Определение собирающей линзы. Линзы

💖 Нравится? Поделись с друзьями ссылкой

Линзой называется прозрачное тело, ограниченное двумя сферическими поверхностями. Если толщина самой линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой .

Линзы входят в состав практически всех оптических приборов. Линзы бывают собирающими и рассеивающими . Собирающая линза в середине толще, чем у краев, рассеивающая линза, наоборот, в средней части тоньше (рис. 3.3.1).

Прямая, проходящая через центры кривизны O 1 и O 2 сферических поверхностей, называется главной оптической осью линзы. В случае тонких линз приближенно можно считать, что главная оптическая ось пересекается с линзой в одной точке, которую принято называть оптическим центром линзы O . Луч света проходит через оптический центр линзы, не отклоняясь от первоначального направления. Все прямые, проходящие через оптический центр, называются побочными оптическими осями .

Если на линзу направить пучок лучей, параллельных главной оптической оси, то после прохождения через линзу лучи (или их продолжения) соберутся в одной точке F , которая называется главным фокусом линзы. У тонкой линзы имеются два главных фокуса, расположенных симметрично на главной оптической оси относительно линзы. У собирающих линз фокусы действительные, у рассеивающих - мнимые. Пучки лучей, параллельных одной из побочных оптических осей, после прохождения через линзу также фокусируются в точку F" , которая расположена при пересечении побочной оси с фокальной плоскостью Ф , то есть плоскостью, перпендикулярной главной оптической оси и проходящей через главный фокус (рис. 3.3.2). Расстояние между оптическим центром линзы O и главным фокусом F называется фокусным расстоянием. Оно обозначается той же буквой F .

Основное свойство линз - способность давать изображения предметов . Изображения бывают прямыми и перевернутыми , действительными и мнимыми , у величенными и уменьшенными .

Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей, ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей. Примеры таких построений представлены на рис. 3.3.3 и 3.3.4.

Следует обратить внимание на то, что некоторые из стандартных лучей, использованных на рис. 3.3.3 и 3.3.4 для построения изображений, не проходят через линзу. Эти лучи реально не участвуют в образовании изображения, но они могут быть использованы для построений.

Положение изображения и его характер (действительное или мнимое) можно также рассчитать с помощью формулы тонкой линзы . Если расстояние от предмета до линзы обозначить через d , а расстояние от линзы до изображения через f , то формулу тонкой линзы можно записать в виде:

Величину D , обратную фокусному расстоянию. называют оптической силой линзы. Единицой измерения оптической силы является диоптрия (дптр). Диоптрия - оптическая сила линзы с фокусным расстоянием 1 м:

1 дптр = м -1 .

Формула тонкой линзы аналогична формуле сферического зеркала. Ее можно получить для параксиальных лучей из подобия треугольников на рис. 3.3.3 или 3.3.4.

Фокусным расстояниям линз принято приписывать определенные знаки: для собирающей линзы F > 0, для рассеивающей F < 0.

Величины d и f также подчиняются определенному правилу знаков:

d > 0 и f > 0 - для действительных предметов (то есть реальных источников света, а не продолжений лучей, сходящихся за линзой) и изображений;

d < 0 и f < 0 - для мнимых источников и изображений.

Для случая, изображенного на рис. 3.3.3, имеем: F > 0 (линза собирающая), d = 3F > 0 (действительный предмет).

По формуле тонкой линзы получим: , следовательно, изображение действительное.

В случае, изображенном на рис. 3.3.4, F < 0 (линза рассеивающая), d = 2|F | > 0 (действительный предмет), , то есть изображение мнимое.

В зависимости от положения предмета по отношению к линзе изменяются линейные размеры изображения. Линейным увеличением линзы Γ называют отношение линейных размеров изображения h" и предмета h . Величине h" , как и в случае сферического зеркала, удобно приписывать знаки плюс или минус в зависимости от того, является изображение прямым или перевернутым. Величина h всегда считается положительной. Поэтому для прямых изображений Γ > 0, для перевернутых Γ < 0. Из подобия треугольников на рис. 3.3.3 и 3.3.4 легко получить формулу для линейного увеличения тонкой линзы:

В рассмотренном примере с собирающей линзой (рис. 3.3.3): d = 3F > 0, , следовательно, - изображение перевернутое и уменьшенное в 2 раза.

В примере с рассеивающей линзой (рис. 3.3.4): d = 2|F | > 0, ; следовательно, - изображение прямое и уменьшенное в 3 раза.

