Основные свойства силовых линий электростатического поля. Силовые линии электрического поля

💖 Нравится? Поделись с друзьями ссылкой

Мыслителям прошлого трудно было принять концепцию «действия на расстоянии». И правда, как может один заряд действовать на другой, если они не соприкасаются?
Даже Ньютону, применившему эту идею в теории всемирного тяготения, нелегко было свыкнуться с нею. Как мы видели, однако, эти трудности можно преодолеть с помощью понятия поля, которое ввел английский ученый Майкл Фарадей (1791-1867). Согласно Фарадею, от каждого заряда исходит электрическое поле, пронизывающее все пространство. Когда к одному заряду подносят другой, он испытывает действие силы, которая обусловлена электрическим полем первого заряда. Электрическое поле в точке, где находится второй заряд, влияет непосредственно на этот заряд, создавая действующую на него силу. Следует подчеркнуть, что поле не является некой разновидностью вещества; правильнее сказать, это - чрезвычайно полезная концепция.

Поле, создаваемое одним или несколькими зарядами, можно исследовать с помощью небольшого положительного пробного заряда, измеряя действующую на него силу. Под пробным зарядом мы понимаем достаточно малый заряд, собственное поле которого не меняет существенно распределения остальных зарядов, создающих исследуемое поле. Силы, действующие на малый пробный заряд q в окрестности уединенного положительного заряда Q , показаны на рис. 22.13. Сила в точке b меньше, чем в a, из-за большего расстояния между зарядами (закон Кулона); в точке с сила еще меньше. Во всех случаях сила направлена радиально от заряда Q .
По определению напряженность электрического поля , (или просто электрическое поле ) E в любой точке пространства равна отношению силы F , действующей на малый положительный пробный заряд q , к величине этого заряда:

Из вышеописанного определения следует, что направление напряженности электрического поля в любой точке пространства совпадает с направлением силы, действующей в этой точке на положительный пробный заряд. Напряженность электрического поля представляет собой силу, действующую на единицу заряда; она измеряется в ньютонах на кулон (Н/Кл).

Более строго Е определяется как предел отношения F/q при q , стремящемся к нулю.

Напряженность электрического поля Е определяется через отношение F/q , чтобы исключить зависимость поля Е от величины пробного заряда q . Иначе говоря, Е учитывает только те заряды, которые создают рассматриваемое в данной точке электрическое поле. Поскольку Е - векторная величина, электрическое поле является векторным полем.

Силовые линии

Коль скоро электрическое поле является векторным, его можно изображать в различных точках стрелками, как это сделано на рис. 22.13. Направления векторов Еа , Еb , Ес совпадали бы с направлениями показанных на этом рисунке сил и лишь длина их была бы уже иной в результате деления на q . Отношение длин векторов Еа , Еb , Ес сохранится прежним, так как мы делим на один и тот же заряд. Однако изображать электрическое поле таким образом неудобно, поскольку при большом числе точек весь рисунок будет испещрен стрелками. Поэтому пользуются другим способом изображения поля-методом силовых линий.

Для наглядного представления электрического поля его изображают семейством линий, указывающих направление напряженности поля в каждой точке пространства.
Эти так называемые силовые линии проводятся так, чтобы указывать направление силы, действующей в данном поле на положительный пробный заряд. Силовые линии точечного положительного заряда показаны на рис. 22.20, а, отрицательного - на рис. 22.20,6.
В первом случае линии радиально расходятся от заряда, во втором они радиально сходятся к заряду. Именно в таком направлении будут действовать силы на положительный пробный заряд. Конечно, силовые линии можно нанести и в промежутках между изображенными на рисунке. Но мы условимся наносить силовые линии с таким расчетом, чтобы число линий, исходящих от положительного заряда или заканчивающихся на отрицательном заряде, было пропорционально величине этого заряда.
Обратим внимание на то, что вблизи заряда, где сила максимальна, линии расположены более тесно. Это общее свойство силовых линий: чем теснее расположены силовые линии, тем сильнее электрическое поле в этой области. Вообще говоря, можно всегда изображать силовые линии таким образом, чтобы число линий, пересекающих единичную площадку, перпендикулярную направлению поля Е , было пропорционально напряженности электрического поля. Например, для уединенного точечного заряда (рис. 22.20) напряженность электрического поля убывает как 1/r 2 ; так же будет уменьшаться с расстоянием и число равномерно распределенных силовых линий, пересекающих единичную площадку: ведь общее число силовых линий остается постоянным, а площадь поверхности, через которую они проходят, растет как 4πr 2 (поверхность сферы радиусом г). Соответственно число силовых линий на единицу площади пропорционально 1/r 2 .

