Лекция сорок пятая. физиология микроциркуляции

💖 Нравится? Поделись с друзьями ссылкой

Рефлекторная регуляция системного артериального кровотока

Все рефлексы, посредством которых регулируется тонус сосудов и деятельность сердца, делятся на собственные и сопряженные. Собственными являются рефлексы, возникающие при раздражении рецепторов сосудистых рефлексогенных зон. Главные из них рефлексогенные зоны дуги аорты и каротидных синусов. Там расположены баро- и хеморецепторы. От рецепторов дуги аорты идет нерв депрессор, а от синокаротидных зон нерв Геринга. При увеличении артериального давления барорецепторы возбуждаются. От них импульсы по этим афферентным нервам идут в к бульбарному сосудодвигательному центру. Его прессорный отдел тормозится. Частота нервных импульсов, идущих к спинальным центрам и по симпатическим вазоконстрикторам к сосудам уменьшается. Сосуды расширяются. При понижении артериального давления количество импульсов идущих от барорецепторов к прессорному отделу уменьшается. Активность его нейронов растет, сосуды суживаются давление повышается.

Хеморецепторы образуют аортальный и каротидный клубочки. Они реагируют на содержание углекислого газа и изменение реакции крови. При повышении концентрации углекислого газа или сдвиге реакции крови в кислую сторону, эти рецепторы возбуждаются. Импульсы от них по афферентным нервам идут к прессорному отделу сосудодвигательного центра. Его активность возрастает, сосуды суживаются. Скорость кровотока, а следовательно выведения углекислого газа и кислых продуктов повышается.

Барорецепторы имеются и в сосудах малого круга. В частности в легочной артерии. При повышении давления в сосудах малого круга возникает депрессорный рефлекс Парина-Швигка. Сосуды расширяются, артериальное давление снижается, сердцебиения урежаются.

Сопряженными называют рефлексы, возникающие при возбуждении рецепторов, расположенных вне сосудистого русла. Например, при охлаждении или болевом раздражении рецепторов кожи сосуды суживаются. При очень сильном болевом раздражении они расширяются, возникает сосудистый коллапс. При ухудшении кровоснабжения мозга увеличивается концентрация углекислого газа и катионов водорода в нем. Они воздействуют на хеморецепторы ствола мозга. Активируются нейроны прессорного отдела, сосуды суживаются, происходит компенсаторный рост артериального давления.

Микроциркуляторным руслом является комплекс микрососудов, составляющих обменно-транспортную систему. К нему относятся артериолы, прекапиллярные артериолы, капилляры, посткапиллярные венулы, венулы и артериовенозные анастомозы. Артериолы постепенно уменьшаются в диаметре и переходят в прекапиллярные артериолы. Первые имеют диаметр 20-40 мкм, вторые 12-15 мкм. В стенке артериол имеется хорошо выраженный слой гладкомышечных клеток. Их основной функцией является регуляция капиллярного кровотока. Уменьшение диаметра артериол всего на 5% приводит к возрастанию периферического сопротивления кровотоку на 20%. Кроме того, артериолы образуют гемодинамический барьер, который необходим для замедления кровотока и нормального транскапиллярного обмена.


Капилляры являются центральным звеном микроциркуляторного русла. Их диаметр в среднем 7-8 мкм. Стенка капилляров образована одним слоем эндотелиоцитов. В отдельных участках имеются отросчатые перициты. Они обеспечивают рост и восстановление эндотелиоцитов. По строению капилляры делятся на три типа:

1. Капилляры соматического типа (сплошные). Их стенка состоит из непрерывного слоя эндотелиоцитов. Она легко проницаема для воды, растворенных в ней ионов, низкомолекулярных веществ и непроницаема для белковых молекул. Такие капилляры находятся в коже, скелетных мышцах, легких, миокарде, мозге.

2. Капилляры висцерального типа (окончатые). Имеют в эндотелии фенестры (оконца). Этот тип капилляров обнаружен в органах, которые служат для выделения и всасывания больших количеств воды с растворенными в ней веществами. Это пищеварительные и эндокринные железы, кишечник, почки.

3. Капилляры синусоидного типа (не сплошные). Находятся в костном мозге, печени, селезенке. Их эндотелиоциты отделены друг от друга щелями. Поэтому стенка этих капилляров проницаема не только для белков плазмы, но и для клеток крови.

У некоторых капилляров в месте ответвления от артериол находится капиллярный сфинктер. Он состоит из 1-2 гладкомышечных клеток, образующих кольцо на устье капилляра. Сфинктеры служат для регуляции местного капиллярного кровотока.

Основной функцией капилляров является транскапиллярный обмен, обеспечивающий водно-солевой, газовый обмен и метаболизм клеток. Общая обменная капилляров составляет около 1000 м 2 . Однако количество капилляров в органах и тканях неодинаково. Например в 1 мм 3 мозга, почек, печени, миокарда около 2500-3000 капилляров. В скелетных мышцах от 300 до 1000.

Обмен осуществляется путем диффузии, фильтрации-абсорбции и микропиноцитоза. Наибольшую роль в транскапиллярном обмене воды и растворенных в ней веществ играет двусторонняя диффузия. Ее скорость около 60 литров в минуту. С помощью диффузии обмениваются молекулы воды, неорганические ионы, кислород, углекислый газ, алкоголь и глюкоза. Диффузия происходит через заполненные водой поры эндотелия. Фильтрация и абсорбция связаны с разностью гидростатического и онкотического давления крови и тканевой жидкости. В артериальном конце капилляров гидростатическое давление составляет 25-30 мм.рт.ст., а онкотическое давление белков плазмы 20-25 мм.рт.ст. Т.е. возникает положительная разность давлений около +5 мм.рт.ст. Гидростатическое давление тканевой жидкости около 0, а онкотическое около 3 мм.рт.ст. Т.е. разность давлений здесь -3 мм.рт.ст. Суммарный градиент давления направлен из капилляров. Поэтому вода с растворенными веществами переходит в межклеточное пространство. Гидростатическое давление в венозном конце капилляров 8-12 мм.рт.ст. Поэтому разность онкотического и гидростатического давления составляет -10-15 мм.рт.ст. при той же разности в тканевой жидкости. Направление градиента в капилляры. Вода абсорбируется в них (схема). Возможен транскапиллярный обмен против концентрационных градиентов. В эндотелиоцитах имеются везикулы. Они расположенные в цитозоле и фиксированы в клеточной мембране. В каждой клетке около 500 таких везикул. С их помощью происходит транспорт из капилляров в тканевую жидкость и наоборот крупных молекул, например, белковых. Этот механизм требует затрат энергии, поэтому относится к активному транспорту.

В состоянии покоя кровь циркулирует лишь по 25-30% всех капилляров. Их называют дежурными. При изменении функционального состояния организма количество функционирующих капилляров возрастает. Например в работающих скелетных мышцах оно увеличивается в 50-60 раз. В результате обменная поверхность капилляров возрастает в 50-100 раз. Возникает рабочая гиперемия. Но наиболее выраженная рабочая гиперемия наблюдается в мозге, сердце, печени, почках. Значительно возрастает количество функционирующих капилляров и после временного прекращения кровотока в них. Например после временного сдавления артерии. Такое явление называется реактивной или постокклюзионной гиперемией. Кроме того, наблюдается ауторегуляторная реакция. Это поддержание постоянства кровотока в капиллярах при снижении или повышении системного артериального давления. Такая реакция связана с тем, что при повышении давления гладкие мышцы сосудов сокращаются и их просвет уменьшается. При понижении наблюдается обратная картина.

Регуляции кровотока в микроциркуляторном русле осуществляется с помощью местных, гуморальных и нервных механизмов, влияющих на просвет артериол. К местным относятся факторы оказывающие прямое влияние на мускулатуру артериол. Эти факторы также называются метаболическими, т.к. участвуют в клеточном метаболизме. При недостатке в тканях кислорода, повышении концентрации углекислого газа, протонов, под влиянием АТФ, АДФ, АМФ происходит расширение сосудов. С этими метаболическими сдвигами связана реактивная гиперемия. Гуморальное влияние на сосуды микроциркуляторного русла оказывает ряд веществ. Гистамин вызывает местное расширение артериол и венул. Адреналин, в зависимости от характера рецепторного аппарат гладкомышечных клеток, может вызывать и сужение и расширение сосудов. Брадикинин, образующийся из белков плазмы кининогенов под влиянием фермента калликреина, также расширяет сосуды. Оказывают влияние на артериолы и расслабляющие факторы эндотелиоцитов. К ним относятся окись азота, белок эндотелин и некоторые другие вещества. Симпатические вазоконстрикторы иннервируют мелкие артерии и артериолы кожи, скелетных мышц, почек, органов брюшной полости. Поэтому они участвуют в регуляции тонуса этих сосудов. Мелкие сосуды наружных половых органов, твердой мозговой оболочки, желез пищеварительного тракта иннервируются сосудорасширяющими парасимпатическими нервами.

Интенсивность транскапиллярного обмена главным образом определяется количеством функционирующих капилляров. Вместе с тем, проницаемость капиллярной стенки повышают гистамин и брадикинин.