Оптическая сила D линзы зависит как от радиусов кривизны R 1 и R 2 ее сферических поверхностей, так и от показателя преломления n материала, из которого изготовлена линза. В курсах оптики доказывается следующая формула:

Радиус кривизны выпуклой поверхности считается положительным, вогнутой - отрицательным. Эта формула используется при изготовлении линз с заданной оптической силой.

Во многих оптических приборах свет последовательно проходит через две или несколько линз. Изображение предмета, даваемое первой линзой, служит предметом (действительным или мнимым) для второй линзы, которая строит второе изображение предмета. Это второе изображение также может быть действительным или мнимым. Расчет оптической системы из двух тонких линз сводится к двукратному применению формулы линзы, при этом расстояние d 2 от первого изображения до второй линзы следует положить равным величине l - f 1 , где l - расстояние между линзами. Рассчитанная по формуле линзы величина f 2 определяет положение второго изображения и его характер (f 2 > 0 - действительное изображение, f 2 < 0 - мнимое). Общее линейное увеличение Γ системы из двух линз равно произведению линейных увеличений обеих линз: Γ = Γ 1 · Γ 2 . Если предмет или его изображение находятся в бесконечности, то линейное увеличение утрачивает смысл, изменяются только угловые расстояния.

Частным случаем является телескопический ход лучей в системе из двух линз, когда и предмет, и второе изображение находятся на бесконечно больших расстояниях. Телескопический ход лучей реализуется в зрительных трубах - астрономической трубе Кеплера и земной трубе Галилея .

Тонкие линзы обладают рядом недостатков, не позволяющих получать высококачественные изображения. Искажения, возникающие при формировании изображения, называются аберрациями . Главные из них - сферическая и хроматическая аберрации. Сферическая аберрация проявляется в том, что в случае широких световых пучков лучи, далекие от оптической оси, пересекают ее не в фокусе. Формула тонкой линзы справедлива только для лучей, близких к оптической оси. Изображение удаленного точечного источника, создаваемое широким пучком лучей, преломленных линзой, оказывается размытым.

Хроматическая аберрация возникает вследствие того, что показатель преломления материала линзы зависит от длины волны света λ. Это свойство прозрачных сред называется дисперсией. Фокусное расстояние линзы оказывается различным для света с разными длинами волн, что приводит к размытию изображения при использовании немонохроматического света.

В современных оптических приборах применяются не тонкие линзы, а сложные многолинзовые системы, в которых удается приближенно устранить различные аберрации.

Формирование собирающей линзой действительного изображения предмета используется во многих оптических приборах, таких как фотоаппарат, проектор и т. д.

Фотоаппарат представляет собой замкнутую светонепроницаемую камеру. Изображение фотографируемых предметов создается на фотопленке системой линз, которая называется объективом . Специальный затвор позволяет открывать объектив на время экспозиции.

Особенностью работы фотоаппарата является то, что на плоской фотопленке должны получаться достаточно резкими изображения предметов, находящихся на разных расстояниях.

В плоскости фотопленки получаются резкими только изображения предметов, находящихся на определенном расстоянии. Наведение на резкость достигается перемещением объектива относительно пленки. Изображения точек, не лежащих в плоскости резкого наведения, получаются размытыми в виде кружков рассеяния. Размер d этих кружков может быть уменьшен путем диафрагмирования объектива, т.е. уменьшения относительного отверстия a / F (рис. 3.3.5). Это приводит к увеличению глубины резкости.

Рисунок 3.3.5.

Фотоаппарат

Проекционный аппарат предназначен для получения крупномасштабных изображений. Объектив O проектора фокусирует изображение плоского предмета (диапозитив D ) на удаленном экране Э (рис. 3.3.6). Система линз K , называемая конденсором , предназначена для того, чтобы сконцентрировать свет источника S на диапозитиве. На экране Э создается действительное увеличенное перевернутое изображение. Увеличение проекционного аппарата можно менять, приближая или удаляя экран Э с одновременным изменением расстояния между диапозитивом D и объективом O .

    На рисунке приведены элементы двояковыпуклой линзы. C1 и C2 - центры ограничивающих сферических поверхностей, называемые центрами кривизны ; R1 и R2 - радиусы сферических поверхностей, называемые радиусами кривизны . Прямая, соединяющая центры кривизны C1 и C2, называется главной оптической осью . Для плоско-выпуклой или плоско-вогнутой линзы главной оптической осью является прямая, проходящая через центр кривизны перпендикулярно к плоской поверхности линзы. Точки пересечения главной оптической оси с поверхностью А и Б называются вершинами линзы . Расстояние между вершинами АБ называется осевой толщиной .