На рис. 22.21, а показаны силовые линии поля, создаваемого двумя зарядами противоположных знаков. Здесь силовые линии искривлены и направлены от положительного заряда к отрицательному. Поле в любой точке направлено по касательной к силовой линии, как показано стрелкой в точке Р.
На рис. 22.21,6 и в показаны силовые линии электрического поля двух положительных зарядов и поля между двумя параллельными противоположно заряженными пластинами. Заметим, что силовые линии поля между пластинами параллельны и расположены на равном расстоянии друг от друга, исключая область вблизи краев.

Таким образом, в центральной области напряженность электрического поля во всех точках одинакова, и мы можем написать:
Е = const (между близко расположенными параллельными пластинами).
Хотя вблизи краев это не так (силовые линии изгибаются), часто этим можно пренебречь, особенно если расстояние между пластинами мало по сравнению с их размерами. [Сравните этот результат со случаем уединенного точечного заряда, где поле изменяется обратно пропорционально квадрату расстояния].

Итак, силовые линии обладают следующими свойствами:

1. Силовые линии указывают направление напряженности электрического поля: в любой точке напряженность поля направлена по касательной к силовой линии.

2. Силовые линии проводятся так, чтобы напряженность электрического поля Е была пропорциональна числу линий, проходящих через единичную площадку, перпендикулярную линиям.

3. Силовые линии начинаются только на положительных зарядах и заканчиваются только на отрицательных зарядах; число линий, выходящих из заряда или входящих в него, пропорционально величине заряда.

Можно также сказать, что силовая линия электрического поля - это траектория, по которой следовал бы помещенный в поле малый пробный заряд. (Строго говоря, это верно лишь в том случае, если пробный заряд не обладает инерцией или движется медленно, например вследствие трения.)
Силовые линии никогда не пересекаются. (Если бы они пересекались, это означало бы, что в одной и той же точке напряженность электрического поля имеет два различных направления, что лишено смысла.)

Электрические поля и проводники

В статическом случае (т.е. когда заряды покоятся) электрическое поле внутри хорошего проводника отсутствует. Если бы в проводнике существовало электрическое поле, то на внутренние свободные электроны действовала бы сила, вследствие чего электроны пришли бы в движение и двигались до тех пор, пока не заняли бы такое положение, при котором, напряженность электрического поля, а стало быть, и действующая на них сила обратились бы в нуль. Из этого рассуждения вытекают любопытные следствия. В частности, если проводник обладает результирующим зарядом, то этот заряд распределяется по внешней поверхности проводника. Этот факт можно объяснить с иной точки зрения. Если, например, проводник заряжен отрицательно, то мы легко можем представить, что отрицательные заряды отталкивают друг друга и устремляются к поверхности проводника, чтобы расположиться как можно дальше друг от друга. Другое следствие состоит в следующем. Пусть положительный заряд Q помещен в центр полого изолированного проводника в форме сферической оболочки (рис. 22.22).
Поскольку внутри проводника электрического поля быть не может, силовые линии, идущие от положительного заряда, должны заканчиваться на отрицательных зарядах на внутренней поверхности металлической сферы. В результате на внутренней поверхности сферического проводника будет индуцирован соответствующий отрицательный заряд -Q , а равный по величине положительный заряд +Q распределится по внешней поверхности сферы (поскольку в целом оболочка нейтральна). Таким образом, хотя внутри проводника электрическое поле отсутствует, снаружи сферы существует электрическое поле (рис. 22.22), как если бы металлической сферы вовсе не было.

С этим связано также и то обстоятельство, что силовые линии электрического поля всегда перпендикулярны поверхности проводника. Действительно, если бы вектор напряженности электрического поля Е имел компоненту, параллельную поверхности проводника, то электроны под действием силы двигались бы до тех пор, пока не заняли положение, в котором на них не действует сила, т. е. пока вектор напряженности электрического поля не будет перпендикулярен поверхности.

Все сказанное относится только к проводникам. В изоляторах, у которых нет свободных электронов, может существовать электрическое поле и силовые линии не обязательно перпендикулярны поверхности.

Продолжение следует. Коротко о следующей публикации:

Замечания и предложения принимаются и приветствуются!

· Силовые линии электрического поля имеют начало и конец. Они начинаются на положительных зарядах и заканчиваются на отрицательных.

· Силовые линии электрического поля всегда перпендикулярны поверхности проводника.

· Распределение силовых линий электрического поля определяет характер поля. Поле может быть радиальным (если силовые линии выходят из одной точки или сходятся в одной точке), однородным (если силовые линии параллельны) и неоднородным (если силовые линии не параллельны).