МИКРОЦИРКУЛЯЦИЯ (греч. mikros малый + лат. circulatio круговращение) - процесс направленного движения различных жидкостей организма на уровне тканевых микросистем, ориентированных вокруг кровеносных и лимф, микрососудов. М. тесно связана с микрогемодинамикой и обменом веществ в тканях. Тканевая микросистема, получившая название функционального элемента органа, объединяя молекулярный, клеточный и межклеточный уровни, представляет собой взаимосвязанный специфический для данной ткани (органа) комплекс клеток, волокон соединительной ткани, а также нервных окончаний и физиологически активных веществ, регулирующих жизнедеятельность данной микрообласти (рис. 1). Следовательно, М.- это не только движение крови и лимфы, но и движение тканевых жидкостей (транскапиллярный обмен), цереброспинального и интраневрального ликвора, секретов железистых органов, выделение разнообразных веществ, растворенных в тканевых жидкостях. В условиях патологии М. включает также процессы экссудации, рассасывания последствий некроза и т. д. Более узко под М. понимают микрогемоциркуляцию, являющуюся одним из центральных компонентов тканевой микроциркуляции.

Начало изучения М. следует отнести к 1661 г., когда М. Мальпиги первым увидел и описал в легком живой лягушки тончайшие микрососуды, получившие позднее название капилляров (см.). Однако наиболее интенсивные исследования в области М. были начаты лишь в 19 в. Так, в 1865 г. Штриккер (S. Strieker) описал сужение просвета микрососудов переживающих органов лягушек вследствие непосредственного раздражения их стенок. В 1868 г. А. Е. Голубев описал прекапиллярных клеточные образования, функция к-рых была изучена в прижизненных условиях И. Р. Тархановым (1874). Особенно много сделали для изучения физиологии и патофизиологии капилляров и связанных с ними микрососудов А. К рог (с 1921 по 1929 г.) и его сотрудники. Среди ученых, изучавших морфол, и физиол, особенности капилляров и связанных с ними микрососудов, следует упомянуть Цвейфаха (В. W. Zweifach, с 1934 по 1980 г.), исследующего М. на брыжейке крысы, лягушки, кошки; Фултона и Лутца (Fulton, Lutz, 1940-1958) - на ретролингвальной мембране лягушки. Внутрисосудистую агрегацию эритроцитов в условиях патологии впервые наблюдали Фаре ус (R. Fahraeus, 1921) и Найсли (М. H. Knisely, 1936). Физиологии капиллярного кровообращения были посвящены исследования Г. И. Мчедлишвили (1958).

Термин «микроциркуляции» был впервые применен в 1954 г. на первой конференции по физиологии и патологии микроциркуляции (США. Гальвестон). Значительную роль в получении новых результатов, характеризующих строение и функцию микрососудов, сыграли электронно-микроскопические исследования и их комбинация с прижизненными наблюдениями микрососудов при помощи люминесцентной микроскопии, проведенные A. М. Чернухом (1968, 1975), B. В. Куприяновым (1969, 1975) и другими, а также применение радиоактивных изотопов и др. Все это дало возможность разработать клин, методы исследования М. и ее расстройств у человека. Опубликованы результаты многочисленных исследований по изучению М. при сердечно-сосудистых заболеваниях, проведенных П. Е. Лукомским, Г. М. Покалевым, В. А. Шабановым и другими, а также М. при повреждении тканей и воспалении, нарушениях свертывающей системы крови, при шоковых состояниях, проведенных А. М. Чернухом и сотр.

Микроциркуляторное русло

В ведение морфофункционального понятия «микроциркуляторное русло» связано с заменой старого представления о простом переходе крови из артерий в вены по капиллярам представлением о более сложных путях транспорта крови на микроскопическом уровне, о наличии системы М. (рис. 2, 3). В первое звено микроциркуляторного русла включают артериолы, венулы, пре- и посткапилляры, истинные капилляры и артериоловенулярные анастомозы, к-рые наряду с чисто транспортной функцией участвуют в обеспечении транскапиллярного обмена веществ. Второе звено системы М.- это пути транспорта веществ в тканях, включающие интерстициальные пространства (периваскулярные, межклеточные), ограниченные базальными и клеточными мембранами. Третье звено - лимфоносные пути микроскопического уровня, объединяемые термином «корни лимфатической системы». Перечисленные звенья анатомически автономны, хотя функционально взаимосвязаны и непрерывно взаимодействуют (цветн. рис. 1).

Кровь, протекающая по гемомикроциркуляторному руслу, отделена от окружающих тканей эндотелием. Эндотелий лимфоносного русла отделяет лимфу от интерстициальных пространств и прилежащих тканей. Сообщения между компонентами всей системы М. находятся на ультраструктурном уровне и характеризуются как механизмы капиллярной, клеточной и мембранной проницаемости. Специально изучаются следующие пути М.

Кровеносные капилляры являются основной структурной единицей микроциркуляторного русла. Это тонкие (диам, от 3-5 до 30-40 мкм) сосуды, ветвящиеся на своем протяжении между артериальными и венозным отделами системы кровообращения. Стенка капилляра построена из клеток эндотелия, лежащих в один слой. Снаружи ее одевает базальная мембрана, к-рая содержит клетки-перициты, фиксирующиеся базальной мембраной.

Эндотелиальные клетки стенки кровеносных капилляров имеют уплощенный характер. В области ядра толщина клетки ее возрастает. В цитоплазме содержится набор типичных клеточных органелл. Особенно характерно наличие большого числа везикул, участвующих во внутриклеточном транспорте. Края соседних эндотелиальных клеток налегают друг на друга наподобие черепицы или соединяются зубчатыми поверхностями. Встречаются небольшие выросты клеток, обращенные в просвет капилляра (так наз. микроворсины, складки или псевдоподии). На внутренней поверхности эндотелия обычно откладывается параплазмолеммальный слой, продолжающийся в межклеточное сцепление (межклеточные стыки).

Расстояния между капиллярами весьма вариабельны. В тканях с интенсивным обменом веществ густота капилляров выше, чем в тканях, отличающихся низким уровнем обменных процессов.

Артериолы - это конечные отделы артериальной кровеносной системы с наиболее выраженными резистивными функциями. Характерная черта их стенки - наличие гладких мышечных клеток, лежащих в один ряд. По мере приближения к капиллярам эти клетки оказываются все больше отодвинутыми друг от друга, в результате чего мышечный слой перестает быть сплошным. Принадлежность артериол к системе М. определяется их участием в гемодинамике, влияющей непосредственно на капиллярный кровоток и на транскапиллярный обмен.

Прекапилляры (прекапиллярные артериолы) - сосудистые сегменты, соединяющие капилляры с артериолами. У них в отличие от капилляров поверх эндотелия располагаются разрозненные гладкие мышечные клетки, обеспечивающие сосудистую подвижность.

Посткапилляры (посткапиллярные венулы) образуются в результате соединения двух или нескольких истинных капилляров. Их диаметр больше, чем у капилляров, и составляет 15- 30 мкм. Меняется форма эндотелиальных клеток. Число перицитов резко возрастает, они образуют вместе с базальной мембраной тонкую адвентициальную оболочку. Стенки посткапилляров весьма растяжимы и обладают высокой проницаемостью. Вместе с венулами пост-капилляры составляют лабильное звено микроциркуляторного русла с выраженной емкостной (резистивной) функцией.

Венулы. По мере слияния посткапилляров возникают собирательные венулы. Их калибр широко варьирует, в обычных условиях находится в пределах 25-50 мкм. Стенка венул становится толще за счет соединительнотканных клеток и волокон. Появляются рассеянные мышечные клетки. Возможность трансмурального перехода жидкости в венулах сохраняется.

Артериоловенулярные анастомозы - сосудистые каналы, выполняющие роль шунтов, с помощью к-рых часть крови может переводиться в венозный отдел в обход капилляров (рис. 4). Соответственно движение крови по микроциркуляторному руслу разделяется на два потока: транскапиллярный (основной) и внекапиллярный, или юкстакапиллярный (добавочный, предохранительный). Благодаря артериоловенулярным анастомозам часть движущейся крови переходит непосредственно в венозное русло, что ускоряет оборачиваемость всего объема крови.

Лимфатические капилляры и посткапилляры. Гемомикроциркуляторное русло находится в сопряженных отношениях с корнями лимф, системы, начинающейся лимф, капиллярами, стенки к-рых тоньше стенок кровеносных капилляров и, как правило, лишены базальной мембраны. Соединения эндотелиальных клеток в стенках лимф, капилляров не отличаются плотностью. Межэндотелиальные щели - основные пути проникновения тканевой жидкости в просвет лимф, капилляров - могут расширяться под действием коллагеновых фибрилл. Лимф, капилляры начинаются либо «слепыми» пальцевидными выростами (рис. 5,а), либо петлевидными образованиями (рис. 5,6). На расстоянии нескольких десятков микрон от начала в просвете капилляров появляются клапаны (рис. 6), определяющие направление тока лимфы. Капилляры с клапанами выделены как лимф, посткапилляры. Их функция состоит не только в резорбции коллоидов, но и в удалении избытка воды из начальных лимф, путей, что приводит к установлению окончательного состава лимфы. Накопление лимфы, ее концентрация и реконцентрация зависят от подвижности межклеточных (межэндотелиальных) контактов. При расширении межклеточных щелей в лимф, капилляры проникают крупные молекулы белка, инородные частицы и отдельные клетки. В цитоплазме эндотелия лимф, капилляров обнаружены микрофиламенты, сходные по строению с актиновыми нитями, к-рым приписывается способность воздействия на клеточную плазмолемму и тем самым - на проницаемость стенки капилляров.

