Насыщенные и ненасыщенные жирные кислоты, жироподобные вещества и их роль в нормальном функционировании человеческого организма. Нормы потребления этих веществ

💖 Нравится? Поделись с друзьями ссылкой

Ненасыщенные жирные кислоты – одноосновные соединения, которые имеют одну (мононенасыщенные), две или более (полиненасыщенные) двойных связей между атомами углерода.

Их молекулы не полностью насыщены водородом. Они содержатся во всех жирах. Наибольшее количество полезных триглицеридов сосредоточено в орехах, растительных маслах (оливковом, подсолнечном, льняном, кукурузном, хлопковом).

Ненасыщенные жиры – секретное оружие в борьбе с лишним весом, если употреблять их правильно. Они ускоряют метаболизм, подавляют аппетит, выработку кортизола (гормона стресса) на фоне которого происходит переедание. Кроме того, полезные кислоты снижают уровень лептина и блокируют ген, отвечающий за накопление жирных клеток.

Общие сведения

Важнейшее свойство непредельных жирных кислот – возможность к перекисному окислению, за счет присутствия двойных ненасыщенных связей. Эта особенность необходима для регуляции обновления, проницаемости клеточных мембран и синтеза простагландинов, лейкотриенов, отвечающих за иммунную защиту.

Самые употребляемые моно- и полиненасыщенные жирные кислоты:

  • линоленовая (омега-3);
  • эйкозапентаеновая (омега-3);
  • докозагексаеновая (омега-3);
  • арахидоновая (омега-6);
  • линолевая (омега-6);
  • олеиновая (омега-9).

Полезные триглицериды организм человека не вырабатывает самостоятельно. Поэтому они должны в обязательном порядке присутствовать в ежедневном рационе человека. Данные соединения участвуют в жировом, внутримышечном обменах, биохимических процессах в клеточных мембранах, входят в состав миелиновой оболочки и соединительной ткани.

Помните, нехватка ненасыщенных жирных кислот вызывает обезвоживание организма, задержку роста у детей, приводит к воспалению кожных покров.

Интересно, что омега-3, 6 образуют незаменимый жирорастворимый витамин F. Он обладает кардиопротекторным, антиаритмическим действием, улучшает кровообращение, препятствует развитию атеросклероза.

Виды и роль

В зависимости от количества связей непредельные жиры разделяют на мононенасыщенные (МНЖК) и полиненасыщенные (ПНЖК). Оба вида кислот полезны для сердечно-сосудистой системы человека: снижают уровень вредного холестерина. Отличительная особенность ПНЖК – жидкая консистенция вне зависимости от температуры окружающей среды, при этом МНЖК при отметке +5 градусов по Цельсию твердеют.

Характеристика полезных триглицеридов:

  1. Мононенасыщенные. Имеют одну двойную углеводную связь, им недостает двух атомов водорода. Благодаря перегибу в точке двойного сцепления, мононенасыщенные жирные кислоты с трудом уплотняются, сохраняя жидкое состояние при комнатной температуре. Несмотря на это, они, как и насыщенные триглицериды, стабильные: не подвержены гранулированию со временем и быстрому прогорканию, поэтому используются в пищевой промышленности. Чаще всего жиры данного типа представлены олеиновой кислотой (омега-3), которая содержится в орехах, оливковом масле, авокадо. МНЖК поддерживают здоровье сердца и сосудов, подавляют размножение раковых клеток, придают эластичность коже.
  2. Полиненасыщенные. В структуре таких жиров насчитывается две и больше двойных связей. Чаще всего в продуктах питания встречаются два вида жирных кислот: линолевая (омега- 6) и линоленовая (омега-3). Первая, имеет два двойных сцепления, а вторая - три. ПНЖК способны сохранять текучесть даже при отрицательных температурах (заморозке), проявляют высокую химическую активность, быстро прогоркают, поэтому требуют бережного использования. Такие жиры нельзя нагревать.

Помните, омега-3,6 – это строительный материал, необходимый для формирования всех полезных триглицеридов в организме. Они поддерживают защитную функцию организма, повышают работу мозга, борются с воспалениями, предупреждают рост раковых клеток. К природным источникам непредельных соединений относят: масло канола, соевые бобы, грецкие орехи, льняное масло.

Ненасыщенные жирные кислоты улучшают текучесть крови и восстанавливают поврежденную ДНК. Они усиливают доставку питательных веществ к суставам, связкам, мышцам, внутренним органам. Это мощные гепатопротекторы (защищают печень от повреждений).

Полезные триглицериды растворяют холестериновые отложения в кровеносных сосудах, препятствуют появлению атеросклероза, гипоксии миокарда, желудочковых аритмий, тромбов. Снабжают клетки строительным материалом. Благодаря этому изношенные мембраны постоянно обновляются, а молодость организма продлевается.

Для жизнедеятельности человека ценность предоставляют только свежие триглицериды, которые легко окисляются. Перегретые жиры губительно влияют на обмен веществ, пищеварительный тракт, почки, поскольку накапливают вредные вещества. Такие триглицериды должны отсутствовать в диетическом рационе.

При ежедневном употреблении ненасыщенных жирных кислот вы забудете о:

  • усталости и хроническом переутомлении;
  • болезненных ощущениях в суставах;
  • зуде и сухости кожи;
  • сахарном диабете второго типа;
  • депрессии;
  • плохой концентрации внимания;
  • ломкости волос и ногтей;
  • болезнях сердечно-сосудистой системы.

Ненасыщенные кислоты для кожи

Препараты на основе омега-кислот избавляют от маленьких морщин, поддерживают «юность» рогового слоя, ускоряют заживление кожного покрова, восстанавливают аквабаланс дермы, избавляют от угревых высыпаний.

Поэтому часто входят в состав мазей от ожогов, экзем и косметических средств по уходу за ногтями, волосами, лицом. Ненасыщенные жирные кислоты уменьшают воспалительные реакции в организме, повышают барьерные функции кожи. Нехватка полезных триглицеридов приводит к уплотнению и пересушке верхнего слоя дермы, закупорке сальных желез, проникновению бактерий в глубочайшие слои тканей и образованию прыщей.

НЖК, входящие в состав косметических средств:

  • пальмитолеиновая кислота;
  • эйкозеновая;
  • эруковая;
  • ацетэруковая;
  • олеиновая;
  • арахидоновая;
  • линолевая;
  • линоленовая;
  • стеариновая;
  • капроновая.

Непредельные триглицериды химически более активны, чем насыщенные. Скорость окисления кислоты зависит от количества двойных связей: чем их больше, тем жиже консистенция вещества и быстрее протекает реакция отдачи электронов. Ненасыщенные жиры разжижают липидную прослойку, что улучшает проникновение водорастворимых веществ под кожу.

Признаки нехватки непредельных кислот в организме человека:

  • истончение волосяного волокна;
  • сухость, огрубление кожи;
  • облысение;
  • развитие экземы;
  • тусклость ногтевых пластин, частое появление заусенцев.