20)
Напоминаю, что это энергетические характеристики электрического поля.

Потенциал электрического поля в любой его точке определяется как

.

и равен потенциальной энергии единичного заряда, внесенного в данную точку поля.

Если заряд переместить в поле из точки 1 в точку 2, то между этими точками возникает разность потенциалов

.

Смысл разности потенциалов: это работа электрического поля по перемещению заряда из одной точки в другую.

Потенциал поля также можно интерпретировать через работую Если т.2 находится в бесконечности, где поля нет (), то - это работа поля по перемещению заряда из данной точки в бесконечность. Потенциал поля, созданного одиночным зарядом рассчитывается как .

Поверхности, в каждой точке которой потенциалы поля одинаковы, называются эквипотенциальными поверхностями. В поле диполя потенциальные поверхности распределены следующим образом:

Потенциал поля, образованного несколькими зарядами, рассчитывается по принципу суперпозиции: .

а) Расчет потенциала в т. А, расположенной не на оси диполя:

Найдем из треугольника (). Очевидно, . Поэтому и .

.

б) Между точками А и В, равноотстоящими от диполя на расстоянии

() разность потенциалов определяется как (примем без доказательства, которое Вы найдете в учебнике Ремизова)

.

в) Можно показать, что если диполь находится в центре равностороннего треугольника, то разность потенциалов между вершинами треугольника соотносятся как проекции вектора на стороны этого треугольника ().


21)
- рассчитывается работа электрического поля вдоль силовых линий.

1. Работа в электрическом поле не зависит от формы пути.

2. Работа перпендикулярная силовым линиям не совершается.

3. По замкнутому контуру работа в электрическом поле не совершается.

Энергетическая характеристика электрического поля (потанцеал).

1) Физический смысл:

Если Кл, то (численно), при условии что заряд помещён в данную точку электрического поля.

Единица измерения:

2) Физический смысл:

Если в данную точку поместить единичный положительный точечный заряд, то (численно), при перемещении из данной точки в бесконечность.


Δφ - разность потанцеала двух точек электрического поля.

U – напряжение – «у» - это разность потанцеалов двух точек электрического поля.

[U]=В (Вольт)

Физический смысл:

Если , то (численно) при перемещении из одной точки поля в другую.

Связь между напряжением и напряженностью:


22)
В электростатическом поле все точки проводника имеют один и тот же потенциал, который пропорционален заряду проводника, т.е. отношения заряда q к потенциалу φ не зависит от заряда q. (Электростатическим называется поле, окружающее неподвижные заряды). Поэтому оказалось возможным ввести понятие электрической ёмкости C уединённого проводника:

Электроёмкость - это величина, численно равная заряду, который нужно сообщить проводнику, чтобы его потенциал изменился на единицу.

Ёмкость определяется геометрическими размерами проводника, его формой и свойствами окружающей среды и не зависит от материала проводника.

Единицы измерения для величин, входящих в определении ёмкости:

Ёмкость - обозначение C, единица измерения - Фарад (Ф, F);

Электрический заряд - обозначение q, единица измерения - кулон (Кл, С);

φ - потенциал поля - вольт (В, V).

Можно создать систему проводников, которая будет обладать ёмкостью гораздо большей, чем отдельный проводник, не зависящей от окружающих тел. Такую систему называют конденсатором. Простейший конденсатор состоит из двух проводящих пластин, расположенных на малом расстоянии друг от друга (Рис.1.9). Электрическое поле конденсатора сосредоточено между обкладками конденсатора, то есть внутри его. Ёмкость конденсатора:

С = q / (φ1 - φ2) = q / U

(φ1 - φ2) - разность потенциалов между обкладками конденсатора, т.е. напряжение.

Ёмкость конденсатора зависит от его размеров, формы и диэлектрической проницаемости ε диэлектрика, находящегося между обкладками.

C = ε∙εo∙S / d, где

S - площадь обкладки;

d - расстояние между обкладками;

ε - диэлектрическая проницаемость диэлектрика между обкладками;

εo - электрическая постоянная 8,85∙10-12Ф/м.

При необходимости увеличить ёмкость конденсаторы соединяют между собой параллельно.

Рис.1.10. Параллельное соединение конденсаторов.

Cобщ = C1 + C2 + C3

При параллельном соединении все конденсаторы находятся под одним напряжением, а общий их заряд Q. При этом каждый конденсатор получит заряд Q1, Q2, Q3, ...