Интерстициальные пространства. Четкого представления об их организации еще не сложилось, хотя их существование в форме «соковых щелей» предсказал Ф. Реклингхаузен в 19 в. Описаны различные пути транспорта тканевых жидкостей: перикапиллярные, паравазальные, интраадвентициальные, пре лимфатические, интерстициальные и др. Их местонахождение между комплексами тканевых элементов и стенками сосудов не вызывает сомнений. Наряду с гелем, заполняющим эти пространства, здесь рассеяны соединительнотканные элементы (иммунокомпетентные клетки и макрофаги, коллагеновые фибриллы и волокна, направляющие перемещение тканевых жидкостей), а также продуценты медиаторов и др. Гидростатическое и осмотическое давление в интерстиции влияет на фильтрационный коэффициент капилляров.

Показана органоспецифичность структур микроциркуляторного русла. Так, в почках М. осуществляется через клубочки (гломерулы), капилляры к-рых имеют истинные поры. В печени синусоидные кровеносные капилляры оказываются пунктами встречи артериальной и венозной крови; субмикроскопические поры соединяют синусоиды и перисинусоидальные пространства, сообщающиеся с междольковыми лимф, путями и с желчными канальцами. В легких капилляры альвеол приспособлены для газообмена, они расположены по соседству с интерстициальным пространством альвеол и межальвеолярных перегородок, опосредующих транспорт газов. Органоспецифические признаки присущи всем звеньям системы М. и проявляются в густоте капиллярных сетей, калибре сосудов, соотношениях капилляров с тканями, в степени проницаемости стенок капилляров и мембран. Одной из существенных особенностей микроциркуляторного русла того или иного органа является частота артериоловенулярных анастомозов и наличие микроклапанов на уровне венул и мелких вен.

Структуры микроциркуляторного русла в составе органа находятся под контролем соответствующих иннервационных механизмов и функционируют также на основе саморегуляции. Гидравлическое сопротивление в артериолах и прекапиллярах зависит от тонуса их мышечных элементов. В местах отхождения прекапилляров, как и в местах их ветвления, иногда наблюдается концентрация гладких мышечных клеток, называемых прекапиллярными сфинктерами. Иногда весь прекапилляр выполняет роль сфинктера за счет непрерывности мышечного слоя его стенок. Это своеобразные «краны» в периферическом кровотоке, как их называли И. М. Сеченов и И. П. Павлов. Распределительную функцию крови в системе М. берут на себя и артериоловенулярные анастомозы, снабженные запирательными устройствами.

Ток крови в капиллярах тесно связан с током лимфы и перемещением тканевой жидкости. Установлена зависимость проницаемости микрососудов от кровотока в них и состояния тканевых сред, в частности коллоидно-осмотического давления.

Методы исследования

В связи с системным подходом к изучению М. возникла необходимость в расшифровке ее структурной организации. Потребовалось прежде всего выделение основной структурной единицы. Последовали соответствующие понятия ангиона, микрорайона, сектора, модуля, элемента. Нацеленность исследователей в этом отношении выражает намерения найти в элементарной регионарной модели характеристику целой системы, открыть принцип ее организации и закономерности функционирования. Под функциональным элементом (А. М. Чернух) и под модулем (В. Р1. Козлов, Я. И. Караганов, В. В. Банин) понимается единство перечисленных выше звеньев системы М., составляющих ее материальный субстрат и определяющих конечный результат деятельности.

Изучение М. и интрациркуляции включает различные виды биомикроскопии, измерение скорости кровотока и кровяного давления, изучение проницаемости и транскапиллярного обмена, реологических свойств крови в системе микрососудов и т. д. Одной из основных методик изучения М. в эксперименте и клинике является биомикроскопия. Все методики биомикроскопии условно разделяются на четыре группы.

Первая группа методик основана на принципе просвечивания (транс-иллюминации) области в проходящем свете (см. Трансиллюминация) без применения особых приспособлений. Обычно применяются прозрачные области (плавательные перепонки и ретролингвальные мембраны лягушки, летательные перепонки крыльев летучей мыши, брыжейка и сальник теплокровных животных, тонкие прозрачные мышцы нек-рых животных и др.).

Вторая группа методик основана на изучении микрососудов поверхности тела в отраженном свете. Т. о., изучаются микрососуды кожи, слизистых оболочек, внутренних полостей тела и органов (ногтевое ложе, бульбоконъюнктива, сосуды глазного дна, слизистые оболочки рта, носа и т. д.).

Третья группа методик основана на применении прозрачных камер, к-рые вживляются животным с целью исследования М. нек-рых областей тела (ухо кролика, защечный мешок хомяка, берцовая кость кролика, грудная клетка кролика, черепная коробка собаки и обезьяны, брюшная стенка кролика, кожная складка спины мыши и др.). Предложена камера из титана, при вживлении к-рой в кожно-мышечный лоскут плеча человека удалось изучить особенности М. этой области.

Четвертая группа методик основана на применении световодов (см. Эндоскопия). Их использование позволило достигнуть хорошего освещения органов, расположенных в глубине грудной и брюшной полости, и выяснить ряд особенностей их микроциркуляции.

Существующие методы измерения кровяного давления делятся на кровавые и бескровные (см. Кровяное давление). Степень кровенаполнения микрососудов определяется при помощи фотоэлектрической микроплетизмографии (см. Плетизмография). Измерение вязкости крови в ряде случаев бывает необходимым и осуществляется вискозиметрами (см. Вязкость).

Особое место занимают функциональные методы изучения сосудистой проницаемости (см.) и транскапиллярного обмена. Чаще применяют различные методы биомикроскопии, т. е. прямого наблюдения перехода различных веществ или клеток через стенки обменных микрососудов. Тестами при этом является проникновение через эти стенки различных красок, флюоресцирующих соединений, белков и декстранов. Существуют многочисленные методы косвенного исследования проницаемости: напр., метод клиренса (см.) или очищения какого-либо органа и ткани после введения в него тест-вещества (чаще всего применяют радиоактивные изотопы), инертных газов криптона и ксенона, легко проникающих через мембраны клеток. Следует, однако, иметь в виду, что между проницаемостью и интенсивностью местного кровотока имеют место сложные и малоизученные отношения. В клинике большое распространение получила так наз. проба Лендиса, основанная на существовании определенной зависимости между величиной капиллярного давления и степенью проницаемости капилляров (см. Лендиса проба). Применяется также метод измерения проницаемости (а следовательно, и транскапиллярного обмена) по разнице содержания компонентов артериальной и венозной крови (напр., исследование гематокрита, белков, фильтрационной жидкости и др.).

В клинике получили распространение методы определения прочности стенок капилляров кожи. С этой целью применяют различные вакуум-ные присоски, наложение манжеток на плечо и т. д.

Для исследования транспорта веществ через микрососудистую стенку в условиях нормы и патологии применяют методы электронной микроскопии (см.). Весьма перспективно сочетание биомикроскопии с электронной микроскопией - так наз. топографической электронной микроскопии. Наиболее полно охарактеризовать особенности М. можно при помощи совокупности различных методов. В клин, практике изучение М. чаще проводят путем биомикроскопии сосудов бульбоконъюнктивы, а также микрососудов глазного дна и ногтевого ложа. Таким образом описаны патол, изменения микрососудов при гипертонии, диабетической ангиопатии, ишемической болезни сердца и т. д. Большое значение имеет изучение различных показателей реол. свойств крови (прежде всего ее вязкости, степени адгезии форменных элементов крови и др.), изменяющихся при шоке различной этиологии, инфаркте миокарда и других заболеваниях.

Физиология

Микроциркуляторное русло является функциональной системой, задачей к-рой является материальное обеспечение жизнедеятельности органов в соответствии с их физиол, состоянием. Благодаря функционированию артериального отдела -микроциркуляторного русла кровоток в капиллярах имеет равномерное течение и давление в них колеблется в меньших пределах, чем в крупных, средних и мелких артериях. Число функционирующих (т. е. активных) капилляров определяет площадь, через к-рую происходит транскапиллярный обмен. Капилляры и капиллярные венулы составляют обменные микрососуды с относительным постоянством величины давления и скорости кровотока (см. Капиллярное кровообращение), что обусловливает непрерывный транскапиллярный обмен. Уровень давления в капиллярах и зависящий от него фильтрационный обмен определяются соотношением давления в пре- и посткапиллярном отделах микроциркуляторного русла (см. Капиллярное давление). В венозном отделе системы М. в связи с большей площадью поперечного сечения русла кровоток замедлен, а кровяное давление в нем наиболее низкое. Это обеспечивает поступление продуктов обмена и жидкости из тканей обратно в кровь. Следовательно, деятельность сердца и всех других участков сердечно-сосудистой системы направлена на обеспечение сбалансированного кровотока в обменных микрососудах.