    Свойства линз

    Наиважнейшей особенностью положительных линз является способность давать изображение предметов. Действие положительных линз состоит в том, что они собирают падающие лучи, поэтому их называют собирательными .

    Это свойство объясняется тем, что собирательная линза представляет собой совокупность множества трехгранных призм, расположенных по кругу и обращенных к центру круга своими основаниями. Поскольку такие призмы отклоняют падающие на них лучи к своим основаниям, пучок лучей, падающий на всю поверхность собирательной линзы, собирается в направлении к оси круга, т.е. к оптической оси.

    Если из светящейся точки S, лежащей на оптической оси собирательной линзы, направить пучок расходящихся лучей света, то расходящийся пучок превратится в сходящийся, и в точке схода лучей образуется действительное изображение S` светящейся точки S. Поместив в точке S` какой-либо экран, можно увидеть на нем изображение светящейся точки S. Его называют действительным изображением.

    Образование действительного изображения светящейся точки. S` - действительное изображение точки S

    Отрицательные линзы, в противоположность положительным, рассеивают падающие на них лучи. Поэтому они называются рассеивающими .

    Если такой же пучок расходящихся лучей направить на рассеивающую линзу, то, пройдя сквозь нее, лучи отклоняются в стороны от оптической оси. Вследствие этого рассеивающие линзы не дают действительного изображения. В оптических системах, дающих действительное изображение, и, в частности, в фотообъективах рассеивающие линзы применяются только совместно с собирательными.

    Фокус и фокусное расстояние

    Если из точки, лежащей в бесконечности на главной оптической оси, направить на линзу пучок света (такие лучи можно считать практически параллельными), то лучи соберутся в одной точке F, лежащей также на главной оптической оси. Эта точка называется главным фокусом , расстояние f от линзы до этой точки - главным фокусным расстоянием , а плоскость MN, проходящая через главный фокус перпендикулярно оптической оси линзы, - главной фокальной плоскостью .

    Главный фокус F и главное фокусное расстояние f линзы

    Фокусное расстояние линзы зависит от кривизны ее выпуклых поверхностей. Чем меньше радиусы кривизны, т.е. чем выпуклее стекло, тем короче ее фокусное расстояние.

    Оптическая сила линзы

    Оптической силой линзы называется ее преломляющая способность (способность сильнее или слабее отклонять лучи света). Чем больше фокусное расстояние, тем меньше преломляющая способность. Оптическая сила линзы обратно пропорциональна фокусному расстоянию.

    Единицей измерения оптической силы является диоптрия , обозначаемая буквой D. Выражение оптической силы в диоптриях удобно тем, что, во-первых, оно позволяет по знаку определить, с какой линзой (собирательной или рассеивающей) имеют дело и, во-вторых, тем, что позволяет легко определить оптическую силу системы из двух и большего числа линз.

    Образование картинки

    Падая на предмет, лучи света отражаются от каждой точки его поверхности во всех возможных направлениях. Если перед освещенным предметом поместить собирательную линзу, то от каждой точки предмета на линзу упадет конический пучок лучей.

    Пройдя через линзу, лучи снова соберутся в одну точку, и в месте схода лучей возникнет действительное изображение взятой точки предмета, а совокупность изображений всех точек предмета образует изображение всего предмета. Рисунок позволяет также легко уяснить причину того, почему изображение предметов всегда получается перевернутым.

    Подобным же образом возникает изображение предметов в фотоаппарате при помощи фотографического объектива, который представляет собой собирательную оптическую систему и действует подобно положительной линзе.

    Пространство, которое находится перед объективом и в котором расположены фотографируемые предметы, называется предметным пространством, а расположенное за объективом пространство, в котором визуализируются предметы, называется пространством изображений.

Существуют объекты, которые способны изменять плотность падающего на них потока электромагнитного излучения, то есть либо увеличивать его, собирая в одну точку, либо уменьшать его путем рассеивания. Эти объекты называются линзами в физике. Рассмотрим подробнее этот вопрос.

Что представляют собой линзы в физике?

Под этим понятием подразумевают абсолютно любой объект, который способен изменять направление распространения электромагнитного излучения. Это общее определение линз в физике, под которое попадают оптические стекла, магнитные и гравитационные линзы.

В данной статье главное внимание будет уделено именно оптическим стеклам, которые представляют собой объекты, изготовленные из прозрачного материала, и ограниченные двумя поверхностями. Одна из этих поверхностей обязательно должна иметь кривизну (то есть являться частью сферы конечного радиуса), в противном случае объект не будет обладать свойством изменения направления распространения световых лучей.