Q = Q1 + Q2 + Q3

Q1 = C1∙U; Q2 = C2∙U; Q3 = C3∙U. Подставим в вышестоящее уравнение:

C∙U = C1∙U + C2∙U + C3∙U, откуда C = C1 + C2 + C3 (и так для любого количества конденсаторов).

При последовательном соединении:

Рис.1.11. Последовательное соединение конденсаторов.

1/Cобщ = 1/C1 + 1/C2 + ∙∙∙∙∙ + 1/ Cn

Вывод формулы:

Напряжение на отдельных конденсаторах U1, U2, U3,..., Un. Общее напряжение всех конденсаторов:

U = U1 + U2 + ∙∙∙∙∙ + Un,

учитывая, что U1 = Q/ C1; U2 = Q/ C2; Un = Q/ Cn, подставив и разделив на Q, получимсоотношение для расчета емкости цепи с последовательныи соединением конденсаторов

Единицы измерения ёмкости:

Ф - фарад. Это очень большая величина, поэтому используют меньшие величины:

1 мкФ = 1 μF = 10-6Ф (микрофарада);

1 нФ = 1 nF = 10-9 Ф (нанофарада);

1 пФ = 1pF = 10-12Ф (пикофарада).

23) Если проводник поместить в электрическое поле то на свободные заряды q в проводнике будет действовать сила . В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, скомпенсирует полностью внешнее поле. Результирующее электростатическое поле внутри проводника будет равно нулю (см. § 43). Однако в проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током. За направление электрического тока принято направление движения положительных свободных зарядов. Для существования электрического тока в проводнике необходимо выполнение двух условий:

1) наличие свободных зарядов в проводнике – носителей тока;

2) наличие электрического поля в проводнике.

Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда Δq, переносимого через поперечное сечение проводника (рис. 11.1) за интервал времени Δt, к этому интервалу времени:

Упорядоченное движение свободных носителей тока в проводнике характеризуется скоростью упорядоченного движения носителей. Эта скорость называется скоростью дрейфа носителей тока. Пусть цилиндрический проводник (рис. 11.1) имеет поперечное сечение площадью S . В объеме проводника, ограниченном поперечными сечениями 1 и 2 с расстоянием ∆х между ними содержится число носителей тока ∆N = nS х , где n – концентрация носителей тока. Их общий заряд ∆q = q 0 ∆N = q 0 nS х . Если под действием электрического поля носители тока движутся слева направо со скоростью дрейфа v др , то за время ∆t= x/v др все носители, заключенные в этом объеме, пройдут через поперечное сечение 2 и создадут электрический ток. Сила тока равна:

. (11.2)

Плотностью тока называется величина электрического тока, протекающего через единицу площади поперечного сечения проводника:

. (11.3)

В металлическом проводнике носителями тока являются свободные электроны металла. Найдем скорость дрейфа свободных электронов. При силе тока I = 1А, площади поперечного сечения проводника S = 1мм 2 , концентрации свободных электронов (например, в меди) n = 8,5·10 28 м --3 и q 0 = e = 1,6·10 –19 Кл получим:

v др = .

Видим, что скорость направленного движения электронов очень мала, гораздо меньше скорости хаотичного теплового движения свободных электронов.

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным.

В Международной системе единиц СИ сила тока измеряется в амперах (А). Единица измерения тока 1 А устанавливается по магнитному взаимодействию двух параллельных проводников с током.

Постоянный электрический ток может быть создан в замкнутой цепи, в которой свободные носители заряда циркулируют по замкнутым траекториям. Но при перемещении электрического заряда в электростатическом поле по замкнутой траектории, работа электрических сил равна нулю. Поэтому для существования постоянного тока необходимо наличие в электрической цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками постоянного тока. Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами.

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.

Физическая величина, равная отношению работы A ст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):

ε . (11.2)

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

При перемещении единичного положительного заряда по замкнутой цепи постоянного тока работа сторонних сил равна сумме ЭДС, действующих в этой цепи, а работа электростатического поля равна нулю.

Различают поля скалярные и векторные (в нашем случае векторным полем будет электрическое). Соответственно, они моделируются скалярными или векторными функциями координат, а также временем.

Скалярное поле описывается функцией вида φ. Такие поля можно наглядно отобразить с помощью поверхностей одинакового уровня: φ (x, y, z) = c, c = const.

Определим вектор, который направлен в сторону максимального роста функции φ.

Абсолютное значение этого вектора определяет скорость изменения функции φ.

Очевидно, что скалярное поле порождает векторное поле.

Такое электрическое поле называют потенциальным, а функция φ называется потенциалом. Поверхности одинакового уровня называют эквипотенциальными поверхностями. Для примера рассмотрим электрическое поле.