Влияние омега кислот на организм:

  1. Олеиновая. Восстанавливает барьерные функции эпидермиса, удерживает влагу в коже, активизирует липидный обмен, замедляя переокисление. Наибольшее количество олеиновой кислоты сосредоточено в масле кунжута (50 %), рисовых отрубей (50 %), кокоса (8 %). Они хорошо впитываются в дерму, не оставляют жирных следов, усиливают проникновение активных компонентов в роговой слой.
  2. Пальминовая. Восстанавливает кожный покров, придает эластичность «зрелой» дерме. Отличается высокой стабильностью при хранении. Масла, в которых содержится пальминовая кислота не прогоргают со временем: пальмовое (40 %), хлопковое (24 %), соевое (5 %).
  3. Линолевая. Оказывает противовоспалительное действие, вмешивается в метаболизм биологически активных веществ, способствуя их проникновению и усвоению в слоях эпидермиса. Линолевая кислота препятствует бесконтрольному испарению влаги через кожу, нехватка которой ведет к пересушиванию и шелушению рогового слоя. Она защищает ткани от вредного действия ультрафиолетовых лучей, снимает покраснения, налаживает местный иммунитет покров, укрепляет структуру клеточных мембран. Недостаток омега-6 в организме вызывает воспаление и сухость кожи, повышает ее чувствительность, приводит к выпадению волос, появлению экзем. Содержится в масле риса (47 %) и кунжута (55 %). Благодаря тому, что линолевая кислота купирует очаги воспаления, она показана при атопической экземе.
  4. Линоленовая (Альфа и Гамма). Является предшественником синтеза простагландинов, регулирующих воспалительные реакции в человеческом организме. Ненасыщенная кислота входит в состав мембран эпидермиса, повышает уровень простагландина Е. При недостаточном поступлении соединения в организм, кожа становится склонной к воспалениям, раздраженной, сухой и шелушащейся. Наибольшее количество линоленовой кислоты содержится в материнском молоке.

Косметика с линолевой и линоленовой кислотами ускоряет восстановление липидного барьера эпидермиса, укрепляет структуру мембран, выступает составляющей иммуномодулирующей терапии: уменьшает развитие воспалений и останавливает повреждение клеток. При сухом типе кожи, масла, содержащие омега-3, 6 рекомендуется использовать наружно и внутренне.

В спорте

Для поддержания здоровья атлета в меню должны присутствовать минимум 10 % жиров, иначе ухудшаются спортивные результаты, появляются морфо-функциональные нарушения. Нехватка триглицеридов в рационе угнетает анаболизм мышечных тканей, сокращает выработку тестостерона, подрывает иммунитет. Только в присутствии ненасыщенных жирных кислот возможно усвоение витаминов группы В, важнейших для культуриста. Кроме того, триглицериды покрывают повышенные энергозатраты организма, сохраняют здоровье суставов, ускоряют восстановление мышечной ткани после интенсивных тренировок и борются с воспалительными процессами. ПНЖК предотвращают окислительные процессы и участвует в росте мускул.

Помните, дефицит полезных жиров в организме человека сопровождается замедлением обмена веществ, развитием авитаминоза, проблем с сердцем, сосудами, печеночной дистрофии, нарушением питания клеток мозга.

Лучшие источники омега кислот для спортсменов: рыбий жир, морепродукты, растительные масла, рыба.

Помните, много не значит хорошо. Переизбыток триглицеридов (свыше 40 %) в меню приводит к обратному эффекту: отложению жира, ухудшению анаболизма, снижению иммунитета, репродуктивной функции. В результате повышается утомляемость, падает работоспособность.

Норма потребления ненасыщенных жирных кислот зависит от вида спорта. Для гимнаста она составляет 10% от общего рациона питания, фехтовальщиков – до 15 %, единоборцев – 20 %.

Вред

Чрезмерное употребление триглицеридов приводит к:

  • развитию артрита, рассеянного склероза;
  • преждевременному старению;
  • гормональному сбою у женщин;
  • накоплению шлаков в организме;
  • повышенной нагрузке на печень, поджелудочную железу;
  • формированию камней в желчном пузыре;
  • воспалению дивертикулов кишечника, запорам;
  • подагре;
  • аппендициту;
  • болезням коронарных сосудов сердца;
  • раку груди, простаты;
  • раздражению желудочно- кишечного тракта, появлению гастрита.

Под влиянием тепловой обработки полезные жиры полимеризируются и окисляются, распадаясь на димеры, мономеры, полимеры. В результате витамины и фосфатиды в них разрушаются, что уменьшает пищевую ценность продукта (масла).

Суточная норма

Потребность организма в ненасыщенных жирных кислотах зависит от:

  • трудовой деятельности;
  • возраста;
  • климата;
  • состояния иммуннитета.

В средних климатических зонах суточная норма потребления жира на человека составляет 30 % от общей калорийности пищевого рациона, в северных регионах данный показатель доходит до 40%. Для пожилых людей доза триглицеридов снижается до 20 %, а для работников тяжелого физического труда возрастает до 35 %.

Суточная потребность в ненасыщенных жирных кислотах для здорового взрослого человека составляет 20 %. Это 50 – 80 грамм в день.

После болезни, при истощении организма, норму увеличивают до 80 – 100 грамм.

Для поддержания хорошего самочувствия и сохранения здоровья исключите из меню пищу быстрого приготовления и жареные блюда. Вместо мяса отдайте предпочтение жирной морской рыбе. Откажитесь от шоколада, магазинных кондитерских изделий в пользу орехов и зерновых. Возьмите за основу начинать утро с приема десертной ложки растительного масла (оливкового или льняного) натощак.

Для усиления положительного влияния омега кислот на организм рекомендуется одновременно употреблять антиоксиданты, цинк, витамин В6, D.

Природные источники

Список продуктов в которых содержатся ненасыщенные жирные кислоты:

  • авокадо;
  • несоленые орехи (пекан, грецкий, бразильский, кешью);
  • семена (кунжута, подсолнечника, тыквы);
  • жирная рыба (сардины, скумбрия, лосось, тунец, сельдь);
  • растительные масла (рыжиковое, оливковое, кукурузное, льняное, ореховое);
  • овсяные хлопья;
  • черная смородина;
  • кукуруза;
  • сухофрукты.

Максимальное количество питательных веществ сосредоточено в растительных маслах холодного отжима в сыром виде. Термическая обработка разрушает полезные соединения.

Вывод

Ненасыщенные жирные кислоты – незаменимые питательные вещества, которые человеческий организм не в состоянии синтезировать самостоятельно.

Для поддержания жизнедеятельности всех органов и систем важно включить в ежедневный рацион продукты, содержащие омега соединения.

Полезные триглицериды контролируют состав крови, снабжают клетки энергией, поддерживают барьерные функции эпидермиса и способствуют сбрасыванию лишних килограмм. Однако, употреблять НЖК нужно с умом, поскольку их пищевая ценность необычайно высока. Излишек жиров в организме приводит к скоплению шлаков, повышению холестерина, закупорке сосудов, а нехватка – к апатии, ухудшению состояния кожи, замедлению обмена веществ.

