером 15-30 мкм. Около 25% из них - двуядерные; 70 % - одноядерных гепатоцитов тетраплоидны и около 2 % - октаплоидны, т. е. с 4- или 8-кратным диплоидным набором хромосом.

Каждое ядро (Я) округлое и имеет одно или более ядрышек. Цитоплазма включает около 800 эллиптических или удлиненных митохондрий (М).

Хорошо развитый мультипластинчатый комплекс Гольджи (КГ) (до 50 комплексов) группируется обычно рядом с ядром и желчными канальцами. Удлиненные цистерны гранулярной эндоплазматической сети (ГЭС) часто продолжаются в трубочки агранулярной эндоплазматической сети (аГЭС). Лизосомы (Л), пероксисомы (П), частички гликогена (ЧГ), липидные капельки (ЛК) и свободные рибосомы находятся в большом количестве в цитоплазме гепатоцита.

По средней линии между двумя синусоидальными поверхностями гепатоцитов находится бороздка, которая идет вокруг тела клетки. Эта бороздка и соответствующая бороздка противоположного гепатоцита формируют канал шириной 0,5-1,5 мкм - желчный каналец (ЖК), или желчный капилляр. Желчные канальцы здесь не имеют собственных стенок. Канальцы могут иметь короткие ответвления, их внутренняя поверхность усеяна микроворсинками. Главной функцией гепатоцитов является секреция желчи в желчные канальцы с помощью механизма, который до сих пор не изучен. Чтобы предотвратить проникновение желчи в кровь, желчные канальцы закрыты замыкающими поясками (ЗП) - непроницаемыми плотными соединениями, которые идут вдоль них. В дополнение к ним пояски слияния (ПС) укрепляют кромки канальцев. Они располагаются в форме узкого пояса снаружи от замыкающего пояска.

Сверх того, гепатоциты соединены множеством нексусов (Н) и маленькими шишковидными интердигитациями (указаны стрелками).

Желчные канальцы продолжаются в терминальные желчные канальцы на периферии долек. Между желчными канальцами соседних долек нет анастомозов.

Печеночные пластинки ограничены с обеих сторон печеночными синусоидными капиллярами с эндотелиальными клетками (ЭК), которые имеют решетчатые пластинки (РП) и большие отверстия (О). Печеночные синусоидные капилляры не имеют базальной мембраны, поэтому микроворсинки видимы через эти отверстия. Диаметр этих отверстий обычно меньше, чем диаметр тромбоцитов и эритроцитов (Э), так что только плазма крови проходит через них и вступает в контакт с гепатоцитами.

Между гепатоцитами и стенкой печеночных синусоидных капилляров находится пространство Диссе (ПД), которое почти полностью заполнено микроворсинками гепатоцитов. Несколько ретикулярных и коллагеновых волокон (KB) проходят через пространство Диссе.

tardokanatomy.ru

Описание и строение клеток гепатоцитов

Печень на 60-85% состоит из гепатоцитов в количестве 250-300 млрд. Каждый гепатоцит выполняет важную роль в промежуточных реакциях печеночного метаболизма. Клетки способны:

  • участвовать в продукции и хранении протеинов;
  • корректировать процессы преобразования углеводов;
  • регулировать образование холестерина и кислот желчи;
  • помогать в процессах выведения токсичных эндогенных субстанций;
  • активизировать процессы образования желчи в печени.

Гепатоцит, как и любая другая клетка в организме, имеет ограниченное количество делений за весь период жизни. Если происходит постоянное разрушение гепатоцитов, в определенный промежуток времени они перестают восстанавливаться, а патологии, вызвавшие деструктивный процесс, становятся хроническими и необратимыми.

Клетки являются крупными и многокомпонентными. Львиный процент структуры составляют митохондрии, ретикулум, эндоплазма, гликоген, комплексы Гольджи, отвечающие за определенный набор свойств.

Поверхность гепатоцитов – ровная с небольшими участками, к которым с одной стороны крепятся желчные канальцы, а с другой – кровеносные синусоиды. Крепление осуществляется через особые микроворсинки, различающиеся по диметру сечения и длине. Большое количество этих соединительных волокон свидетельствует о высокой активности процессов поглощения и секреции. Из прямостоящих гепатоцитов формируются две дольки печени: правя и левая.

Функции

Из-за сложности строения функции гепатоцитов разнообразны:

  • Регулировка количества глюкозы в жидкой части крови. В присутствии инсулина гепатоциты выхватывают из кровотока лишнюю глюкозу, преобразуют ее в гликоген, который скапливается в цитоплазме. Гидрокортизон (гормон коры надпочечников) корректирует процесс. При нехватке глюкозы в крови происходит расщепление гликогена, а продуктами реакции восполняется дефицит сахара.

  • Осуществление метаболизма жирных кислот. Процессы регулируются в цитоплазме гепатоцитов, которая содержит митохондрии, лизосомы, гладкие и гранулярные микротельца и ретикулум, продуцирующие ферменты для расщепления и преобразования жиров и липопротеидов.
  • Синтез специфичных белков кровяной плазмы, таких как альбумин, фибриноген, глобулин (кроме иммуноглобулинов).
  • Дезактивация лекарственных препаратов, химвеществ, алкоголя, стероидных гормонов, всасывающихся в кишечнике.
  • Выработка больших объемов лимфы, обогащенной белками.
  • Продукция желчи. В гепатоцитах имеются микроворсинки, которые передают микрокомпоненты желчи в малые желчные канальцы у границ каждой печеночной дольки. Эти канальцы объединяются в крупные внутрипеченочные протоки из кубического эпителия с базальной мембраной. Желчь продуцируется непрерывно (по 1,2 л за 24 часа), но она не вся поступает в кишечник. Когда приток пищи отсутствует, желчь направляется в желчный пузырь через отдельный пузырный проток, ответвленный от внутрипеченочного канала.