Для наглядного отображения полей строят так называемые силовые линии электрического поля. Еще их называют векторными линиями. Это линии, касательная к которым в точке указывает направление электрического поля. Количество линий, которые проходят через единичную поверхность, пропорционально абсолютному значению вектора.

Введем понятие векторного дифференциала вдоль некоторой линии l. Этот вектор направлен по касательной к линии l и по абсолютному значению равен дифференциалу dl.

Пусть задано некоторое электрическое поле, которое нужно представить как силовые линии поля. Другими словами, определим коэффициент растяжения (сжатия) k вектора, чтобы он совпадал с дифференциалом. Приравнивая компоненты дифференциала и вектора, получим систему уравнений. После интегрирования можно построить уравнение силовых линий.

В векторном анализе есть операции, которые дают информацию о том, какие силовые линии электрического поля имеют место в конкретном случае. Введем понятие «поток вектора» на поверхности S. Формальное определение потока Ф имеет следующий вид: величина, рассматривается как произведение обычного дифференциала ds на орт нормали к поверхности s. Орт выбирается так, чтобы он определял внешнюю нормаль поверхности.

Можно провести аналогию между понятием потока поля и потока вещества: вещество за единицу времени проходит через поверхность, которая в свою очередь перпендикулярна направлению потока поля. Если силовые линии выходят из поверхности S наружу, тогда поток является положительным, а если не выходят - отрицательным. В общем случае поток можно оценить числом силовых линий, что выходят из поверхности. С другой стороны, величина потока пропорциональна числу силовых линий, пронизывающих элемент поверхности.

Дивергенция векторной функции рассчитывается в точке, околышем которой является объем ΔV. S - поверхность, охватывающая объем ΔV. Операция дивергенции позволяет характеризовать точки пространства на наличие в нем источников поля. При сжатии поверхности S в точку P силовые линии электрического поля, пронизывающие поверхность, останутся в том же количестве. Если точка пространства не является источником поля (утечкой или стоком), то при сжатии поверхности в эту точку сумма силовых линий, начиная с некоторого момента, равняется нулю (количество линий, входящих в поверхность S равно количеству линий, исходящих из этой поверхности).

Интеграл по замкнутому контуру L в определении операции ротора называется циркуляцией электричества по контуру L. Операция ротора характеризует поле в точке пространства. Направление ротора определяет величину замкнутого потока поля вокруг данной точки (ротор характеризирует вихрь поля) и его направление. Основываясь на определение ротора, путем несложных преобразований можно рассчитать проекции вектора электричества в декартовой системе координат, а также силовые линии электрического поля.

    Электри́ческий заря́д (коли́чество электри́чества ) - это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. Впервые электрический заряд был введён в законе Кулона в 1785 году.

Единица измерения заряда в Международной системе единиц (СИ) - кулон - электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 А за время 1 с. Заряд в один кулон очень велик. Если бы два носителя заряда (q 1 = q 2 = 1 Кл) расположили в вакууме на расстоянии 1 м, то они взаимодействовали бы с силой 9·10 9 H, то есть с силой, с которой гравитация Земли притягивала бы предмет с массой порядка 1 миллиона тонн. Электрический заряд замкнутой системы сохраняется во времени и квантуется - изменяется порциями, кратными элементарному электрическому заряду, то есть, другими словами, алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, не изменяется при любых процессах, происходящих в этой системе.

Взаимодействие зарядов Самое простое и повседневное явление, в котором обнаруживается факт существования в природе электрических зарядов, - этоэлектризация тел при соприкосновении . Способность электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется существованием двух различных видов зарядов . Один вид электрического заряда называют положительным, а другой - отрицательным. Разноимённо заряженные тела притягиваются, а одноимённо заряженные - отталкиваются друг от друга.

При соприкосновении двух электрически нейтральных тел в результате трения заряды переходят от одного тела к другому. В каждом из них нарушается равенство суммы положительных и отрицательных зарядов, и тела заряжаются разноимённо.

При электризации тела через влияние в нём нарушается равномерное распределение зарядов. Они перераспределяются так, что в одной части тела возникает избыток положительных зарядов, а в другой - отрицательных. Если две эти части разъединить, то они будут заряжены разноимённо.

Закон сохранения эл. Заряда В рассматриваемой системе могут образовываться новые электрически заряженные частицы, например, электроны - вследствие явления ионизации атомов или молекул, ионы - за счёт явления электролитической диссоциации и др. Однако, если система электрически изолирована, то алгебраическая сумма зарядов всех частиц, в том числе и вновь появившихся в такой системе, всегда равна нулю.