Соблюдайте умеренность в еде и берегите здоровье!

Жиры – макронутриенты, необходимые участники полноценного питания каждого человека. В ежедневный рацион должны входить разные жиры, каждый из них выполняет свою функцию.

С физиологической точки зрения жиры – неотъемлемая составляющая тройки макронутриентов, обеспечивающей основные потребности организма человека. Они являются одним из основных источников энергии. Жиры – составной элемент всех клеток, они необходимы для усвоения жирорастворимых витаминов, обеспечивают термоизоляцию организма, участвуют в деятельности нервной системы и иммунитета.

Официальное название жиров, входящих в состав пищи, – липиды. Те липиды, которые входят в состав клеток, называются структурными (фосфолипиды, липопротеиды), другие являются способом хранения энергии и называются запасными (триглицериды).

Энергетическая ценность жиров примерно в два раза выше энергетической ценности углеводов.

По своей химической сути жиры представляют собой сложные эфиры глицерина и высших жирных кислот. Основа животных и растительных жиров – жирные кислоты, различный состав которых и определяет их функции в организме. Все жирные кислоты делятся на две группы: насыщенные и ненасыщенные.

Насыщенные жирные кислоты

Насыщенные жирные кислоты содержатся в основном в жирах животного происхождения. Это твердые вещества, имеющие высокую температуру плавления. Они могут усваиваться организмом без участия желчных кислот, этим определяется их высокая питательная ценность. Однако излишки насыщенных жирных кислот неизбежно откладываются в запас.

Основные виды насыщенных кислот – пальмитиновая, стеариновая, миристиновая. Они в разных количествах содержатся в сале, жирном мясе, молочных продуктах (сливочное масло, сметана, молоко, сыры и т.д.). Животные жиры, в состав которых входят насыщенные жирные кислоты, обладают приятным вкусом, содержат лецитин и витамины А и D, а также холестерин.

Холестерин – основной стерин животного происхождения, он жизненно необходим организму, поскольку входит в состав всех клеток и тканей организма, участвует в гормональных процессах и синтезе витамина D. При этом избыток холестерина в пище ведет к повышению его уровня в крови, что является одним из основных факторов риска для развития сердечно-сосудистых заболеваний, диабета и ожирения. Холестерин синтезируется организмом из углеводов, поэтому с пищей его рекомендуется употреблять не более чем 300 мг в сутки.

Предпочтительная форма употребления насыщенных жирных кислот – молочные продукты, яйца, мясные субпродукты (печень, сердце), рыба. На долю насыщенных жирных кислот в ежедневном рационе должно приходиться не более 10% калорийности.

Ненасыщенные жирные кислоты

Ненасыщенные жирные кислоты содержатся в основном в продуктах растительного происхождения, а также в рыбе. Ненасыщенные жирные кислоты легко окисляются, они не очень устойчивы к термообработке, поэтому наиболее полезно употреблять продукты, их содержащие, в сыром виде.

Ненасыщенные жирные кислоты делятся на две группы, в зависимости от того, сколько в них ненасыщенных водородом связей между атомами. Если такая связь одна – это мононенасыщенные жирные кислоты (МНЖК), если их несколько – это полиненасыщенные жирные кислоты (ПНЖК).

Мононенасыщенные жирные кислоты

Основные виды МНЖК – миристолеиновая, пальмитолеиновая, олеиновая. Эти кислоты могут синтезироваться организмом из насыщенных жирных кислот и углеводов. Одна из важнейших функций МНЖК – снижение уровня холестерина в крови. За это отвечает содержащийся в МНЖК стерин – р-ситостерин. Он образует нерастворимый комплекс с холестерином и таким образом препятствует всасыванию последнего.

Основной источник МНЖК – рыбий жир, авокадо, арахис, маслины, орехи кешью, оливковое, кунжутное и рапсовое масла. Физиологическая потребность в МНЖК составляет 10% от суточной калорийности.

Растительные жиры по большей части являются поли- или мононенасыщенными. Эти жиры могут понижать уровень холестерина в крови и часто содержат необходимые жирные кислоты (EFA): Омега-3 и Омега-6.

Полиненасыщенные жирные кислоты

Основные виды ПНЖК – линолевая, линоленовая, арахидоновая. Эти кислоты не только входят в состав клеток, но и участвуют в обмене веществ, обеспечивают процессы роста, содержат токоферолы, р-ситостерин. ПНЖК не синтезируются организмом человека, поэтому считаются незаменимыми веществами наравне с некоторыми аминокислотами и витаминами. Наибольшей биологической активностью обладает арахидоновая кислота, которой мало в продуктах питания, но при участии витамина В6 она может быть синтезирована организмом из линолевой кислоты.

Арахидоновая и линолевая кислота относятся к семейству кислот Омега-6. Эти кислоты содержатся практически во всех растительных маслах и орехах. Суточная потребность в Омега-6 ПНЖК составляет 5–9% от суточной калорийности.

Альфа-линоленовая кислота относится к семейству Омега-3. Основным источником ПНЖК этого семейства является рыбий жир и некоторые морепродукты. Суточная потребность в Омега-3 ПНЖК – 1–2% от суточной калорийности.

Избыток в рационе продуктов, содержащих ПНЖК, может вызвать заболевания почек и печени.

Полиненасыщенные жиры содержит рыба, грецкие орехи, миндаль, лен, некоторые приправы, соевое масло, подсолнечное масло и т.д.

Транс-жиры

(или ) получается путем переработки растительных жиров, используется в производстве маргарина и прочих кулинарных жиров. Соответственно, попадает в чипсы, гамбургеры и большую часть магазинной выпечки.

Тем, что повышает в крови уровень плохого холестерина. Это увеличивает риск закупорки сосудов и инфарктов, способствует развитию диабета.

Выводы

Употребление жиров необходимо для полноценного функционирования организма. Но все нужно делать с умом.

Польза жира, даже ненасыщенного, возможна лишь при правильном его употреблении. Энергетическая ценность жира необычайна высока. Стакан семечек равен по калорийности одному шашлыку или целой плитке шоколада. Если злоупотреблять ненасыщенными жирами, они принесут не меньший вред, чем насыщенные.

Положительное значение жиров для организма неоспоримо при соблюдении несложных правил: свести к минимуму употребление насыщенных жиров, полностью исключить транс-жиры, употреблять ненасыщенные жиры умеренно и регулярно.

    Насыщенные и ненасыщенные жирные кислоты, жироподобные вещества и их роль в нормальном функционировании человеческого организма. Нормы потребления этих веществ.

    Теория адекватного питания как научная основа для рационального питания.

    Витамины: авитаминоз и гиповитаминоз. Классификационные признаки витаминов.

  1. Насыщенные и ненасыщенные жирные кислоты, жироподобные вещества и их роль в нормальном функционировании человеческого организма. Нормы потребления этих веществ.