Существенным показателем функции М. является скорость кровотока, к-рая в микрососудах зависит от артериовенозной разницы кровяного давления, реол. свойств крови и других факторов. В мелких артериях скорость кровотока колеблется в соответствии с фазами сердечной деятельности, функциональным состоянием и спецификой области тела (органа). Так, напр., у кошки средняя линейная скорость кровотока в брыжеечных артериях диам. 58 мкм составляет 20,6 мм/сек, а в артериолах диам. 17 мкм - 9 мм/сек. В брыжейке собак в артериолах диам. 10-60 мкм линейная скорость достигает лишь 1 - 3 мм/сек. В артериолах защечного мешка хомяка диам, до 70 мкм эта скорость равняется 1,1-1,8 мм/сек. Такое различие в скорости кровотока объясняется, очевидно, морфол, и физиол, своеобразием защечного мешка хомяка как специфического органа хранения пищи. В любом случае с уменьшением диаметра микрососудов скорость кровотока в них все более снижается (см. Кровообращение). Особый интерес представляет скорость кровотока в капиллярах и мелких венулах, поскольку она до нек-рой степени определяет интенсивность транскапиллярного обмена веществ и газообмена.

Средняя линейная скорость капиллярного кровотока у млекопитающих достигает 0,5-1 мм/сек. В нек-рых областях тела (кожа человека, легкое кролика) она равна 0,74-0,75 мм/сек при диаметре капилляров 12 мкм. Т. о., время контакта каждого эритроцита со стенкой капилляра длиной 100 мкм в этих областях не превышает 0,15 сек. Интенсивность эритроцитарного потока в одном капилляре колеблется от 12-13 клеток в секунду до 300- 1500 и более в минуту (в зависимости от диаметра просвета сосуда и области тела или органа).

Кровяное давление в микрососудах зависит от сопротивления в разветвляющемся артериальном русле. На протяжении капилляров давление продолжает падать. Так, напр., в артериальном отделе капилляра кожи человека кровяное давление достигает в среднем 30, а в венулярном - 10 мм рт. ст.; в капиллярах ногтевого ложа человека оно составляет 37 мм рт. ст. В клубочках почки величина кровяного давления достигает 70-90 мм рт. ст., т. е. уровня, необходимого для осуществления фильтрации. Падение давления ниже 50 мм рт. ст. сопровождается прекращением образования первичной мочи. Кровяное давление в венулярном отделе все более снижается (на каждые 3,5 см длины сосуда на 11 мм рт. ст.). Следует иметь в виду наличие прерывистого кровотока в отдельных капиллярах, что обусловлено явлением так наз. вазомоции - периодического сужения и расширения просвета мелких артерий и артериол. Предполагается, что вазомоция связана с деятельностью гладких мышц стенок этих микрососудов, к-рая изменяется под влиянием тканевых метаболических факторов и вазоактивных веществ.

Скорость кровотока, а следовательно, и обусловленная ею величина перфузии микроциркуляторного русла прямо зависят также от реол. свойств крови. Кровь (см.) представляет собой коллоидный раствор, в к-ром находятся во взвешенном состоянии форменные элементы. Закономерности продвижения крови и ее отдельных форменных элементов в микрососудах изучает реология (см.), задачей к-рой является исследование деформации и текучести клеточных элементов и плазмы крови и их отношения со стенками микрососудов. Кровь характеризуется определенной плотностью и вязкостью (см.). От вязкости в значительной мере зависит течение крови по сосудам.

В крупном сосуде скорости движения различных слоев крови различны. Наибольшую скорость имеет центральный слой, наименьшую - пристеночный. Т. о., возникает сдвиг скоростей разных слоев и соответствующий им градиент сдвига скоростей. Для достижения определенной величины сдвига скоростей слоев необходима сила, прилагаемая на единицу площади слоя, с целью придания этому слою постоянного напряжения (так наз. напряжение сдвига). С этих позиций вязкость крови более точно можно определить как отношение сдвигающего напряжения к скорости сдвига ее слоев. Вязкость крови в микрососудах имеет свои особенности и в значительной мере зависит от сдвига скорости, к-рый определяет величину деформации эритроцитов. Следует иметь в виду, что эластичность эритроцитов способствует их сравнительно легкому продвижению через капилляры с просветом 3-5 мкм при диаметре эритроцитов у человека 7-8 мкм. Способность эритроцитов и лейкоцитов легко и обратимо деформироваться является решающим условием оптимальной текучести крови в микрососудах. Время контакта эритроцитов со стенкой обменных микрососудов имеет существенное физиол, значение и для процессов газообмена (см.).

Процессы, возникающие во время движения эритроцитов и плазмы крови через просвет капилляров, весьма сложны и еще недостаточно изучены. От них зависит комплекс взаимодействующих компонентов (физ., физ.-хим., чисто физиол, и др.), обусловливающих прохождение веществ через сосудистую стенку в ткани и обратно. Этот процесс прямо зависит от величины поверхности капилляров (т. е. от площади фильтрации), а также от гемодинамических и осмотических факторов крови и тканевой жидкости. Не только количественные, но и качественные особенности транскапиллярного обмена зависят от процессов, совершаемых в перикапиллярном пространстве и определяющих градиент концентрации различных веществ.

Транскапиллярный обмен осуществляется несколькими путями: через тело эндотелиальной клетки путем диффузии и фильтрации; посредством везикулярного транспорта, через межэндотелиальные промежутки и комбинированным путем (рис. 7).

Фильтрация, т. е. проникновение веществ определенного молекулярного веса из крови через поры в мембране в соответствии с градиентом гидростатического давления или в сторону более высокого осмотического давления, является одним из главных механизмов транскапиллярного обмена жидкости и выражается ее количеством, профильтрованным через определенную площадь сосудистой стенки при определенном давлении крови в единицу времени.

По гипотезе Э. Старлинга (1896) обмен жидкости между кровью и тканью определяется градиентом гидростатического и коллоидноосмотического давления на артериальном и венозном концах капилляров. Градиент проницаемости вдоль обменных микрососудов связан с тем, что гидростатическое давление по направлению к венозному отделу падает, а коллоидно-осмотическое давление повышается. При сужении прекапиллярных артериол гидростатическое давление в капилляре падает и резорбция жидкости из внекапиллярного пространства увеличивается. При расширении прекапиллярных артериол гидростатическое давление в капиллярах повышается и жидкость выходит из капилляра в окружающее пространство. Однако транскапиллярный обмен веществ зависит также и от свойств стенок микрососуда, через к-рые проникают лишь молекулы, не превышающие размеры имеющихся пор. Паппенгеймер, Лендис, Гротт (J. R. Pappenheimer, E. М. Landis, М. Grotte, 1965) на основании экспериментального изучения транспорта различных макромолекулярных индикаторов создали «теорию пор», согласно к-рой транспортные пути представлены малыми порами, имеющими диам. 7-9 нм, и большими порами (люками) с диаметром не менее 20 нм. Через малые поры прохождение молекул с мол. весом (массой) 30 000-40 000 и радиусом 2-2,5 нм уже ограничивается, а молекулы с мол. весом более 90 000 и диам, более 8 нм совсем не проходят. Количество малых и больших пор в стенках капилляров не постоянно, оно связано с функциональным состоянием данной микроциркуляторной единицы. Многочисленные электронно-микроскопические исследования и дискуссия по поводу их результатов привели к тому, что аналогом больших пор стали считать пути микровезикулярного транспорта, в то время как ультраструктурным эквивалентом малых пор служат промежутки между эндотелиальными клетками и, может быть, каналы в эндотелиальной клетке, образующиеся от слияния микровезикул, в местах слияния к-рых каналы суживаются. Наличие градиента органной проницаемости объясняется различным строением эндотелия в различных органах.

Микровезикулы, открытые в эндотелиальных клетках капилляров Пелейдом (G. E. Palade, 1963), в общебиол. плане представляют один из механизмов эндоцитоза, т. е. поглощения клетками микрочастиц или растворов за счет активной деятельности поверхностных клеточных мембран.

Регуляция деятельности микроциркуляторной системы в норме и патол, условиях сложна и еще недостаточно изучена. Физиол, регулирование М., осуществляемое нервными и гуморальными механизмами, обеспечивает оптимальный кровоток в капиллярах для нормального (для данных условий) транскапиллярного обмена между кровью и тканями. Оно обеспечивается местной гуморальной и нервной регуляцией. Необходимо иметь в виду единство регуляции процессов М. в пределах всей системы кровообращения и регуляции собственно М. как тканевой микросистемы. Следует разграничивать три уровня регулирования: а) общесистемную регуляцию (в пределах системы кровообращения), б) местную регуляцию (в пределах органа) и в) саморегуляцию (в пределах функционального элемента органа, т. е. микроциркуляторной единицы). Эти уровни регуляции предполагают наличие принципа вероятностной, а не однозначной (т. е. линейной) причинности.

Существенную роль в местной регуляции микроциркуляторной системы играют физиологически активные вещества. Многие из них обладают выраженным вазоактивным действием. В частности, гистамин (см.) является одним из самых активных вазодилататоров, серотонин (см.) - по преимуществу констриктор нек-рых сосудов, кинины (см.) - высокоактивные вазодилататоры. Ангиотензины I и II (особенно последний) обладают выраженным гипертензивным действием, влияя на гладкомышечные (а по нек-рым данным и на эндотелиальные) клетки и вызывая их сокращение (см. Ангиотензин). Гормон задней доли гипофиза - вазопрессин (см.) и такие высокоактивные вещества, как простагландины (см.) и тромбоксаны, также обладают вазоактивным действием. Поскольку регулирование М., как указывалось, совершается по принципу вероятностной причинности, то ответы системы М. на информацию, пришедшую со всех трех уровней регуляции, могут быть различными (и даже противоположно направленными). Для лучшего понимания роли управляющих воздействий, осуществляемых посредством физиологически активных веществ, в регулировании М. необходимо использование системного подхода, к-рый в последние годы стали широко применять в физиол, и патофизиол. исследованиях.