Закон сохранения электрического заряда - один из основополагающих законов физики. Он был впервые экспериментально подтверждён в 1843 году английским учёным Майклом Фарадеем и считается на настоящее время одним из фундаментальных законов сохранения в физике (подобно законам сохранения импульса иэнергии). Всё более чувствительные экспериментальные проверки закона сохранения заряда, продолжающиеся и поныне, пока не выявили отклонений от этого закона.

. Электрический заряд и его дискретность . Закон сохранения заряда. Закон сохранения электрического заряда гласит, что алгебраическая сумма зарядов электрически замкнутой системы сохраняется. q, Q, e – обозначения электрического заряда. Единицы заряда в СИ [q]=Кл (Кулон). 1мКл = 10-3 Кл; 1 мкКл = 10-6 Кл; 1нКл = 10-9 Кл; е = 1,6∙10-19 Кл – элементарный заряд. Элементарный заряд, е – минимальный заряд, встречающийся в природе. Электрон: qe = - e - заряд электрона; m = 9,1∙10-31 кг – масса электрона и позитрона. Позитрон, протон: qp = + e – заряд позитрона и протона. Любое заряженное тело содержит целое число элементарных зарядов: q = ± Ne; (1) Формула (1) выражает принцип дискретности электрического заряда, где N = 1,2,3…- целое положительное число. Закон сохранения электрического заряда: заряд электрически изолированной системы с течением времени не изменяется: q = const. Закон Кулона – один из основных законов электростатики, определяющий силу взаимодействия между двумя точечными электрическими зарядами.

Закон установлен в 1785 году Ш.Кулоном с помощью изобретенных им крутильных весов. Кулон интересовался не столько электричеством, сколько изготовлением, приборов. Изобретя чрезвычайно чувствительный прибор для измерения силы – крутильные весы он искал возможности его применения.

Для подвеса Кулон использовал шелковую нить длиной 10 см, которая поворачивалась на 1° при силе 3*10 -9 гс. С помощью этого прибора он и установил, что сила взаимодействия между двумя электрическими зарядами и между двумя полюсами магнитов обратно пропорциональна квадрату расстояния между зарядами или полюсами.

Два точечных заряда взаимодействуют друг с другом в вакууме с силой F , величина которой пропорциональна произведению зарядов е 1 и е 2 и обратно пропорциональна квадрату рассторасстояния r между ними:

Коэффициент пропорциональности k зависит от выбора системы единиц измерений (в системе единиц Гаусса k = 1, в СИ

ε 0 – электрическая постоянная).

Сила F направлена по прямой, соединяющей заряды, и соответствует притяжению для разноименных зарядов и отталкиванию для одноименных.

Если взаимодействующие заряды находятся в однородном диэлектрике, с диэлектрической проницаемостью ε , то сила взаимодействия уменьшается в ε раз:

Законом Кулона называется также закон, определяющий силу взаимодействия двух магнитных полюсов:

где m 1 и m 2 – магнитные заряды,

μ – магнитная проницаемость среды,

f – коэффициент пропорциональности, зависящий от выбора системы единиц.

    Электрическое поле – отдельная форма проявления (наряду с магнитным полем) электромагнитного поля.

В процессе развития физики существовало два подхода к объяснению причин взаимодействия электрических зарядов.

По первой версии, силовое действие между отдельными заряженными телами объяснялось присутствием промежуточных звеньев, передающих это действие, т.е. наличием окружающей тела среды, в которой действие передается от точки к точке с конечной скоростью. Эта теория получила название теории близкодействия .

Согласно второй версии, действие передается мгновенно на любые расстояния, при этом промежуточная среда может отсутствовать вовсе. Один заряд мгновенно «ощущает» присутствие другого, при этом никаких изменений в окружающем пространстве не происходит. Эту теорию назвали теорией дальнодействия .

Понятие «электрическое поле» было введено М. Фарадеем в 30-х годах XIX века.

Согласно Фарадею, каждый покоящийся заряд создает в окружающем пространстве электрическое поле. Поле одного заряда действует на другой заряд и на оборот (концепция близкодействия).

Электрическое поле, создаваемое неподвижными зарядами и не изменяющееся со временем, называется электростатическим . Электростатическое поле характеризует взаимодействие неподвижных зарядов.

Напряжённость электри́ческого по́ля - векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на неподвижный точечныйзаряд, помещённый в данную точку поля, к величине этого заряда :

Из этого определения видно, почему напряжённость электрического поля иногда называется силовой характеристикой электрического поля (действительно, всё отличие от вектора силы, действующей на заряженную частицу, только в постоянном множителе).