Жиры - органические соединения, входящие в состав животных и растительных тканей и состоящие в основном из триглицеридов (сложных эфиров глицерина и различных жирных кислот). Кроме того, в состав жиров входят вещества, обладающие высокой биологической активностью: фосфатиды, стерины, некоторые витамины. Смесь различных триглицеридов составляет так называемый нейтральный жир. Жир и жироподобные вещества объединяют обычно под названием липиды.

У человека и животных наибольшее количество жиров находится в подкожной жировой клетчатке и жировой ткани, располагающейся в сальнике, брыжейке, забрюшинном пространстве и т. д. Жиры содержатся также в мышечной ткани, костном мозге, печени и других органах. В растениях жиры накапливаются в основном в плодовых телах и семенах. Особенно высокое содержание жиров свойственно так называемым масличным культурам. Например, в семенах подсолнечника жиры составляют до 50% и более (в пересчете на сухое вещество).

Биологическая роль жиров заключается прежде всего в том, что они входят в состав клеточных структур всех видов тканей и органов и необходимы для построения новых структур (так наз. пластическая функция). Важнейшее значение имеют жиры для процессов жизнедеятельности, т. к. вместе с углеводами они участвуют в энергообеспечении всех жизненных функций организма. Кроме того, жиры, накапливаясь в жировой ткани, окружающей внутренние органы, и в подкожной жировой клетчатке, обеспечивают механическую защиту и теплоизоляцию организма. Наконец, жиры, входящие в состав жировой ткани, служат резервуаром питательных веществ и принимают участие в процессах обмена веществ и энергии.

Природные жиры содержат более 60 видов различных жирных кислот, обладающих различными химическими и физическими свойствами и определяющих тем самым различия в свойствах самих жиров. Молекулы жирных кислот представляют собой "цепочки" из атомов углерода, связанных между собой и окруженных атомами водорода. Длина цепи определяет многие свойства, как самих жирных кислот, так и жиров, образуемых этими кислотами. Длинноцепочечные жирные кислоты имеют твердую консистенцию, короткоцепочечные являются жидкими веществами. Чем выше молекулярный вес жирных кислот, тем выше температура их плавления, а соответственно и температура плавления жиров, в состав которых входят эти кислоты. Вместе с тем, чем выше температура плавления жиров, тем они хуже усваиваются. Все легкоплавкие жиры усваиваются одинаково хорошо. По усвояемости жиры можно разделить на три группы:

    жир с температурой плавления ниже температуры тела человека, усвояемость 97-98% ;

    жир с температурой плавления выше 37°, усвояемость около 90%;

    жир с температурой плавления 50-60°, усвояемость около 70- 80%.

По химическим свойствам жирные кислоты делятся на насыщенные (все связи между углеродными атомами, образующими "остов" молекулы, насыщены, или заполнены, атомами водорода) и ненасыщенные (не все связи между атомами углерода заполнены атомами водорода). Насыщенные и ненасыщенные жирные кислоты отличаются не только по своим химическим и физическим свойствам, по и по биологической активности и "ценности" для организма.

Насыщенные жирные кислоты содержатся в жирах животного происхождения. Они обладают невысокой биологи­ческой активностью и могут оказывать отрицательное дей­ствие на жировой и холестериновый обмены.

Ненасыщенные жирные кислоты широко представлены во всех пищевых жирах, но больше всего их находится в расти­тельных маслах. Они содержат двойные ненасыщенные связи, что обусловливает их значительную биологическую актив­ность и способность к окислению. Самыми распространенными являются олеиновая, линолевая, линоленовая и арахидоновая жирные кислоты, среди которых наибольшей активностью об­ладает арахидоновая кислота.

Ненасыщенные жирные кислоты в организме не образуются и должны ежедневно вводиться с пищей в количестве 8- 10 г. Источниками олеиновой, линолевой и линоленовой жир­ных кислот являются растительные масла. Арахидоновая жир­ная кислота почти не содержится ни в одном продукте и может синтезироваться в организме из линолевой кислоты в присутствии витамина В 6 (пиридоксина).

Недостаток ненасыщенных жирных кислот приводит к за­держке роста, возникновению сухости и воспалению кожных покровов.

Ненасыщенные жирные кислоты входят в состав мембранной системы клеток, миелиновых оболочек и соедини­тельной ткани. Эти кислоты отличаются от истинных витаминов тем, что не обладают способностью усиливать обменные процессы, однако потребность организма в них значительно выше, чем в истинных витаминах.

Для обеспечения физиологической потребности организма в ненасыщенных жирных кислотах необходимо ежедневно в пи­щевой рацион вводить 15-20 г растительного масла.

Высокой биологической активностью жирных кислот обла­дают подсолнечное, соевое, кукурузное, льняное и хлопковое масла, в которых содержание ненасыщенных жирных кислот составляет 50-80 %.

Само распределение полиненасыщенных жирных кислот в организме свидетельствует об их важной роли в его жизнедеятельности: больше всего их содержится в печени, мозге, сердце, половых железах. При недостаточном поступлении с пищей содержание их уменьшается прежде всего в этих органах. Важная биологическая роль этих кислот подтверждается их высоким содержанием в эмбрионе человека и в организме новорожденных, а также в грудном молоке.

В тканях имеется значительный запас полиненасыщенных жирных кислот, позволяющий довольно долго осуществлять нормальные превращения в условиях недостаточного поступления жира с пищей.

Рыбий жир отличается самым высоким содержанием наиболее активной из полиненасыщенных жирных кислот - арахидоновой; не исключено, что эффективность рыбьего жира объясняется не только имеющимися в нем витаминами А и D, но и высоким содержанием этой столь необходимой организму, особенно в детском возрасте, кислоты.

Важнейшим биологическим свойством полиненасыщенных жирных к т является их участие в качестве обязательного компонента в образовании структурных элементов (клеточных мембран, миелиновой оболочки нервного волокна, соединительной ткани), а также в таких высокоактивных в биологическом отношении комплексах, как фосфатиды, липопротеиды (белково-липидные комплексы) и др.

Полиненасыщенные жирные кислоты обладают способностью повышать выведение холестерина из организма, переводя его в легкорастворимые соединения. Это свойство имеет большое значение в профилактике атеросклероза. Кроме того, полиненасыщенные жирные кислоты оказывают нормализующее действие на стенки кровеносных сосудов, повышая их эластичность и снижая проницаемость. Имеются данные, что недостаток этих кислот ведет к тромбозу коронарных сосудов, т. к. жиры, богатые насыщенными жирными кислотами, повышают свертываемость крови. Поэтому полиненасыщенные жирные кислоты могут рассматриваться как средства предупреждения ишемической болезни сердца.

По биологической ценности и содержанию полиненасыщенных жирных кислот жиры можно разделить на три группы.

К первой относят жиры, обладающие высокой биологической активностью, в которых содержание полиненасыщенных жирных кислот составляет 50-80%; 15- 20 г в сутки этих жиров могут удовлетворить потребность организма в таких кислотах. К этой группе принадлежат растительные масла (подсолнечное, соевое, кукурузное, конопляное, льняное, хлопковое).