Принцип работы линзы

Суть работы этого незамысловатого оптического объекта заключается в явлении преломления солнечных лучей. В начале XVII века знаменитый голландский физик и астроном Виллеброрд Снелл ван Ройен опубликовал закон преломления, который в настоящее время носит его фамилию. Формулировка этого закона следующая: когда солнечный свет переходит через границу раздела двух оптически прозрачных сред, то произведение синуса между лучом и нормалью к поверхности на коэффициент преломления среды, в которой он распространяется, является величиной постоянной.

Для пояснения вышесказанного приведем пример: пусть свет падает на поверхность воды, при этом угол между нормалью к поверхности и лучом равен θ 1 . Затем, световой пучок преломляется и начинает свое распространение в воде уже под углом θ 2 к нормали к поверхности. Согласно закону Снелла получим: sin(θ 1)*n 1 = sin(θ 2)*n 2 , здесь n 1 и n 2 - коэффициенты преломления для воздуха и воды, соответственно. Что такое коэффициент преломления? Это величина, показывающая, во сколько раз скорость распространения электромагнитных волн в вакууме больше таковой для оптически прозрачной среды, то есть n = c/v, где c и v - скорости света в вакууме и в среде, соответственно.

Физика возникновения преломления заключается в выполнении принципа Ферма, согласно которому свет движется таким образом, чтобы за наименьшее время преодолеть расстояние от одной точки к другой в пространстве.

Вид оптической линзы в физике определяется исключительно формой поверхностей, которые ее образуют. От этой формы зависит направление преломления падающего на них луча. Так, если кривизна поверхности будет положительной (выпуклой), то по выходе из линзы световой пучок будет распространяться ближе к ее оптической оси (см. ниже). Наоборот, если кривизна поверхности является отрицательной (вогнутой), тогда пройдя через оптическое стекло, луч станет удаляться от его центральной оси.

Отметим еще раз, что поверхность любой кривизны преломляет лучи одинаково (согласно закону Стелла), но нормали к ним имеют разный наклон относительно оптической оси, в результате получается разное поведение преломленного луча.

Линза, которая ограничена двумя выпуклыми поверхностями, называется собирающей. В свою очередь, если она образована двумя поверхностями с отрицательной кривизной, тогда она называется рассеивающей. Все остальные виды связаны с комбинацией указанных поверхностей, к которым добавляется еще и плоскость. Каким свойством будет обладать комбинированная линза (рассеивающим или собирающим), зависит от суммарной кривизны радиусов ее поверхностей.

Элементы линзы и свойства лучей

Для построения в линзах в физике изображений необходимо познакомиться с элементами этого объекта. Они приведены ниже:

  • Главная оптическая ось и центр. В первом случае имеют в виду прямую, проходящую перпендикулярно линзе через ее оптический центр. Последний, в свою очередь, представляет собой точку внутри линзы, проходя через которую, луч не испытывает преломления.
  • Фокусное расстояние и фокус - дистанция между центром и точкой на оптической оси, в которую собираются все падающие на линзу параллельно этой оси лучи. Это определение верно для собирающих оптических стекол. В случае рассеивающих линз собираться в точку будут не сами лучи, а мнимое их продолжение. Эта точка называется главным фокусом.
  • Оптическая сила. Так называется величина, обратная фокусному расстоянию, то есть D = 1/f. Измеряется она в диоптриях (дптр.), то есть 1 дптр. = 1 м -1 .

Ниже приводятся основные свойства лучей, которые проходят через линзу:

  • пучок, проходящий через оптический центр, не изменяет направления своего движения;
  • лучи, падающие параллельно главной оптической оси, изменяют свое направление так, что проходят через главный фокус;
  • лучи, падающие на оптическое стекло под любым углом, но проходящие через его фокус, изменяют свое направление распространения таким образом, что становятся параллельными главной оптической оси.

Приведенные выше свойства лучей для тонких линз в физике (так их называют, потому что не важно, какими сферами они образованы, и какой толщиной обладают, имеют значение только оптические свойства объекта) используются для построения изображений в них.

Изображения в оптических стеклах: как строить?

Ниже приведен рисунок, где подробно разобраны схемы построения изображений в выпуклой и вогнутой линзах объекта (красной стрелки) в зависимости от его положения.