В каждой точке пространства в данный момент времени существует своё значение вектора (вообще говоря - разное в разных точках пространства), таким образом, -- этовекторное поле. Формально это выражается в записи

представляющей напряжённость электрического поля как функцию пространственных координат (и времени, так как может меняться со временем). Это поле вместе с полемвектора магнитной индукции представляет собой электромагнитное поле , и законы, которым оно подчиняется, есть предмет электродинамики.

Напряжённость электрического поля в Международной системе единиц (СИ) измеряется в вольтах на метр [В/м] или в ньютонах на кулон [Н/Кл].

Сила, с которой действует электромагнитное поле на заряженные частицы [

Полная сила, с которой электромагнитное поле (включающее вообще говоря электрическую и магнитную составляющие) действует на заряженную частицу, выражается формулой силы Лоренца:

где q - электрический заряд частицы, - её скорость,- вектормагнитной индукции (основная характеристика магнитного поля), косым крестом обозначеновекторное произведение. Формула приведена в единицах СИ.

Заряды, создающие электростатическое поле, можно распределить в пространстве либо дискертно, либо непрерывно. В первом случае напряженность поля: n E = Σ Ei₃ i=t, где Ei – напряженность в определенной точке пространства поля, создаваемого одним i-м зарядом системы, а n – суммарное число дискертных зарядов, которые входят в состав системы. Пример решения задачи, в основу которого положен принцип суперпозиции электрических полей. Так для определения напряженности электростатического поля, которое создается в вакууме неподвижными точечными зарядами q₁, q₂, …, qn, используем формулу: n E = (1/4πε₀) Σ (qi/r³i)ri i=t, где ri – радиус-вектор, проведенный из точечного заряда qi в рассматриваемую точку поля. Приведем еще один пример. Определение напряженности электростатического поля, которое создается в вакууме электрическим диполем. Электрическое диполе - система из двух одинаковых по абсолютной величине и, при этом, противоположных по знаку зарядов q>0 и –q, расстояние I между которыми относительно мало в сравнении с расстоянием рассматриваемых точек. Плечом диполя будет называться вектор l, который направлен по оси диполя к положительному заряду от отрицательного и численно равен расстоянию I между ними. Вектор pₑ = ql - электрический момент диполя.

Напряженность Е поля диполя в любой точке: Е = Е₊ + Е₋, где Е₊ и Е₋ являются напряженностями полей электрических зарядов q и –q. Таким образом, в точке А, которая расположена на оси диполя, напряженность поля диполя в вакууме будет равна E = (1/4πε₀)(2pₑ/r³) В точке В, которая расположена на перпендикуляре, восстановленном к оси диполя из его середины: E = (1/4πε₀)(pₑ/r³) В произвольной точке М, достаточно удаленной от диполя (r≥l), модуль напряженности его поля равен E = (1/4πε₀)(pₑ/r³)√3cosϑ + 1 Кроме того, принцип суперпозиции электрических полей состоит из двух утверждений: Кулоновская сила взаимодействия двух зарядов не зависит от присутствия других заряженных тел. Предположим, что заряд q взаимодействует с системой зарядов q1, q2, . . . , qn. Если каждый из зарядов системы действует на заряд q с силой F₁, F₂, …, Fn соответственно, то результирующая сила F, приложенная к заряду q со стороны данной системы, равна векторной сумме отдельных сил: F = F₁ + F₂ + … + Fn. Таким образом, принцип суперпозиции электрических полей позволяет прийти к одному важному утверждению.

Силовые линии электрического поля

Электрическое поле изображают с помощью силовых линий.

Силовые линии указывают направление силы, действующей на положительный заряд в данной точке поля.

Свойства силовых линий электрического поля

    Силовые линии электрического поля имеют начало и конец. Они начинаются на положительных зарядах и заканчиваются на отрицательных.

    Силовые линии электрического поля всегда перпендикулярны поверхности проводника.

    Распределение силовых линий электрического поля определяет характер поля. Поле может быть радиальным (если силовые линии выходят из одной точки или сходятся в одной точке), однородным (если силовые линии параллельны) и неоднородным (если силовые линии не параллельны).

Плотность заряда - это количество заряда, приходящееся на единицу длины, площади или объёма, таким образом определяются линейная, поверхностная и объемная плотности заряда, которые измеряются в системе СИ: в Кулонах на метр (Кл/м), в Кулонах на квадратный метр (Кл/м²) и в Кулонах на кубический метр (Кл/м³), соответственно. В отличие от плотности вещества, плотность заряда может иметь как положительные, так и отрицательные значения, это связано с тем, что существуют положительные и отрицательные заряды.