Синдром цитолиза

Болезнь включает в себя группу патологических состояний, при которых происходит деструкция гепатоцитов печени в результате некротических или дистрофических изменений в паренхиме. Характер патологии определяется причинами его возникновения. В зависимости от вида и тяжести болезни процесс разрушения печеночных клеток обратимый (посредством естественной или медикаментозной регенерации) или необратимый.

При цитолизном поражении разрушается защитная оболочка гепатоцита, после чего активные ферменты начинают работать против самой печени, провоцируя некроз и дистрофию тканей. Цитолиз может возникнуть в любом возрасте, например, в младенчестве - аутоимунная деструкция, у людей старше 50-ти лет - жировое перерождение. Клиническая картина синдрома зависит от стадии недуга, степени повреждений. Долгое время болезнь не дает о себе знать. При быстром прогрессе или тотальном разрушении гепатоцитов наблюдается выраженная желтуха кожи, глазных склер и слизистых. Объясняется пожелтение активным выбросом билирубина в кровь, сигнализирующим о нарушении метаболизма.

Поражение клеток печени может быть восстанавливаемым или нет.

Другим характерным признаком того, что началось глобальное повреждение гепатоцитов, является пищеварительная дисфункция, выражающаяся:

  • повышением кислотности желудочного сока;
  • отрыжкой;
  • изжогой;
  • горьковатым послевкусием во рту после еды и натощак.

На последних стадиях разрушения проявляется печеночная симптоматика, связанная с изменениями органа в размерах:

  • боли справа в подреберье;
  • пальпирование уплотнения в области проекции больной печени.

Причины

Существует широкая группа факторов, которые могут привести к повреждению гепатоцитов. Самые значимые причины деструкции органа следующие:

В группе риска скорого повреждения гепатоцитов являются люди:

Здоровье печени находится под угрозой у людей часто принимающих таблетки, живущих в экологически загрязнённых районах, с вредными привычками и с нездоровым питанием.
  • имеющие болезни печени с гепатоцитарной недостаточностью, нарушением кровотока в органе;
  • женского пола (при беременности, в пожилом и старческом возрасте);
  • находящиеся на несбалансированной диете или на длительном парентеральном питании из-за резкого снижения массы тела, вегетарианцы;
  • живущие в неблагоприятной окружающей среде, например, в зонах, загрязненных тяжелыми металлами, инсектицидами, диоксином и прочими токсинами;
  • чрезмерно употребляющие в обиходе чистящие средства бытовой химии;
  • принимающие одновременно три и более видов лекарств.

Лечение и профилактика

Чтобы восстановление гепатоцитов прошло успешно, в первую очередь, важно избавиться от воздействия отрицательного фактора, вызвавшего заболевание, например:

  • исключить бесконтрольное лечение медпрепаратами;
  • полностью отказаться от алкоголя;
  • вести активный образ жизни;
  • качественно отдыхать и высыпаться;
  • пересмотреть питание в пользу правильного питания.

Может потребоваться смена места жительства и профессии.

Основные приемы:

  • Диетотерапия. Особенно эффективна при применении на ранних стадиях, когда гепатоциты не утратили способность самовосстанавливаться. Питание - дробное, малыми порциями. Лечебный рацион должен включать:
  1. рыбу, морепродукты;
  2. каши из круп;
  3. цельнозерновой хлеб;
  4. кисломолочку;
  5. отвары на костях;
  6. вареные яйца;
  7. растительные масла;
  8. отварные овощи, свежие фрукты с ягодами без костей;
  9. сухофрукты, орехи;
  10. куркуму, чеснок;
  • Периодическая чистка печени. Перед переходом на лечебную диету (далее, 1-2 раза в год) следует проводить очищение организма. Для этого применяется метод слепого зондирования с магнезией или другие народные способы чистки подручными средствами, которые можно применить в домашних условиях.

  • Медикаментозная терапия. Лекарства для восстановления гепатоцитов наделены следующими задачами:
  1. защищают здоровые и восстанавливают поврежденные клетки;
  2. запускают синтез новых гепатоцитов;
  3. активизируют способности клеток разрастаться и забирать функции поврежденных гепатоцитов на себя, что позволяет делать работу печени в полной мере до устранения повреждений;
  4. нормализуют синтез и отток желчи.

Такие препараты содержат аминокислоты, фосфолипиды, ферменты, важные для обеспечения защиты межклеточных мембран. К ним относятся представители натурального происхождения, синтезированные из вытяжек печени животных. Некоторые из них - комбинированные. Примеры: «Гептрал», «Гепабене», «Карсил», «Эсенциале», «Галстена», «Хофитол», «Аллохол», «Урсофальк».

  • Народные средства. Рецепты применяются в качестве дополнения к основной терапии. Популярные:
  1. чай из рылец и столбиков кукурузы;
  2. напиток из разведенного водой меда с корицей;
  3. смешанный настой из сока лимона, яблочного уксуса, меда, оливкового масла;
  4. варенье из цветков одуванчика на воде, сдобренный соком лимона, сахаром;
  5. сок из майского лопуха.


Рассказать друзьям