Во вторую группу входят жиры средней биологической активности, которые содержат менее 50% полиненасыщенных жирных кислот. Для удовлетворения потребности организма в этих кислотах требуется уже 50-60 г таких жиров в сутки. К ним относятся свиное сало, гусиный и куриный жир.

Третью группу составляют жиры, содержащие минимальное количество полиненасыщенных жирных кислот, которое практически не в состоянии удовлетворить потребность организма в них. Это бараний и говяжий жир, сливочное масло и другие виды молочного жира.

Биологическую ценность жиров, кроме различных жирных кислот, определяют и входящие в их состав жироподобные вещества - фосфатиды, стерины, витамины и др.

Фосфатиды по своей структуре весьма близки к нейтральным жирам: чаще в пищевых продуктах содержится фосфатид лецитин, несколько реже - кефалин. Фосфатиды являются необходимой составной частью клеток и тканей, активно участвуя в их обмене, особенно в процессах, связанных с проницаемостью клеточных мембран. Особенно много фосфатидов в костном жире. Эти соединения, принимая участие в жировом обмене, влияют на интенсивность всасывания жира в кишечнике и использование их в тканях (липотропное действие фосфатидов). Фосфатиды синтезируются в организме, но непременным условием их образования являются полноценное питание и достаточное поступление белка с пищей. Источниками фосфатидов в питании человека являются многие продукты, особенно желток куриного яйца, печень, мозги, а также пищевые жиры, особенно нерафинированные растительные масла.

Стерины также обладают высокой биологической активностью и участвуют в нормализации жирового и холестеринового обмена. Фитостерины (растительные стерины) образуют с холестерином нерастворимые комплексы, которые не всасываются; тем самым предотвращается повышение содержания холестерина в крови. Особенно эффективны в этом отношении эргостерин, который под действием ультрафиолетовых лучей превращается в организме в витамин D, и стеостерин, способствующий нормализации содержания холестерина в крови. Источники стеринов - различные продукты животного происхождения (свиная и говяжья печень, яйца и т. д.). Растительные масла теряют большую часть стеринов при рафинировании.

Жиры относятся к основным пищевым веществам, поставляющим энергию для обеспечения процессов жизнедеятельности организма и "строительный материал" для построения тканевых структур.

Жиры обладают высокой калорийностью, она превосходит теплотворную способность белков и углеводов более чем в 2 раза. Потребность в жирах определяется возрастом человека, его конституцией, характером трудовой деятельности, состоянием здоровья, климатическими условиями и т. д. Физиологическая норма потребления жиров с пищей для людей среднего возраста составляет 100 г в сутки и зависит от интенсивности физической нагрузки. С возрастом рекомендуется сокращать количество жира, поступающего с пищей. Потребность в жирах может быть удовлетворена при употреблении различных жировых продуктов.

Среди жиров животного происхождения высокими пищевыми качествами и биологическими свойствами выделяется молочный жир, используемый преимущественно в виде сливочного масла. Этот вид жира содержит большое количество витаминов (A, D2, E) и фосфатидов. Высокая усвояемость (до 95%) и хорошие вкусовые качества делают сливочное масло продуктом, широко употребляемым людьми всех возрастов. К животным жирам относятся также свиное сало, говяжий, бараний, гусиный жир и др. Они содержат относительно немного холестерина, достаточное количество фосфатидов. Вместе с тем их усвояемость различна и зависит от температуры плавления. Тугоплавкие жиры с температурой плавления выше 37° (свиное сало, говяжий и бараний жир) усваиваются хуже, чем сливочное масло, гусиный и утиный жир, а также растительные масла (температура плавления ниже 37°). Жиры растительного происхождения богаты незаменимыми жирными кислотами, витамином Е, фосфатидами. Они легко усваиваются.

Биологическую ценность растительных жиров во многом определяют характер и степень их очистки (рафинации), которую проводят для удаления вредных примесей. В процессе очистки теряются стерины, фосфатиды в другие биологически активные вещества. К комбинированным (растительным и животным) жирам относятся различные виды маргаринов, кулинарные и др. Из комбинированных жиров наиболее распространены маргарины. Их усвояемость близка к усвояемости сливочного масла. Они содержат много витаминов A, D, фосфатидов и других биологически активных соединений, необходимых для нормальной жизнедеятельности.

Возникающие при хранении пищевых жиров изменения приводят к снижению их пищевой и вкусовой ценности. Поэтому при длительном хранении жиров их следует оберегать от действия света, кислорода воздуха, тепла и других факторов.

Таким образом, жиры в организме человека играют как важную энергетическую и пластическую роль. Кроме того, они являются хороши­ми растворителями ряда витаминов и источниками биологически активных веществ. Жир повышает вкусовые качества пищи и вызывает чувство длительного насыщения.

(только с одинарными связями между атомами углерода), мононенасыщенными (с одной двойной связью между атомами углерода) и полиненасыщенными (с двумя и более двойными связями, находящимися, как правило, через CH 2 -группу). Они различаются по количеству углеродных атомов в цепи, а также, в случае ненасыщенных кислот, по положению, конфигурации (как правило цис-) и количеству двойных связей. Жирные кислоты можно условно поделить на низшие (до семи атомов углерода), средние (восемь - двенадцать атомов углерода) и высшие (более двенадцати атомов углерода). Исходя из исторического названия данные вещества должны быть компонентами жиров. На сегодня это не так; термин «жирные кислоты» подразумевает под собой более широкую группу веществ.

Карбоновые кислоты начиная с масляной кислоты (С 4) считаются жирными, в то время как жирные кислоты, полученные непосредственно из животных жиров, имеют в основном восемь и больше атомов углерода (каприловая кислота). Число атомов углерода в натуральных жирных кислотах в основном чётное, что обусловлено их биосинтезом с участием ацетил-кофермента А .

Большая группа жирных кислот (более 400 различных структур, хотя только 10-12 распространены) находятся в растительных маслах семян. Наблюдается высокое процентное содержание редких жирных кислот в семенах определённых семейств растений.

R-COOH + КоА-SH + АТФ → R-CO-S-КоА + 2P i + H + + АМФ

Синтез

Циркуляция

Пищеварение и всасывание

Коротко- и среднецепочечные жирные кислоты всасываются напрямую в кровь через капилляры кишечного тракта и проходят через воротную вену , как и другие питательные вещества. Более длинноцепочечные слишком велики, чтобы проникнуть напрямую через маленькие капилляры кишечника. Вместо этого они поглощаются жирными стенками ворсинок кишечника и заново синтезируются в триглицериды . Триглицериды покрываются холестерином и белками с образованием хиломикрона . Внутри ворсинки хиломикрон попадает в лимфатические сосуды , так называемый млечный капилляр, где поглощается большими лимфатическими сосудами. Он транспортируется по лимфатической системе вплоть до места, близкого к сердцу, где кровеносные артерии и вены наибольшие. Грудной канал освобождает хиломикрон в кровоток посредством подключичной вены. Таким образом триглицериды транспортируются в места, где в них нуждаются.