Основным механизмом нервной регуляции обменных микрососудов является их эфферентная иннервация бессинаптического типа, осуществляемая свободной диффузией нейромедиаторов по направлению к стенкам микрососудов. В экспериментах А. М. Чернуха и сотр. (1975) были изучены расположения нервных терминалей и возможных путей нервной регуляции капилляров в миокарде и других органах. В зависимости от расстояния, по к-рому движется нейромедиатор, нервные влияния на капилляры могут быть быстрыми и непосредственными, а также «замедленными и опосредованными». Выделяющийся из свободных нервных терминалей медиатор распространяется во все стороны, влияя на все части функционального элемента. Наиболее вероятно, что влияние центральной нервной системы (напр., гипоталамуса) на микроциркуляцию может реализоваться этим путем.

Патология

Расстройства в системе М. можно разделить на четыре большие группы: нарушения в стенках микрососудов, внутрисосудистые нарушения, внесосудистые изменения и комбинированные расстройства.

Патол, расстройства на уровне сосудистых стенок микрососудов иногда выражаются в изменениях формы и расположения эндотелиальных клеток. Одним из наиболее часто наблюдающихся нарушений этого типа является повышение проницаемости микрососудистых стенок капилляров и венул. Такие нарушения встречаются при развитии воспалительных реакций (см. Воспаление). Разного рода изменения эндотелиальных клеток вызывают прилипание (адгезию) к их поверхности форменных элементов крови, опухолевых клеток, инородных частиц и др. Проникновение (диапедез) форменных элементов крови через стенки капилляров и венул имеет место после прилипания соответствующих клеток к эндотелию. При этом диапедез лейкоцитов (полиморфно-ядерных нейтрофильных гранулоцитов, моноцитов, лимфоцитов) также является одним из обязательных компонентов патогенеза воспаления. Микрокровоизлияние является следствием повреждения стенки микрососудов (нарушения их целостности).

Внутрисосудистые нарушения микрогемоциркуляции крайне разнообразны. На первое место среди них следует поставить изменения реол. свойств крови, связанные прежде всего с агрегацией эритроцитов (см.) и других форменных элементов крови. Такие внутрисосудистые расстройства, как замедление кровотока, тромбоз (см.), эмболия (см.), также в значительной степени зависят от нарушения нормальной стабильности крови как суспензии. Следует отличать агрегацию форменных элементов крови (эритроцитов) от их агглютинации. Первый процесс характеризуется обратимостью, в то время как второй - всегда необратим. Крайняя степень выраженности агрегации форменных элементов крови получила название «сладж» (англ. sludge ил, тина, густая грязь). Главным результатом таких изменений крови является увеличение ее Вязкости вследствие слипания эритроцитов, лейкоцитов и тромбоцитов с образованием агрегатов. Такое состояние крови в значительной степени ухудшает ее перфузию через микрососуды и иногда приводит к микроэмболизации капилляров.

В потоке крови при этом наступает разделение (сепарация) на клетки и плазму. Местные тканевые повреждения всегда приводят к усиленной внутрисосудистой агрегации эритроцитов и к соответствующим нарушениям реол. свойств крови. В тяжелых случаях, особенно при шоковых состояниях - травматических, кардиогенных, токсических и др. (см. Шок) - развивается выраженная картина сладжа крови. При ожогах, тяжелых травмах, обширных хирургических вмешательствах на сердце, легких и др., при экстракорпоральном кровообращении, гипотермии, тромбозах и эмболии и других подобных состояниях исследование микрососудов (напр., конъюнктивы глаза) всегда обнаруживает сладж крови различной интенсивности. Многие исследователи наблюдали прямую зависимость между выраженностью агрегации эритроцитов и скоростью оседания эритроцитов (см.). Ведущая роль в развитии агрегации эритроцитов, как полагают, принадлежит факторам плазмы крови, в частности высокомолекулярным белкам, таким, как глобулины и особенно фибриноген. Увеличение их содержания усиливает агрегацию эритроцитов. Высокомолекулярные декстраны (мол. вес 150 000 и выше) усиливают агрегацию эритроцитов и явления сладжа, в то время как низкомолекулярные декстраны, полиглюкин (мол. вес ок. 60 000) и особенно реополиглюкин (мол. вес ок. 40 000) вызывают при их введении дезагрегацию эритроцитов и тромбоцитов, что способствует лечебному использованию полиглюкина при появлении внутрисосудистого сладжа крови. Поскольку гемостаз и коагуляция крови являются защитной местной реакцией при любом нарушении целостности тканей, такие расстройства встречаются всегда при различных местных повреждениях. Последствием нарушений реол. свойств крови, а также усиленной коагуляции и тромбообразования является замедление кровотока в микроциркуляторной системе вплоть до полного стаза (см.).

Внесосудистые тканевые факторы (клеточные компоненты функционального элемента тканей) могут влиять на состояние микрогемоциркуляции точно так же, как нарушения последней воздействуют на клеточные компоненты микросистемы, соответствующей данной микрососудистой единице. Наиболее выраженное влияние на систему микроциркуляции имеют тучные клетки (см.), содержащие в своих гранулах гистамин, гепарин, серотонин и другие физиологически активные вещества, действующие на микрососуды.

Нормальное соотношение между тканями и кровью в значительной мере определяется нормальной функцией лимфатических сосудов (см.). Значение лимфатической системы (см.) в гистогематическом обмене жидкостей на уровне микроциркуляторной системы только начинает изучаться. Надо полагать, что микроциркуляторные расстройства играют существенную роль в развитии нейродистрофических процессов. Между тем эта проблема исследована еще недостаточно.

Комбинированные расстройства М., связанные с внутрисосудистыми нарушениями, изменениями сосудов и внесосудистых тканевых компонентов, встречаются довольно часто. Обычно они представляют собой разные сочетания уже описанных выше расстройств.

Нарушения М. имеют место при многих заболеваниях, прежде всего сердечно-сосудистой системы. При гипертонической болезни (см.) появляется извитость, формируются петли в капиллярах и особенно в собирательных венулах. Это сопровождается ангиоспазмом (см.), сужением артериол и повышением их чувствительности к катехоламинам. Замедляется кровоток. Одновременно может повышаться проницаемость эндотелия микрососудов за счет усиления микровезикулярного транспорта. У больных атеросклерозом (см.), особенно в случае прогрессирования заболевания, наблюдаются расстройства, связанные с реол. нарушениями крови. Особенно выраженными являются нарушения при сахарном диабете (см. Диабет сахарный), при котором развивается ангиопатия, наблюдаемая обычно в сетчатке глаза; обнаруживаются микроаневризмы, экссудация в задней камере глаза, кровоизлияния, пролиферирующий ретинит и в тяжелых случаях отслойка сетчатки.

Важнейшим звеном патогенеза ишемической болезни, и в частности инфаркта миокарда (см.), являются расстройства М. При этом наблюдаются комбинированные динамические нарушения в стенках микрососудов и реол. расстройства крови.

Выше была подчеркнута ведущая роль нарушений М. при повреждении тканей и воспалении, при шоковых и других экстремальных состояниях. Опухолевый рост и особенно метастазирование опухолей тесно связаны с расстройствами М., к-рые в этих случаях также носят комбинированный характер.

Т. о., нарушения М. принадлежат к типовым общепатол, процессам, лежащим в основе многих заболеваний. Изучение системы М. имеет важное значение для теоретической медицины и клин, практики.

Библиография: Куприянов В. В. Проблема микроциркуляции с морфологической точки зрения, Арх. анат., гистол, и эмб, риол., т. 47, № 9, с. 14, 1964; он же, Пути микроциркуляции, Кишинев, 1969-библиогр.; КуприяновВ. В. .Караганов Я. Л. и Козлов В.П. Мик-роциркуляторное русло, М., 1975, библиогр.; Чернух А. М. Воспаление, М., 1979; Чернух А. М., Александров П. Н. и А л e к с e e в О. В. Микроциркуляция, М., 1975, библиогр.; Bruns R. R. a. P а 1 a d e G. E. Studies on blood capillaries, J. Cell Biol., v. 37, p. 244, 1968; Microcirculation, ed. by J. Grayson a. W. Zingg, N. Y., 1976; Microcirculation, ed. by G. Kaley a. B. M. Altura, Baltimore, 1977; The microcircula-tion in clinical medicine, ed. by R. Wells, N. Y., 1973; Microcirculation, perfusion and transplantation organs, ed. by Th. I. Malinin a. o., N. Y., 1970; Wiede-man M. P. Microcirculation, Stroudsburg, 1974; Zweifach B. W. Functional behavior of the microcirculation, Springfield, 1961; o h ж e, Microcirculation, Ann. Rev. Physiol., v. 35, p. 117, 1973, bibliogr.

А. М. Чернух; В. В. Куприянов (анат).

Министерство здравоохранения Украины

Харьковский государственный медицинский университет

кафедра нормальной физиологии

заведующий кафедрой доктор медицинских наук,

профессор В.Г. Самохвалов

Т Е З И С Ы

лекции для студентов 2 курса педиатрического

факультета

«Физиология микроциркуляторного русла».

Доцент кафедры

нормальной физиологии,

кандидат мед.

наук Пандикидис Н.И.