Линейная, поверхностная и объемная плотности заряда, обозначаются обычно функциями ,и, соответственно, где- эторадиус-вектор. Зная эти функции мы можем определить полный заряд:

§5 Поток вектора напряженности

Определим поток вектора через произвольную поверхность dS,- нормаль к поверхности.α - угол между нормалью и силовой линией вектора. Можно ввести вектор площади.ПОТОКОМ ВЕКТОРА называется скалярная величина Ф Е равная скалярному произведению вектора напряженности на вектор площади

Для однородного поля

Для неоднородного поля

где - проекцияна,- проекцияна.

В случае криволинейной поверхности S ее нужно разбить на элементарные поверхности dS , рассчитать поток через элементарную поверхность, а общий поток будет равен сумме или в пределе интегралу от элементарных потоков

где - интеграл по замкнутой поверхности S (например, по сфере, цилиндру, кубу и т.д.)

Поток вектора является алгебраической величиной: зависит не только от конфигурации поля, но и от выбора направления. Для замкнутых поверхностей за положительное направление нормали принимается внешняя нормаль, т.е. нормаль, направленная наружу области, охватываемой поверхностью.

Для однородного поля поток через замкнутую поверхность равен нуля. В случае неоднородного поля

3. Напряженность электростатического поля, создаваемого равномерно заряженной сферической поверхностью.

Пусть сферическая поверхность радиуса R (рис. 13.7) несет на себе равномерно распределенный заряд q, т.е. поверхностная плотность заряда в любой точке сферы будет одинакова.

    Заключим нашу сферическую поверхность в симметричную поверхность S с радиусом r>R. Поток вектора напряженности через поверхность S будет равен

По теореме Гаусса

Следовательно

Сравнивая это соотношение с формулой для напряженности поля точечного заряда, можно прийти к выводу, что напряженность поля вне заряженной сферы такова, как если бы весь заряд сферы был сосредоточен в ее центре.

2. Электростатическое поле шара.

Пусть имеем шар радиуса R, равномерно заряженный с объемной плотностью.

В любой точке А, лежащей вне шара на расстоянии r от его центра (r>R), его поле аналогично полю точечного заряда , расположенного в центре шара. Тогда вне шара

а на его поверхности (r=R)

Г РАФИЧЕСКОЕ ИЗОБРАЖЕНИЕ ПОЛЕЙ

Электрическое поле можно описать, указав для каждой точки величину и направление вектора . Совокупность этих векторов полностью определит электрическое поле. Но если нарисовать вектора во многих точках поля, то они будут накладываться и пересекаться. Принято электрическое поле наглядно изображать с помощью сети линий, которые позволяют определить величину и направление напряженности поля в каждой точке (Рис.13).

Направление этих линий в каждой точке совпадает с направлением поля, т.е. касательная к таким линиям в каждой точке поля совпадает по направлению с вектором напряженности электрического поля в этой точке. Такие линии называются линиями напряженности электростатического поля или силовыми линиями электростатического поля .

Силовые линии электростатического поля начинаются на положительных электрических зарядах и кончаются на отрицательных электрических зарядах. Они могут уходить в бесконечность от положительного заряда или приходить из бесконечности к отрицательному заряду (линии 1 и 2 см. рис.13).

Силовые линии полезны не только тем, что наглядно демонстрируют направление поля, но и тем, что посредством их можно охарактеризовать величину поля в любой области пространства. Для этого плотность силовых линий численно должна быть равна величине напряженности электростатического поля.

Если поле изображено параллельными силовыми линиями, расположенными на одинаковых расстояниях друг от друга, то это значит, что вектор напряженности поля во всех точках имеет одинаковое направление. Модуль вектора напряженности поля во всех точках имеет одинаковые значения. Такое поле называют однородным электрическим полем. Выберем площадку перпендикулярную линиям напряженности столь малую, чтобы в области этой площадки поле было однородным (Рис.14).

Вектор – по определению перпендикулярен площадке, т.е. параллелен силовым линиям, а, следовательно, и . Длина вектора численно равна площади . Число силовых линий, пересекающих эту площадку, должно удовлетворять условию

Число силовых линий, проходящих через единицу площади поверхности, перпендикулярной силовым линиям, должно равняться модулю вектора напряженности.

Рассмотрим площадку , не перпендикулярную силовым линиям (на рис.14 показана штриховыми линиями). Чтобы ее пересекало такое же число силовых линий как и площадку , должно выполняться условие:, тогда . (4.2).



Рассказать друзьям