Виды существования в организме

Жирные кислоты существуют в различных формах на различных стадиях циркуляции в крови. Они поглощаются в кишечнике, образуя хиломикроны, но в то же время они существуют в виде липопротеинов очень низкой плотности или липопротеинов низкой плотности после превращений в печени. При выделении из адипоцитов жирные кислоты поступают в свободном виде в кровь.

Кислотность

Кислоты с коротким углеводородным хвостом, такие как муравьиная и уксусная кислоты, полностью смешиваются с водой и диссоциируют с образованием достаточно кислых растворов (pK a 3.77 и 4.76, соответственно). Жирные кислоты с более длинным хвостом незначительно отличаются по кислотности. Например, нонановая кислота имеет pK a 4.96. Однако с увеличением длины хвоста растворимость жирных кислот в воде уменьшается очень быстро, в результате чего эти кислоты мало изменяют раствора. Значение величин pK a для данных кислот приобретает значение лишь в реакциях, в которые эти кислоты способны вступить. Кислоты, нерастворимые в воде, могут быть растворены в тёплом этаноле , и оттитрованы раствором гидроксида натрия , используя фенолфталеин , в качестве индикатора до бледнорозового цвета. Такой анализ позволяет определить содержание жирных кислот в порции триглицеридов после гидролиза .

Реакции жирных кислот

Жирные кислоты реагируют так же, как и другие карбоновые кислоты , что подразумевает этерификацию и кислотные реакции. Восстановление жирных кислот приводит к жирным спиртам . Ненасыщенные жирные кислоты также могут вступать в реакции присоединения ; наиболее характерно гидрирование , которое используется для превращения растительных жиров в маргарин . В результате частичного гидрирования ненасыщенных жирных кислот цис-изомеры, характерные для природных жиров, могут перейти в транс-форму. В реакции Варрентраппа ненасыщенные жиры могут быть расщеплены в расплавленной щёлочи. Эта реакция имеет значение для определения структуры ненасыщенных жирных кислот.

Автоокисление и прогоркание

Жирные кислоты при комнатной температуре подвергаются автоокислению и прогорканию . При этом они разлагаются на углеводороды , кетоны , альдегиды и небольшое количество эпоксидов и спиртов . Тяжёлые металлы , содержащиеся в небольших количествах в жирах и маслах, ускоряют автоокисление. Чтобы избежать этого, жиры и масла часто обрабатываются хелатирующими агентами , такими как лимонная кислота .

Применение

Натриевые и калиевые соли высших жирных кислот являются эффективными ПАВ и используются в качестве мыл . В пищевой промышленности жирные кислоты зарегистрированы в качестве пищевой добавки E570 , как стабилизатор пены, глазирователь и пеногаситель.

Разветвлённые жирные кислоты

Разветвлённые карбоновые кислоты липидов обычно не относятся к собственно жирным кислотам, но рассматриваются как их метилированные производные. Метилированные по предпоследнему атому углерода (изо -жирные кислоты) и по третьему от конца цепи (антеизо -жирные кислоты) входят в качестве минорных компонент в состав липидов бактерий и животных.

Разветвленные карбоновые кислоты также входят в состав эфирных масел некоторых растений: так, например, в эфирном масле валерианы содержится изовалериановая кислота:

Основные жирные кислоты

Насыщенные жирные кислоты

Общая формула: C n H 2n+1 COOH или CH 3 -(CH 2) n -COOH

Тривиальное название Брутто формула Нахождение Т.пл. pKa
Масляная кислота Бутановая кислота C 3 H 7 COOH CH 3 (CH 2) 2 COOH Сливочное масло, древесный уксус −8 °C
Капроновая кислота Гексановая кислота C 5 H 11 COOH CH 3 (CH 2) 4 COOH Нефть −4 °C 4,85
Каприловая кислота Октановая кислота C 7 H 15 COOH CH 3 (CH 2) 6 COOH 17 °C 4,89
Пеларгоновая кислота Нонановая кислота C 8 H 17 COOH CH 3 (CH 2) 7 COOH 12,5 °C 4.96
Каприновая кислота Декановая кислота C 9 H 19 COOH CH 3 (CH 2) 8 COOH Кокосовое масло 31 °C
Лауриновая кислота Додекановая кислота С 11 Н 23 СООН CH 3 (CH 2) 10 COOH 43,2 °C
Миристиновая кислота Тетрадекановая кислота С 13 Н 27 СООН CH 3 (CH 2) 12 COOH 53,9 °C
Пальмитиновая кислота Гексадекановая кислота С 15 Н 31 СООН CH 3 (CH 2) 14 COOH 62,8 °C
Маргариновая кислота Гептадекановая кислота С 16 Н 33 СООН CH 3 (CH 2) 15 COOH 61,3 °C
Стеариновая кислота Октадекановая кислота С 17 Н 35 СООН CH 3 (CH 2) 16 COOH 69,6 °C
Арахиновая кислота Эйкозановая кислота С 19 Н 39 СООН CH 3 (CH 2) 18 COOH 75,4 °C
Бегеновая кислота Докозановая кислота С 21 Н 43 СООН CH 3 (CH 2) 20 COOH
Лигноцериновая кислота Тетракозановая кислота С 23 Н 47 СООН CH 3 (CH 2) 22 COOH
Церотиновая кислота Гексакозановая кислота С 25 Н 51 СООН CH 3 (CH 2) 24 COOH
Монтановая кислота Октакозановая кислота С 27 Н 55 СООН CH 3 (CH 2) 26 COOH

Мононенасыщенные жирные кислоты

Общая формула: СН 3 -(СН 2) m -CH=CH-(CH 2) n -COOH (m = ω -2; n = Δ -2)