Харьков 2007

Термин «микроциркуляция» был впервые применен в 1954г. на первой конференции по физиологии и патологии микроциркуляции (США, Гальвестон).

Методы исследования – электронная микроскопия

    люминесцентная микроскопия (А.М. Чернух, 1968, 1975) В.В. Куприянов (1969,1975);

    применение радиоактивных изотопов.

Начало изучения микроциркуляции относится к 1861г., когда М. Мальничи первым увидел и описал в легком живой лягушки тончайшие микрососуды, получившие позднее название капилляров.

    Звено микроциркуляторного русла:

Гемомикрососуды: артериолы, венулы, пре-, посткапилляры, истинные капилляры, артериоловенулярные анастомозы.

    Звено микроциркуляторного русла: тканевая и интерстициальная жидкость.

    Звено: лимфоносные пути микроскопического уровня.

Анатомически эти системы разобщены, но функционально составляют систему.

Микроциркуляторное русло является функциональной системой, задачей которого является обеспечение жизнедеятельности органов в соответствии с их физиологическим состоянием.

Iзвено микроциркуляторного русла:

    микрогемососуды.

Микроциркуляторное русло крови – это отдел сосудистого русла, который расположен между мелкими артериями и мелкими венами. Каждый микрососуд играет определенную роль в кровообращении, но деятельность каждого отдельно сосуда подчинена общей задаче – поддержанию гомеостаза.

Основные компоненты гемомикроциркуляторного русла:

    терминальная артериола – приносящий сосуд;

    прекапиллярная артериола (прекапилляр);

    капилляр;

    посткапиллярная венула;

    венула (емкостный сосуд);

    артериола-венулярные анастомозы – пути сброса крови из артериального в венозное русло. Особенно много в коже акральных участков (пальцев рук, ног, носа, мочки уха).

В терморегуляции началом микроциркуляторного русла являются артериальные сосуды, для которых характерны распределительные функции. Это резистивные сосуды, поддерживающие периферический тонус. Для артерий характерно трехслойное строение:

    наружная соединительно-тканная оболочка (адвентициальная);

    средняя – мышечная оболочка;

    внутренняя эндотелиальная оболочка.

Благодаря сокращению мышечной оболочки поддерживается тонус и создается периферическое сопротивление кровотоку.

Терминальные артериолы делятся на более мелкие сосуды прекапиллярные артериолы – метартериолы. В стенке метартериол соединительно-тканные элементы отсутствуют: их стенка состоит из 2-х слоев клеток: мышечных и эндотелиальных.

В местах отхождения капилляров от метартериол гладкомышечные волокна располагаются циркуляторно, образуя прекапиллярные сфинктеры. От сокращения прекапиллярных сфинктеров зависит объем крови, которая протекает через обменные сосуды.

Схема микроциркуляторного русла.

Из артериального звена микроциркуляторного русла кровь попадает в капилляры.

Основная функция капилляров – обменная. Они обеспечивают процесс двустороннего обмена вещества и жидкости между кровью и тканями и поэтому являются основной структурно-функциональной единицей. Капилляры не ветвятся, они разделяются на новые капилляры и соединяются между собой, образуя сеть.

Станка капилляра состоит из одного слоя эндотелиальных клеток, окруженной базальной мембраной из коллагена и мукополисахаридов. В стенке капилляров нет соединительной ткани и гладких мышц. В зависимости от ультраструктуры стенки выделяют 3 типа капилляров. Диаметр, длина, и количество капилляров могут быть различными, что и определяет их органоспецифичность. Длина окружности 1мм (750мкм). Диаметр капилляров составляет 3-10мкм. Это наименьший просвет, через который ещё могут «протискиваться» эритроциты. Более крупные лейкоциты могут на некоторое время «застревать» в капиллярах и блокировать кровоток. В дальнейшем, однако, лейкоциты всё же выходят из капилляра либо в результате повышения КД, либо за счет медленной миграции вдоль стенок капилляра до попадания в более крупные сосуды.

Капилляры могут образовывать прямой кратчайший путь между артериолами и венулами (от артериолы к венулам через основной канал), либо формировать капиллярные сети из истинных капилляров. «Истинные» капилляры чаще всего отходят под прямым углом от метартериол или т.н. «основных каналов». В области отхождения капилляра от метартериол гладкомышечные волокна образуют прекапиллярные сфинктеры. От сокращения прекапиллярных сфинктеров зависит, какая часть крови будет проходить через истинные капилляры.

Общее число капилляров огромно. Для точного подсчета числа капилляров особенно подходят мышцы, т.к. в них идут между мышечными волокнами, параллельно им. Поэтому на поперечном срезе мышцы сравнительно легко подсчитать количество капилляров на единицу площади. Обычно не все капилляры открыты и заполнены кровью. В покоящейся мышце 100 капилляров/мм² , а в работающей 3000капилляров/мм² (морская свинка).

У обычного карандаша поперечное сечение стержня составляет около 3мм². Вообразите себе примерно 10000 тонких трубочек, идущих параллельно друг другу внутри этого стержня.

Капилляры:

Тип 1 – соматический тип – в коже, скелетной и гладкой мускулатуре, коре больших полушарий, жировой соединительной ткани, в микроциркуляторном русле легких. Малопроницаемы для крупномолекулярных веществ, легко пропускает воду и растворенные в ней минеральные вещества.

Тип 2 – висцеральный – имеет «окошки» (фенестры) – характерны для органов, которые секретируют и всасывают большие количества воды и растворенных в ней веществ или участвуют в быстром транспорте макромолекул (почки, пищеварительный тракт, эндокринные железы).

Тип 3 – синусоидный – эндотелиальная стенка базальная мембрана прерывается – пропускают макромолекулы и форменные элементы. Местом локализации таких капилляров является костный мозг, селезенка, печень.

Тип 2.

Капилляры с фенестрированным эндотелием.

Это капилляры почечных клубочков и кишечника – внутренней и наружной мембраны эндотелиальных клеток прилежат друг к другу, и в этих местах образуются поры. Такие капилляры пропускают почти все вещества, за исключением крупных белковых молекул и эритроцитов. Именно так устроен эндотелиальный барьер почек, через осуществляется ультрафильтрация. В тоже время базальная мембрана фенестрированного эндотелия в норме сплошная, и она может представлять собой существенное препятствие для переноса веществ.

В одной и той же капиллярной сети межклеточные щели могут быть различными и в посткапиллярных венулах они обычно шире, чем в артериальных капиллярах. Это имеет определенное физиологическое значение. КД, служащее движущей силой для фильтрации жидкости через стенки, снижается в направлении от артериального к венозному концу сети капилляров.

При воспалении или действии гистамина, брадикина, простогландина, ширина межклеточных щелей в области венозного конца сети капилляровувеличивается и проницаемость их значительно возрастает.

Если в капиллярах давление повышается (в результате повышения АД и или венозного давление), это приводит к увеличению фильтрации жидкости в интерстициальное пространство. В норме АД сохраняется достаточно постоянным и поэтому объем тканевой жидкости меняется мало.

В целом общий выход жидкости из капилляров в их артериальных условиях больше, чем её суммарное поступление в капилляры в венозных участках. Однако накопление жидкости в тканях не происходит, поскольку она поступает в лимфатическую систему – дополнительную дренажную систему с низким давлением.

Т.о. в капиллярном русле происходит кругооборот жидкости, при котором она сначала перемещается из артериальных концов капилляров в интерстициальное пространство, а затем возвращается в кровоток через венозные концы или через лимфатическую систему.

Средняя скорость фильтрации во всех капиллярах организма составляет около 14мл/мин, или 20л/сутки. Скорость реабсорбции равна примерно 12,5мл/мин, т.е. 18л/сутки. По лимфатическим сосудам оттекает 2л/сутки.

Число капилляров .

Общее число капилляров в организме человека равно примерно 40млрд. Учитывая поперечное сечение капилляров можно рассчитать общею эфферентную обменную поверхность – 1000м².

Плотность капилляров в различных органах существенно варьируется.

Так, на 1мм³ ткани миокарда, головного мозга печени, и почек приходится 2500-3000 капилляров, в «фазных» единицах скелетных мышц – 300-400/мм³, а в «тонических» единицах – 1000/мм³. Относительно малая плотность капилляров в костной и жировой ткани.

Существует ещё один показатель, характеризующий состояние капиллярного русла: это отношение числа функционирующих капилляров к нефункционирующим. В скелетной мышце в покое функционирующих – 20-30% капилляров, а при физической нагрузке – 60%. Нефункционирующие капилляры – это капилляры с низким местным гематокритом, т.н. плазматические капилляры – капилляры, по которым двигается только плазма без эритроцитов.

В большинстве тканей капиллярная сеть настолько развита, что между любым капилляром и самой удаленной от него клеткой располагается не более, чем 3-4 другие клетки. Это имеет большое значение для переноса газов и питательных веществ, шлаков, т.к. диффузия протекает крайне медленно.

Тип 1 .

В капиллярах легких с малопроницаемой эндотелиальной стенкой (в легких) определенную роль в ускорении переноса различных веществ (в частности О2) могут играть пульсовые колебания давления. При повышении давления жидкость «выдавливается» в стенку капилляра, а при понижении – возвращается в кровяное русло. Такое пульсовое «промывание» стенок капилляров может способствовать перемешиванию веществ в эндотелиальном барьере и тем самым существенно увеличивать их перенос. На рисунке схематично изображены процессы, происходящие в капиллярах.