Из анализа схем на рисунке следуют важные выводы:

  • Любое изображение строится всего на 2-х лучах (проходящем через центр и параллельном главной оптической оси).
  • Собирающие линзы (обозначаются со стрелками на концах, направленными наружу) могут давать как увеличенное, так и уменьшенное изображение, которое в свою очередь может быть реальным (действительным) или мнимым.
  • Если предмет расположен в фокусе, то линза не образует его изображения (см. нижнюю схему слева на рисунке).
  • Рассеивающие оптические стекла (обозначаются стрелками на их концах, направленными внутрь) дают независимо от положения предмета всегда уменьшенное и мнимое изображение.

Нахождение расстояния до изображения

Чтобы определять, на каком расстоянии появится изображение, зная положение самого предмета, приведем формулу линзы в физике: 1/f = 1/d o + 1/d i , где d o и d i - расстояние до предмета и до его изображения от оптического центра, соответственно, f - главный фокус. Если речь идет о собирающем оптическом стекле, тогда число f будет положительным. Наоборот, для рассеивающей линзы f - отрицательное.

Воспользуемся этой формулой и решим простую задачу: пусть предмет находится на расстоянии d o = 2*f от центра собирающего оптического стекла. Где появится его изображение?

Из условия задачи имеем: 1/f = 1/(2*f)+1/d i . Откуда: 1/d i = 1/f - 1/(2*f) = 1/(2*f), то есть d i = 2*f. Таким образом, изображение появится на расстоянии двух фокусов от линзы, но уже с другой стороны, чем сам предмет (об этом говорит положительный знак величины d i).

Краткая история

Любопытно привести этимологию слова "линза". Оно ведет происхождение от латинских слов lens и lentis, что означает "чечевица", поскольку оптические объекты по своей форме действительно похожи на плод этого растения.

Преломляющая способность сферических прозрачных тел была известна еще древним римлянам. Для этой цели они применяли круглые стеклянные сосуды, наполненные водой. Сами же стеклянные линзы начали изготавливаться только в XIII веке в Европе. Использовались они в качестве инструмента для чтения (современные очки или лупа).

Активное использование оптических объектов при изготовлении телескопов и микроскопов относится к XVII (в начале этого века Галилей изобрел первый телескоп). Отметим, что математическая формулировка закона преломления Стелла, без знания которой невозможно изготавливать линзы с заданными свойствами, была опубликована голландским ученым в начале того же XVII века.

Другие виды линз

Как было отмечено выше, помимо оптических преломляющих объектов, существуют также магнитные и гравитационные. Примером первых являются магнитные линзы в электронном микроскопе, яркий пример вторых заключается в искажении направления светового потока, когда он проходит вблизи массивных космических тел (звезд, планет).

ЛИНЗА

(нем. Linse, от лат. lens - чечевица), прозрачное тело, ограниченное двумя поверхностями, преломляющими световые лучи, способное формировать оптич. изображения предметов, светящихся собственным или отражённым светом. Л. явл. одним из осн. элементов оптич. систем. Наиболее употребительны Л., обе поверхности к-рых обладают общей осью симметрии, а из них - Л. со сферич. поверхностями, изготовление к-рых наиболее просто. Менее распространены Л. с двумя взаимно перпендикулярными плоскостями симметрии; их поверхности цилиндрич. или тороидальные. Таковы Л. в очках, предписываемых при астигматизме глаза, Л. для анаморфотных насадок и т. д.

Материалом для Л. обычно служит оптич. и органич. стекло. Спец. Л., предназначенные для работы в УФ области спектра, изготовляют из кристаллов кварца, флюорита, фтористого лития и др., в ИК - из особых сортов стекла, кремния, германия, флюорита, фтористого лития, йодистого цезия и др.

Описывая оптич. св-ва осесимметричной Л., чаще всего рассматривают лучи, падающие на неё под малым углом к оси, т. н. параксиальный пучок лучен.

Действие Л. на эти лучи определяется положением её кардинальных точек - т. н, главных точек Н и Н", в к-рых пересекаются с осью главные плоскости Л., а также переднего и заднего главных фокусов F и F" (рис. 1). Отрезки HF=f и H"F"=f наз. фокусными расстояниями Л. (если среды, с к-рыми граничит Л., обладают одинаковыми показателями преломления, всегда f=f"); точки пересечения О и О" поверхностей Л. с осью наз. её вершинами, а расстояния между вершинами - толщиной Л. d.