Тривиальное название Систематическое название (IUPAC) Брутто формула IUPAC формула (с карб.конца) Рациональная полуразвернутая формула
Акриловая кислота 2-пропеновая кислота С 2 Н 3 COOH 3:1ω1 3:1Δ2 СН 2 =СН-СООН
Метакриловая кислота 2-метил-2-пропеновая кислота С 3 Н 5 OOH 4:1ω1 3:1Δ2 СН 2 =С(СН 3)-СООН
Кротоновая кислота 2-бутеновая кислота С 3 Н 5 СOOH 4:1ω2 4:1Δ2 СН 2 -СН=СН-СООН
Винилуксусная кислота 3-бутеновая кислота С 3 Н 6 СOOH 4:1ω1 4:1Δ3 СН 2 =СН-СН 2 -СООН
Лауроолеиновая кислота цис-9-додеценовая кислота С 11 Н 21 СOOH 12:1ω3 12:1Δ9 СН 3 -СН 2 -СН=СН-(СН 2) 7 -СООН
Миристоолеиновая кислота цис-9-тетрадеценовая кислота С 13 Н 25 СOOH 14:1ω5 14:1Δ9 СН 3 -(СН 2) 3 -СН=СН-(СН 2) 7 -СООН
Пальмитолеиновая кислота цис-9-гексадеценовая кислота С 15 Н 29 СOOH 16:1ω7 16:1Δ9 СН 3 -(СН 2) 5 -СН=СН-(СН 2) 7 -СООН
Петроселиновая кислота цис-6-октадеценовая кислота С 17 Н 33 СOOH 18:1ω12 18:1Δ6 СН 3 -(СН 2) 16 -СН=СН-(СН 2) 4 -СООН
Олеиновая кислота цис-9-октадеценовая кислота С 17 Н 33 СOOH 18:1ω9 18:1Δ9
Элаидиновая кислота транс-9-октадеценовая кислота С 17 Н 33 СOOH 18:1ω9 18:1Δ9 СН 3 -(СН 2) 7 -СН=СН-(СН 2) 7 -СООН
Цис-вакценовая кислота цис-11-октадеценовая кислота С 17 Н 33 СOOH 18:1ω7 18:1Δ11
Транс-вакценовая кислота транс-11-октадеценовая кислота С 17 Н 33 СOOH 18:1ω7 18:1Δ11 СН 3 -(СН 2) 5 -СН=СН-(СН 2) 9 -СООН
Гадолеиновая кислота цис-9-эйкозеновая кислота С 19 Н 37 СOOH 20:1ω11 19:1Δ9 СН 3 -(СН 2) 9 -СН=СН-(СН 2) 7 -СООН
Гондоиновая кислота цис-11-эйкозеновая кислота С 19 Н 37 СOOH 20:1ω9 20:1Δ11 СН 3 -(СН 2) 7 -СН=СН-(СН 2) 9 -СООН
Эруковая кислота цис-9-доказеновая кислота С 21 Н 41 СOOH 22:1ω13 22:1Δ9 СН 3 -(СН 2) 11 -СН=СН-(СН 2) 7 -СООН
Нервоновая кислота цис-15-тетракозеновая кислота С 23 Н 45 СOOH 24:1ω9 23:1Δ15 СН 3 -(СН 2) 7 -СН=СН-(СН 2) 13 -СООН

Полиненасыщенные жирные кислоты

Общая формула: СН 3 -(СН 2) m -(CH=CH-(CH 2) х (СН 2)n-COOH

Тривиальное название Систематическое название (IUPAC) Брутто формула IUPAC формула (с метил.конца) IUPAC формула (с карб.конца) Рациональная полуразвернутая формула
Сорбиновая кислота транс,транс-2,4-гексадиеновая кислота С 5 Н 7 COOH 6:2ω3 6:2Δ2,4 СН 3 -СН=СН-СН=СН-СООН
Линолевая кислота цис,цис-9,12-октадекадиеновая кислота С 17 Н 31 COOH 18:2ω6 18:2Δ9,12 СН 3 (СН 2) 3 -(СН 2 -СН=СН) 2 -(СН 2) 7 -СООН
Линоленовая кислота цис,цис,цис-6,9,12-октадекатриеновая кислота С 17 Н 28 COOH 18:3ω6 18:3Δ6,9,12 СН 3 -(СН 2)-(СН 2 -СН=СН) 3 -(СН 2) 6 -СООН
Линоленовая кислота цис,цис,цис-9,12,15-октадекатриеновая кислота С 17 Н 29 COOH 18:3ω3 18:3Δ9,12,15 СН 3 -(СН 2 -СН=СН) 3 -(СН 2) 7 -СООН
Арахидоновая кислота цис-5,8,11,14-эйкозотетраеновая кислота С 19 Н 31 COOH 20:4ω6 20:4Δ5,8,11,14 СН 3 -(СН 2) 4 -(СН=СН-СН 2) 4 -(СН 2) 2 -СООН
Дигомо-γ-линоленовая кислота 8,11,14-эйкозатриеновая кислота С 19 Н 33 COOH 20:3ω6 20:3Δ8,11,14 СН 3 -(СН 2) 4 -(СН=СН-СН 2) 3 -(СН 2) 5 -СООН
- 4,7,10,13,16-докозапентаеновая кислота С 19 Н 29 COOH 20:5ω4 20:5Δ4,7,10,13,16 СН 3 -(СН 2) 2 -(СН=СН-СН 2) 5 -(СН 2)-СООН
Тимнодоновая кислота 5,8,11,14,17-эйкозапентаеновая кислота С 19 Н 29 COOH 20:5ω3 20:5Δ5,8,11,14,17 СН 3 -(СН 2)-(СН=СН-СН 2) 5 -(СН 2) 2 -СООН
Цервоновая кислота 4,7,10,13,16,19-докозагексаеновая кислота С 21 Н 31 COOH 22:6ω3 22:3Δ4,7,10,13,16,19 СН 3 -(СН 2)-(СН=СН-СН 2) 6 -(СН 2)-СООН
- 5,8,11-эйкозатриеновая кислота С 19 Н 33 COOH 20:3ω9 20:3Δ5,8,11 СН 3 -(СН 2) 7 -(СН=СН-СН 2) 3 -(СН 2) 2 -СООН

Примечания

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Жирные кислоты" в других словарях:

    Одноосновные карбоновые кислоты алифатич. ряда. Осн. структурный компонент мн. липидов (нейтральных жиров, фосфоглицеридов, восков и др.). Свободные Ж. к. присутствуют в организмах в следовых кол вах. В живой природе преим. встречаются высшие Ж.… … Биологический энциклопедический словарь

    жирные кислоты - Высокомолекулярные карбоновые кислоты, входящие в состав растительных масел, животных жиров и сопутствующих им веществ. Примечание Для гидрогенизации применяют жирные кислоты, выделенные из растительных масел, животных жиров и жировых отходов.… … Справочник технического переводчика

    ЖИРНЫЕ КИСЛОТЫ, органические соединения, составные компоненты ЖИРОВ (отсюда название). По составу они являются карбоксильными кислотами, содержащими одну карбоксильную группу (СООН). Примерами насыщенных жировых кислот (в углеводородной цепи… … Научно-технический энциклопедический словарь

Жирные кислоты - это алифатические карбоновые кислоты, получаемые в основном из жиров и масел. В состав природных жиров обычно входят жирные кислоты с четным числом атомов углерода, поскольку они синтезируются из двухуглеродных единиц, образующих неразветвленную цепь углеродных атомов. Цепь может быть насыщенной (не содержащей

двойных связей) и ненасыщенной (содержащей одну или более двойных связей).

Номенклатура

Систематическое название жирной кислоты чаще всего образуется путем добавления к названию углеводорода окончания -овая (Женевская номенклатура). Насыщенные кислоты при этом имеют окончание -ановая (например, октановая), а ненасыщенные -еновая (например, октадеценовая - олеиновая кислота). Атомы углерода нумеруются, начиная от карбоксильной группы (содержащей атом углерода 1). Атом углерода, следующий за карбоксильной группой называют также а-углеродом. Атом углерода 3 - это -углерод, а углерод концевой метальной группы (углерод ) - со-углерод. Для указания числа двойных связей и их положения были приняты различные соглашения, например Д 9 означает, что двойная связь в молекуле жирной кислоты находится между атомами углерода 9 и 10; со 9 - двойная связь между девятым и десятым атомами углерода, если их отсчитывать с (о-конца. Широко используемые названия с указанием числа атомов углерода, числа двойных связей и их положения приведены на рис. 15.1. В жирные кислоты животных организмов в процессе метаболизма могут вводиться дополнительные двойные связи, но всегда между уже имеющейся двойной связью (например со 9, со 6 или со 3) и карбоксильным углеродом; это приводит к разделению жирных кислот на 3 семейства животного происхождения или

Таблица 15.1. Насыщенные жирные кислоты

Рис. 15.1. Олеиновая кислота (n-9; читается: «n минус 9»).