Видно, что в артериальном конце капилляра гидростатическое давление больше, чем онкотическое, и плазма фильтруется из крови в интерстициальное пространство. По ходу капилляров КД падает и в венозном конце (участок 2) становится меньше онкотического. В результате жидкость, наоборот диффундирует из интерстиции в кровь по градиенту онкотического давления.

Онкотическое давление обусловлено белками, которые не проходят через стенку капилляра.

Суммарный поток жидкости в капиллярах зависит:

    от разницы гидростатического и онкотического давления крови;

    от проницаемости капиллярной стенки (по направлению к венозному концу капилляра эта проницаемость выше).

В почечных капиллярах гидростатическое давление высокое и намного превосходит онкотическое. Поэтому в почечных капиллярах образуется ультрафильтрат. В большинстве других тканей ГДК=ОДК и поэтому суммарный перенос жидкости через стенку капилляров невелик.

Обмен в капиллярах .

Капилляры в организме выполняют обменную функцию – они осуществляют транскапиллярный обмен газов, питательных и пластических веществ, продуктов метаболизма и жидкости в организме.

Обменную функцию капилляры выполняют благодаря особому строению стенки и особенностей капиллярного кровотока.

Транскапиллярный обмен веществ осуществляется путем:

1. диффузии;

2. фильтрации – реабсорбции;

3. микропиноцитоза.

Диффузия – скорость диффузии настолько высока, что при прохождении крови через капилляры жидкость плазмы успевает 40 раз полностью обменяться с жидкостью межклеточного пространства. Т.о. две эти жидкости постоянно перемешиваются. Скорость диффузии через общую обменную поверхность организма составляет около 60л/ 85000л/ сутки.

    Механизмы диффузии:

    Водорастворимые вещества типа Na+, Cl-, глюкозе диффундируют исключительно через заполненные водой поры. Проницаемость мембраны капилляров для этих веществ зависит от соотношения диаметров поры и размеров молекул.

    Жирорастворимые вещества (СО2, О2) диффундируют через эндотелиальные клетки. Поскольку диффузия этих веществ идет по всей поверхности мембраны капилляров, скорость их транспорта выше, чем водорастворимых веществ.

    Крупные молекулы не способны проникать через поры капилляров могут переноситься через стенку капилляров путем пиноцитоза . При этом мембрана клетки капилляров инвагинирует, образуя вакуоль, окружающую молекулу; затем на противоположной стороне клетки обратный процесс эмиоцитоз.

    Фильтрация – реабсорбция.

Интенсивность фильтрации и реабсорбции в капиллярах определяется следующими параметрами:

    гидростатическое давление крови в капиллярах (Ргк);

    гидростатическое давление тканевой жидкости (Ргт);

    онкотическое давление белков и плазмы (Рок);

    онкотическое давление тканевой жидкости (Рот);

    коэффициент фильтрации.

Под действием жидкости, фильтрующейся за 1мин (V) можно вычислить следующим образом:

V = [(Ргк+Рот) - (Ргт+Рок)] · К

Если V положителен, то происходит фильтрация, а если отрицателен – реабсорбция.

Коэффициент фильтрации капилляров соответствует проницаемости капилярной стенки для изотонических растворов (в 1мл жидкости на!мм Hg на 100г ткани в 1мин при tº 37ºC).

Ргк в начале капилляра ~ 35-40мм Hg, а в конце 15-20мм Hg.

Ргт ~ 3мм Hg.

Рок = 25мм Hg.

Рот = 4,5мм Hg.

Следуя этим показателям можно вычислить фильтрационное и эффективное реабсорбционное давление: 9мм Hg и -6мм Hg.

Фильтрация возрастает:

    при общем увеличении кровяного давления;

    при расширении резистивных сосудов во время мышечной деятельности;

    при переходе в вертикальное положение;

    при увеличении объема крови вследствие вливания резистивных растворов;

    при повышении венозного давления (например, при сердечной недостаточности);

    при снижении онкотического давления и плазмы (гипопротеинемии);

Реабсорбция увеличивается :

    при снижении кровяного давления;

    сужении резистивных сосудов;

    кровопотере и т.д.;

    увеличении онкотического давления плазмы.

Выход жидкости (в капилляры/тканевую жидкость) зависит от проницаемости капилляров.

Строение лимфатической системы .

Лимфатическая система – это дополнительная дренажная система, по которой тканевая жидкость оттекает в правое русло.

Основные функции лимфатической системы :

    дренажная;

    всасывательная;

    транспортно-элиминативная;

    защитная;

    фагоцитоз.

Лимфатическая система представляет собой древовидную систему сосудов. Начинается лимфатическая система широко ветвящимися лимфатическими капиллярами во всех тканях, кроме мозга, хрусталика, роговицы, стекловидного тела, плаценты (Филимонов), поверхностных слоев кожи, ЦНС и костной ткани (Шмидт, Тэвс). Эти капилляры в отличии от кровеносных замкнуты, имеют слепой конец. Лимфатические капилляры собираются в более крупные сосуды. Крупные лимфатические сосуды образуют лимфатические стволы и протоки, отводящие лимфу в венозную систему. Главные лимфатические сосуды, открывающиеся в вены, - это грудной и правый лимфатические протоки. Лимфатическую систему, т.о. можно рассматривать как часть сосудистой системы, но циркуляции лимфы как таковой нет, скорее можно сказать, что это дренажная система, которая возвращает в кровь избыток жидкости, просачивается из системных капилляров.

Кровь → интерстиции → лимфа → кровь.

Стенки лимфатических капилляров покрыты однослойным эпителием.

Основными путями попадания крупно- и жидкодисперсных частиц в просвет лимфатических капилляров являются:

    места соединения эндотелия клеток;

    пиноцитозные пузырьки;

    цитоплазма эндотелиальных клеток.

Когда гидростатическое давление в тканях становится выше, чем в лимфатическом капилляре, проникающая в него жидкость растягивает межэндотелиальные соединения и открывает доступ крупным молекулам в лимфатический капилляр. Этому содействует повышение осмотического давления в интерстиции за счет накопления продуктов метаболизма.

Основной функцией метаболической системы является резорбция из интерстиции белков и других веществ, вышедших из кровеносного русла и неспособных вновь вернуться в кровоток через кровеносные капилляры, и транспортировка по лимфатической системе в венозную систему – регулирует экстраваскулярное обращение плазменных белков (общее количество белка, поступающее с лимфой в кровь – 100г количества в сутки).

Макромолекулы 3-50мкм проникают в просвет лимфатических капилляров через эндотелий клетки с помощью пиноцитозные пузырьков или везикул (белки, хиломикроны, жидкость ионы).

Лимфатические сосуды отличаются от кровеносных чередованием расширений и сужений, придающих им сходство им сходство с четками. В области сужений стенка лимфатического сосуда имеет клапаны. Клапаны обеспечивают однонаправленный ток лимфы (от периферии к центру). Часть лимфатического сосуда между двумя клапанами называется лимфангион или клапанный сегмент . В лимфангионе различают мышце содержащую часть или мышечную манжетку, и область прикрепления клапана, в которой мускулатура развита слабо или отсутствует. Мышечным элементам лимфатических сосудов свойственна автоматическая активность. Она может модулироваться модулирующими влияниями: нервным, гуморальным, механическим (растяжение) повышение t°.

В стенках более крупных лимфатических сосудов имеются гладкомышечные клетки и такие же клапаны как в венах.

По ходу лимфатических сосудов расположены лимфатические узлы. У человека их примерно 460.

Функции лимфатических узлов:

    гемопоэтическая;

    защитно-фильтрационная;

    обменная;

    резервуарная - при венозном застое лимфатические узлы увеличиваются на 40-50%;

    пропульсивная – содержат гладкомышечные элементы и могут сокращаться под воздействием нейрогуморальных и местных влияний.

Лимфатические узлы выполняют роль механического и биологического фильтра: задерживают поступление в кровь инородных частиц, бактерий, клеток злокачественных опухолей, токсинов, чужеродных белков.

Лимфатические узлы содержат фагоцитарные клетки, разрушающие чужеродные вещества. Они такие вырабатывают лимфоциты и плазматические клетки и синтезируют антитела.

Содержимое двух больших терминальных каналов – правого и левого грудных протоков – поступает, соответственно в правую и левую подключичные вены у их соединения с яремными венами.

Лимфаток осуществляется медленно. Его величина может существенно изменяться. У человека в грудном протоке – 0,4-1,3 мл/кг/мин. В среднем – 11 мл/ч.

Ток лимфы зависит:

от внесосудистых факторов:

    сокращения скелетной мышцы;

    перистальтики кишечника;

    дыхательных экскурсий грудной клетки;

    пульсаций рядом лежащих артерий;

от внутрисосудистых:

  • лимфообразования;

    сократительной активности стенок лимфатических сосудов.

Регуляция лимфатока.

Мышечная и адвентициальная оболочка лимфатических сосудов иннервируется вегетативными нервными волокнами, адренергическими и холенергическими. Интенсивность иннервации лимфатических сосудов в 2-2,5 раз слабее, чем артерий.

Грудной проток, брыжеечные лимфатические сосуды имеют двойную иннервацию – симпатическую и парасимпатическую; крупные лимфатические сосуды конечностей – иннервируются только симпатическим отделом в нервной системе.