Если направления фокусного расстояния совпадают с направлением лучей света, то его считают положительным, так, напр., на рис. 1 лучи проходят через Л. направо и так же ориентирован отрезок Н"F". Поэтому здесь f">0, а f

Л. изменяют направления падающих на неё лучей. Если Л. преобразует параллельный пучок в сходящийся, её называют собирающей; если параллельный пучок превращается в расходящийся, Л. называют рассеивающей. В главном фокусе F" собирающей Л. пересекаются лучи, к-рые до преломления были параллельны её оси. Для такой Л. f" всегда положительно. В рассеивающей Л. F" - точка пересечения не самих лучей, а их воображаемых продолжений в сторону, противоположную направлению распространения света. Поэтому для них всегда f"

Мерой преломляющего действия Л. служит её Ф - величина, обратная фокусному расстоянию (Ф=1/f") и измеряемая в диоптриях (м-1). У собирающих Л. Ф>0, поэтому их ещё именуют положительными, рассеивающие Л. (Ф фокусное расстояние равно бесконечности). Они не собирают и не рассеивают лучей, но создают аберрации (см. АБЕРРАЦИИ ОПТИЧЕСКИХ СИСТЕМ) и применяются в зеркально-линзовых (а иногда и в линзовых) объективах как компенсаторы аберраций.

Все параметры, определяющие оптич. св-ва Л., ограниченной сферич. поверхностями, могут быть выражены через радиусы кривизны r1 и r2 её поверхностей, толщину Л. по оси d и n её материала. Напр., оптич. и фокусное расстояние Л. задаются соотношением (верным лишь для параксиальных лучей) :

Радиусы r1 и r2 считаются положительными, если направление от вершин Л. до центра соответствующей поверхности совпадает с направлением лучей (на рис. 1 r1=OF">0, r2=O"F

Первые три - положительны, последние три - отрицательны. Л. наз. тонкой, если её толщина d мала по сравнению с r1 и r2. Достаточно точное выражение для оптич. силы такой Л. получают и без учёта второго члена в (1).

Положение гл. плоскостей Л. относительно её вершин (расстояния ОН и О"Н") тоже можно определить, зная r1, r2, n и d. Расстояние между главными плоскостями мало зависит от формы и оптич. силы Л. и приблизительно равно d(n-1)/n. В случае тонкой Л. это расстояние мало и практически можно считать, что главные плоскости совпадают.

Когда положение кардинальных точек известно, положение оптич. изображения точки, даваемого Л. (рис. 1), определяется ф-лами:

где V - линейное увеличение Л. (см. УВЕЛИЧЕНИЕ ОПТИЧЕСКОЕ); l и l" - расстояния от точки и её изображения до оси (положительные, если они расположены выше оси); х - расстояние от переднего фокуса до точки; х" - расстояние от заднего фокуса до изображения. Если t и t" - расстояния от главных точек до плоскостей и изображения соответственно, то

т. к. x=t-f, x"=t"-f")

f"/t"+f/t=1 или 1/t"-1/t=1/f". (3)

В тонких Л. t и t" можно отсчитывать от соответствующих поверхностей Л.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ЛИНЗА

(нем. Linse, от лат. lens - чечевица) - простейший оптич. элемент, изготавливаемый из прозрачного материала, ограниченный двумя преломляющими поверхностями, имеющими общую ось либо две взаимно перпендикулярные плоскости симметрии. При изготовлении Л. для видимой области применяют оптическое стекло или органическое стекло (массовое тиражирование непрецизионных деталей), в УФ-диапазоне - , флюорит и др., в ИК-диапазоне - спец. сорта стёкол, германий, ряд солей и т. д.

Рабочие поверхности Л. обычно имеют сферич. форму, реже - цилиндрическую, тороидальную, конусообразную или с заданными небольшими отступлениями от сферы (асферическую). Л. со сферич. поверхностями наиб. просты в изготовлении и являются осн. элементами большинства оптич. систем.

В параксиальном приближении (углы между лучами и оптич. осью столь малы, что можно заменить sinи на свойства Л. со сферич. поверхностями могут быть однозначно охарактеризованы положением главных плоскостей и оптической силой Ф, представляющей собой выражаемую в диоптриях величину, обратную фокусному расстоянию (в м). Связь этих характеристик с геом. параметрами Л. ясны из рис., в к-ром для наглядности углы наклона лучей изображены преувеличенно большими. Расстояния от первой по ходу лучей поверхности линзы до первой гл. плоскости Я и от второй поверхности до второй гл. плоскости H " равны соответственно

S 1, 2

Фокусное расстояние от H до переднего фокуса (F)f = -1/Ф, от до заднего фокуса I оптич. сила Л., являющаяся мерой её преломляющего действия, равна

Здесь п - показатель преломления вещества Л. (или отношение этого показателя к показателю преломления окружающей среды, если последний 1), d - измеренная вдоль оси толщина Л., r 1 и r 2 - радиусы кривизны её поверхностей (считаются положительными, если центры кривизны расположены дальше по ходу лучей; так, у изображённой на рис. двояковыпуклой Л. r 1 >0, r 2 <0), расстояния отсчитываются вдоль направления распространения света.