Насыщенные жирные кислоты

Насыщенные жирные кислоты являются членами гомологического ряда, начинающегося с уксусной кислоты. Примеры приведены в табл. 15.1.

Существуют и другие члены ряда, с большим числом углеродных атомов, они встречаются в первую очередь в восках. Было выделено - как из растительных, так и из животных организмов - несколько жирных кислот с разветвленной цепью.

Ненасыщенные жирные кислоты (табл. 15.2)

Их подразделяет в соответствии со степенью ненасыщенности.

A. Мононенасыщенные (моноэтеноидные, моноеновые) кислоты.

Б. Полинеиасыщеиные (полиэгеноидные, полиеновые) кислоты.

B. Эйкозаноиды. Эти соединения, образующиеся из эйкоза-(20-С)-полиеновых жирных кислот,

Таблица 15.2. Ненасыщенные жирные кислоты, имеющие физиологическое и пищевое значение

(см. скан)

подразделяются на простаноиды и ленкотрнены (ЛТ). Простаноиды включают простаглаидины простациклины и тромбоксаны (ТО). Иногда термин простаглаидины употребляется в менее строгом смысле и означает все простаноиды.

Простаглаидины были первоначально обнаружены в семенной жидкости, но затем найдены в составе практически всех тканей млекопитающих; они обладают целым рядом важных физиологических и фармакологических свойств. Они синтезируются in vivo путем циклизации участка в центре углеродной цепи 20-С (эйкозановых) полиненасыщенных жирных кислот (например, арахидоновой кислоты) с образованием циклопентанового кольца (рис. 15.2). Родственная серия соединений, тромбоксаны, обнаруженные в тромбоцитах, содержат циклопентановое кольцо, в которое включен атом кислорода (оксановое кольцо) (рис. 15.3). Три различные эйкозановые жирные кислоты приводят к образованию трех групп эйкозаноидов, различающихся числом двойных связей в боковых цепях и ПГЛ. К кольцу могут быть присоединены различные группы, дающие

Рис. 15.2. Простагландин .

Рис. 15.3. Тромбоксан

начало нескольким разным типам простагландинов и тромбоксанов, которые обозначаются А, В и т. д. Например, простагландин Е-типа содержит кетогруппу в положении 9, тогда как в простагландине -типа в этом же положении стоит гидроксильная группа. Лейкотриены являются третьей группой эйкозаноидных производных, они образуются не путем циклизации жирных кислот, а в результате действия ферментов липоксигеназного пути (рис. 15.4). Они были впервые найдены в лейкоцитах и характеризуются наличием трех сопряженных двойных связей.

Рис. 15.4. Лейкотриен

Г. Другие ненасыщенные жирные кислоты. В материалах биологического происхождения были найдены и многие другие жирные кислоты, содержащие, в частности, гидроксильные группы (рицинолевая кислота) или циклические группы.

Цис-транс-изомерия ненасыщенных жирных кислот

Углеродные цепи насыщенных жирных кислот имеют форму зигзагообразной линии, когда они вытянуты (как это имеет место при низких температурах). При более высоких температурах происходит поворот вокруг ряда связей, приводящий к укорочению цепей, - именно поэтому при повышении температуры биомембраны становятся тоньше. У ненасыщенных жирных кислот наблюдается геометрическая изомерия, обусловленная различием в ориентации атомов или групп относительно двойной связи. Если ацильные цепи располагаются с одной стороны от двойной связи, образуется -конфигурация, характерная, например, для олеиновой кислоты; если же они располагаются по разные стороны, то молекула находится в транс-конфигурации, как в случае элаидиновой кислоты - изомера олеиновой кислоты (рис. 15.5). Природные полиненасыщенные длинноцепочечные жирные кислоты почти все имеют цис-конфигурацию; на участке, где находится двойная связь, молекула «согнута» и образует угол в 120°.

Рис. 15.5. Геометрическая изомерия жирных кислот (олеиновая и элаидиновая кислоты).

Таким образом, олеиновая кислота имеет форму буквы Г, тогда как элаидиновая кислота на участке, содержащем двойную связь, сохраняет «линейную» транс-конфигурацию. Увеличение числа цис-двойных связей в жирных кислотах ведет к увеличению числа возможных пространственных конфигураций молекулы. Это может оказывать большое влияние на упаковку молекул в мембранах, а также на положение молекул жирных кислот в составе более сложных молекул, таких, как фосфолипиды. Наличие двойных связей в -конфигурации изменяет эти пространственные соотношения. Жирные кислоты в транс-конфигурации присутствуют в составе некоторых пищевых продуктов. Большинство из них образуется как побочные продукты в процессе гидрогенизации, благодаря которому жирные кислоты переходят в насыщенную форму; таким способом, в частности, добиваются «затвердевания» природных масел при производстве маргарина. Кроме того, еще некоторое небольшое количество транс-кислот поступает с животным жиром - он содержит транс-кислоты, образовавшиеся под действием микроорганизмов, присутствующих в рубце жвачных животных.

Спирты

К числу спиртов, входящих в состав липидов, относятся глицерол, холестерол и высшие спирты

пример, цетиловый спирт которые обычно обнаруживаются в восках, а также полиизопреноидный спирт долихол (рис. 15.27).

Альдегиды жирных кислот

Жирные кислоты могут быть восстановлены в альдегиды. Эти соединения обнаруживаются в природных жирах как в свободном, так и в связанном состоянии.

Физиологически важные свойства жирных кислот

Физические свойства липидов организма в основном зависят от длины углеродных цепей и степени ненасыщенности соответствующих жирных кислот. Так, точка плавления жирных кислот с четным числом атомов углерода повышается с ростом длины цепи и понижается при увеличении степени ненасыщенности. Триацилглицерол, в котором все три цепи являются насыщенными жирными кислотами, содержащими не менее 12 атомов углерода в каждой, является при температуре тела твердым веществом; если же все три остатка жирных кислот относятся к типу 18:2, то соответствующий триацилглицерол остается жидким при температуре ниже О С. На практике природные ацилглиперолы содержат смесь жирных кислот, обеспечивающую выполнение определенной функциональной роли. Мембранные липиды, которые должны находиться в жидком состоянии, являются более ненасыщенными по сравнению с запасными липидами. В тканях, подвергающихся охлаждению - во время зимней спячки или в экстремальных условиях, - липиды оказываются более ненасыщенными.



Рассказать друзьям