Способ построения и расчёта траекторий проходящих через Л. меридиональных (лежащих в осевой плоскости) лучей с использованием гл. плоскостей ясен из рис. После прохождения Л. кажется исходящим из точки на удалённой от оси на то же расстояние h, что и точка пересечения исходного луча с Я. Угол между лучом и осью изменяется на Для нахождения траектории произвольного немеридионального луча последний проецируется на две взаимно перпендикулярные осевые плоскости. Каждая проекция является по существу меридиональным лучом и ведёт себя указанным выше образом.

Положение даваемого Л. изображения точки определяется ф-лами

где l и - расстояния от гл. плоскостей до плоскостей предмета и изображения соответственно (рис.), b и - расстояния точки и её изображения от оси (отсчитываемые вверх).


Если Л. наз. положительной или собирающей, при - отрицательной или рассеивающей; линзы с Ф=0 наз. афокальными и используются гл. обр. для исправления аберраций др. оптич. элементов. Положительные Л. дают действительные изображения всех действительных объектов, находящихся до переднего фокуса (на рис.- левее F), и всех мнимых объектов, находящихся за Л. Рассеивающие Л. дают расположенное между Л. и передним фокусом прямое, мнимое, уменьшенное изображение действит. объектов.

Расстояние между гл. плоскостями Л. почти не зависит от её оптич. силы и формы и примерно равно d (1-1/n ). Когда пренебрежимо мало по сравнению с Л. наз. тонкой. У тонких Л. знак оптич. силы Ф совпадает со знаком разности 1/r 1 -1/r 2 ; при этом толщина собирающих Л. по мере удаления от оси уменьшается, а рассеивающих - возрастает. Обе гл. плоскости тонких Л. можно считать совпадающими с плоскостью Л. и отсчитывать введённые выше расстояния /,l, прямо от последней. Чёткой границы между толстыми Л. (когда нельзя пренебречь) и тонкими не существует - всё зависит от конкретных применений.

Для преобразования высококогерентных световых пучков (обычно лазерного происхождения) используются преим. тонкие Л. Их часто наз. квадратичными фазовыми корректорами: при прохождении когерентного пучка через тонкую Л. к распределению фазы по его сечению добавляется величина где k = - волновой вектор, = ( п- 1) - вносимая Л. дополнит. , являющаяся квадратичной ф-цией удаления r от оси. Распределение комплексной амплитуды поля в фокальной плоскости Л. с точностью до фазового множителя является фурье-образом распределения амплитуды поля перед Л., вычисленным для пространственных частот (х, у - поперечные координаты на фокальной плоскости). Распределение интенсивности в той же плоскости подобно угл. распределению излучения с коэф. Поэтому Л. широко применяются в системах пространственной фильтрации излучения, обычно представляющих собой комбинацию Л. с установленными в их фокальных плоскостях диафрагмами, растрами, и в устройствах для измерения угл. излучения.

Л. обладают всеми аберрациями, присущими цент-риров. оптич. системам (см. Аберрации оптических систем ). Проблема аберраций особенно важна при использовании широкополосных и обладающих большими угл. апертурами световых пучков обычных (некогерентных) источников. Сферич. и хроматич. аберрации, а также могут быть в значит. степени исправлены путём комбинирования двух Л. разл. формы и из материалов с разл. дисперсией. Такие двухлинзовые системы широко используются в качестве объективов для зрительных труб и т. п. Иногда сферич. аберрации уничтожаются с помощью Л. с асферической, в частности параболоидальной, формой поверхности.

Для коррекции разл. дефектов глаза применяются Л. не только со сферическими, но также с цилиндрич. и торич. поверхностями. Цилиндрич. Л. сравнительно часто используются в тех случаях, когда изображение точечного источника должно быть "растянуто" в полосу или линию (напр., в спектральных приборах).

Лит.: Борн М., Вольф Э., Основы оптики, пер. с англ., 2 изд., М., 1973; Гудмен Д ж., Введение в Фурье-оптику, пер. с англ.. М.. 1970. Ю. А . Ананьев.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

Линзой называется оптическая деталь, ограниченная двумя преломляющими поверхностями, являющимися поверхностями тел вращения, причем одна из них может быть плоской. Обычно линзы бывают круглой формы, но могут также иметь прямоугольную, квадратную или какую-либо другую конфигурацию. Как правило, преломляющие поверхности линзы являются сферическими. Применяются также асферические поверхности, которые могут иметь форму поверхностей вращения эллипса, гиперболы, параболы и кривых высшего порядка. Кроме того, существуют линзы, поверхности которых представляют собой часть боковой поверхности цилиндра, называемые цилиндрическими. Применяются также торические линзы с поверхностями, имеющими различную кривизну по двум взаимно перпендикулярным направлениям.

В качестве, отдельных оптических деталей линзы почти не применяются в оптических системах за исключением простых луп и полевых линз (коллективов). Обычно они используются в различных сложных комбинациях, например, склеенных из двух или трех линз и наборов из ряда отдельных и склеенных линз.

В зависимости от форм различают собирательные (положительные) и рассеивающие (отрицательные) линзы. К группе собирательных линз обычно относят линзы, у которых середина толще их краёв, а к группе рассеивающих -- линзы, края которых толще середины. Следует отметить, что это верно, только если показатель преломления у материала линзы больше, чем у окружающей среды. Если показатель преломления линзы меньше, ситуация будет обратной. Например, пузырек воздуха в воде -- двояковыпуклая рассеивающая линза.

Линзы характеризуются, как правило, своей оптической силой (измеряется в диоптриях), или фокусным расстоянием, а также апертурой. Для построения оптических приборов с исправленной оптической аберрацией (прежде всего -- хроматической, обусловленной дисперсией света, -- ахроматы и апохроматы) важны и иные свойства линз/их материалов, например, коэффициент преломления, коэффициент дисперсии, коэффициент пропускания материала в выбранном оптическом диапазоне.

Иногда линзы/линзовые оптические системы (рефракторы) специально рассчитываются на использование в средах с относительно высоким коэффициентом преломления.

Виды линз

Собирательные:

1 -- двояковыпуклая

2 -- плоско-выпуклая

3 -- вогнуто-выпуклая (положительный мениск)

Рассеивающие:

4 -- двояковогнутая

5 -- плоско-вогнутая

6 -- выпукло-вогнутая (отрицательный мениск)

Выпукло-вогнутая линза называется мениском и может быть собирательной (утолщается к середине) или рассеивающей (утолщается к краям). Мениск, у которого радиусы поверхностей равны, имеет оптическую силу, равную нулю (применяется для коррекции дисперсии или как покровная линза). Так, линзы очков для близоруких -- как правило, отрицательные мениски. Отличительным свойством собирательной линзы является способность собирать падающие на её поверхность лучи в одной точке, расположенной по другую сторону линзы.


Основные элементы линзы

NN -- главная оптическая ось -- прямая линия, проходящая через центры сферических поверхностей, ограничивающих линзу; O -- оптический центр -- точка, которая у двояковыпуклых или двояковогнутых (с одинаковыми радиусами поверхностей) линз находится на оптической оси внутри линзы (в её центре).

Если на некотором расстоянии перед собирательной линзой поместить светящуюся точку S, то луч света, направленный по оси, пройдёт через линзу не преломившись, а лучи, проходящие не через центр, будут преломляться в сторону оптической оси и пересекутся на ней в некоторой точке F, которая и будет изображением точки S. Эта точка носит название сопряжённого фокуса, или просто фокуса.

Если на линзу будет падать свет от очень удаленного источника, лучи которого можно представить идущими параллельным пучком, то по выходе из неё лучи преломятся под большим углом и точка F переместится на оптической оси ближе к линзе. При данных условиях точка пересечения лучей, вышедших из линзы, называется главным фокусом F", а расстояние от центра линзы до главного фокуса -- главным фокусным расстоянием.

Лучи, падающие на рассеивающую линзу, по выходе из неё будут преломляться в сторону краёв линзы, то есть рассеиваться. Если эти лучи продолжить в обратном направлении так, как показано на рисунке пунктирной линией, то они сойдутся в одной точке F, которая и будет фокусом этой линзы. Этот фокус будет мнимым.


Сказанное о фокусе на главной оптической оси в равной степени относится и к тем случаям, когда изображение точки находится на побочной или наклонной оптической оси, т. е. линии, проходящей через центр линзы под углом к главной оптической оси. Плоскость, перпендикулярная главной оптической оси, расположенная в главном фокусе линзы, называется главной фокальной плоскостью, а в сопряжённом фокусе -- просто фокальной плоскостью.

Собирательные линзы могут быть направлены к предмету любой стороной, вследствие чего лучи по прохождении через линзу могут собираться как с одной, так и с другой её стороны. Таким образом, линза имеет два фокуса -- передний и задний. Расположены они на оптической оси по обе стороны линзы.



Рассказать друзьям