Повышение автоматической активности мышечных элементов лимфатических сосудов происходит при активации ά – адренорецепторов мембраны миоцитов.

По мере укрупнения лимфатических сосудов в них увеличивается удельный вес базальной мембраны, гладкой мускулатуры, увеличивается количество эластических и коллагеновых волокон, уплотняются межэндотелиальные щели. Поэтому проницаемость лимфатических сосудов уменьшается от периферии к центру.

    Лимфацитопоэтическая функция лимфатической системы обеспечивается деятельностью лимфатических узлов. В ни осуществляется продукция лимфоцитов, которые поступают в лимфатические и кровеносные сосуды. До и после узлов содержание лимфоцитов различно: 200-300 лимфоцитов в/МКЛ в периферической лимфе 2000 лимфоцитов/МКЛ - в грудном протоке и других коллекторных лимфатических сосудов.

    В лимфатических узлах образуются плазматические клетки, вырабатывающие антитела.

    Находятся В- и Т-лимфоциты, ответственные за гуморальный и клеточный иммунитет.

    Барьерная функция: функция механического фильтра из ретикулярных волокон и ретикулярных клеток, находящиеся в просвете синусов. Функцию биологического фильтра - осуществляют клетки лимфоидной ткани лимфатических узлов.

Торможение ритма спонтанных сокращений лимфатической системы осуществляется:

    посредством выделения АТФ;

    активация β-адренорецепторов.

Адреналин – усиление тока лимфы.

Гистамин – внутривенное введение – усиливает ток лимфы, повышает проницаемость лимфатических сосудов.

Гепарин – действует на лимфатические сосуды аналогично гистамину.

Серотонин – вызывает сокращение грудных протоков (эффект превышает эффект гистамина).

Снижение содержания Са++ - в бескальциевой среде сокращение сосудов прекращается (или при блокаде Са++-каналов).

Гипоксия – снижает активность сократительных элементов лимфатических сосудов.

Наркоз – подавляет ритмическую сократительную активность лимфатических сосудов.

Величина лимфатока может быть различной. В среднем у человека в покое она составляет 11мл/час или 1/3000 сердечного выброса. Однако, хотя лимфоток и невелик, он очень важен для освобождения тканей от избыточной жидкости. Если лимфы образуется больше, чем оттекает, то жидкость задерживается в тканях, и возникает отёк. Отеки могут быть очень тяжелыми.

При тропическом заболевании филяриатозе личинки нематод, передаваемые человеку – москитами, проникают в лимфатическую систему и забивают лимфатические сосуды. В некоторых случаях при этом полностью прекращается лимфоток от пораженных участков тела, а они отекают. Затронутые конечности достигают огромных размеров, уплотняются и становятся похожими на ноги слона; отсюда название такого состояния – слоновая болезнь, или элефантиаз.

Краткая структурно-функциональная характеристика лимфатической части микроциркуляторного русла.

Поскольку лимфа почти бесцветна, разглядеть лимфатические сосуды нелегко. Поэтому, хотя лимфатическая система была впервые описана около 400лет назад, она далеко не столь хорошо изучена, как сердечно-сосудистая система.

Лимфатическая система представляет собой древовидную систему сосудов, мельчайшие ветви которой – лимфатические капилляры – слепо заканчивающиеся во всех тканях. В эти капилляры жидкость оттекает из интерстициального пространства.

Лимфатическую систему можно рассматривать как часть сосудистой системы, но циркуляции лимфы, как таковой нет; скорее можно сказать, что это дренажная система, которая возвращает в кровь избыток жидкости, просочившейся из капилляров системы.

Микроциркуляторное русло – является функциональной системой, задачей которой является обеспечение жизнедеятельности органов в соответствии с их физиологическим состоянием.

Средняя линейная скорость капиллярного кровотока у млекопитающих 0,5-1мм/сек. Т.о. время контакта каждого эритроцита со стенкой капилляра длиной 100мкм не превышает 0,15сек.

Кровяное давление зависит от сокращения. На протяжении капилляров давление продолжает падать. Например, в артериальном отделе капилляра кожи человека КД 30, а в венулярноем – 10мм рт. ст. В капиллярах ногтевого ложа человека – 37мм рт. ст. В клубочках почки величина КД – 70-90мм рт. ст. КД в венулярном отделе все более снижается: на каждые 3,5см длины сосуда на 11мм рт. ст.

Скорость кровотока зависит от реологических свойств крови. Реологические свойства крови характеризуют закономерности продвижения крови и её отдельных форменных элементов в микрососудах (деформация и текучесть форменных элементов и плазмы крови и их отношение со стенками микрососудов).

Обмен в капиллярах.

Станка капилляра представляет собой полупроницаемую мембрану (вода и небелковые растворенные вещества свободно проходят через. Белки удерживаются внутри капилляра и создают онкотическое давление. В плазме млекопитающих это давление составляет 25мм рт. ст.).

Когда гидростатическое давление (кровяное) внутри капилляра больше онкотического, жидкость профильтровывается через стенку капилляров наружу; когда же внутренне гидростатическое давление опускается ниже онкотического, жидкость засасывается внутрь, кровяное давление в капилляре бывает различным, но на артериальном конце оно обычно выше, а на венозном ниже онкотического давления. В следствии этого на артериальном конце капилляра жидкость профильтровывается наружу, а на венозном конце входит обратно. Такое представление впервые было выдвинуто Старлингом (1896).

Количество жидкости, выходящее через стенки капилляров и количество, входящее обратно, благодаря онкотическому давлению, сильно входного на 2-4 л, и избыточная жидкость остается в интерстициальных пространствах. Эта жидкость – лимфа – медленно переходит в тонкие лимфатические сосуды – капилляры.

Процессу фильтрации через стенку капилляра способствует поршневой механизм прохождения через капилляр эритроцита. Вследствие закупорки артериального конца капилляра возникает небольшое снижение давления в его венозной части. После прохождения эритроцита давление в этом отрезке восстанавливается. Эритроцит в этом случае играет роль поршня.

ФИЗИОЛОГИЯ МИКРОЦИРКУЛЯЦИИ.

ЛИМФАТИЧЕСКАЯ СИСТЕМА.

1. Особенности кровообращения в капиллярах и венах.

2. Общая характеристика лимфатической системы

3. Состав, свойства и образование лимфы.

4. Движение лимфы.

5. Лимфатические узлы и их функции.

ЦЕЛЬ: Знать особенности строения кровеносных и лимфатических капшшяров,. особенности движения крови и лимфы в них, состав, свойства и образование лимфы.Представлять механизм образования тканевой жидкости и обмена веществами в микроциркуляторном русле, схему лимфоотгока от органов и функции лимфатических узлов.

1.Основная цель кровообращения – транспорт кислорода и питательных веществ к тканям и удаление от них продуктов обмена – реализуется в микроциркуляторном русле. Микроциркуляция крови – это кровообращение в системе капилляров, артериол и венул. Комплекс этих сосудов называется микроциркуляторной единицей

Капилляр (лат. capillus – волос) является конечным звеном микроциркуляторного русла, где совершается обмен веществ и газов между кровью организма через межтканевую жидкость. Капилляры – трубки длиной 0,3 – 1 мм, диаметром 5 -30 мкм, толщиной стенки до 1 мкм. Диаметр капилляров, их длина и количество находятся в зависимости от функции органа. В плотных тканях капилляров меньше, чем в рыхлой волокнистой соединительной ткани. На 1 мм2 в скелетной мышечной ткани приходится от 400 до 2000 капилляров, в сердечной мышце – от 2500 до 4000. В тканях со сниженными обменными процессами (роговица, хрусталик, дентин) капилляров нет.В покое функционирует 10-25% капилляров.

К микроциркуляторному руслу относятся и лимфатические капилляры. В стенках кровеносных капилляров различают 3 слоя:внутренний представлен эндотелиальными клетками, расположенными на базальной мембране, средний состоит из перицитов (клеток Ш. Руже), заключенных в базальную мембрану,а наружный – из адвентициальных клеток и тонких коллагеновых волокон, погруженных в амфорное вещество. В зависимости от наличия пор и окошек (фенестр) в эндотелии и базальной мембране различают 3 типа капилляров.1).Капилляры с непрерывным эндотелием и базальным слоем (в коже, во всех видах мышечной ткани, в коре большого мозга). 2).Фене-стрированные, имеющие в эндотелии фенестры и непрерывную базальную мембрану (в кишечных ворсинках, клубочках почек, пищеварительных и эндокринных железах). 3) Синусоидные, имеющие поры в эндотелиоцитах и базальной мембране (в печени, селезенке, костном мозге).

Для микроциркуляторного русла характерно наличие артериовенозных анастомозов, непосредственно связывающих мелкие артерии с мелкими венами или артериолы с венулами,.бла-годаря этому происходит разгрузка капиллярного русла и ускорение транспорта крови в данной области тела.Скорость кровоока в капиллярах составляет 0,5-1 мм/с, каждая частица крови пребы-вает в капилляре в течение примерно 1 с. Кровь поступает в артериальный конец капилляра под давлением 30-35 мм рт.ст., в венозном конце оно 15 мм рт.ст.

Обменные процессы в капиллярах между кровью и межклеточным пространством осуществляются двумя путями: 1) путем диффузии;2) путем фильтрации и реабсорбции.

Наибольшую роль в обмене жидкостью и веществами между кровью и межклеточным пространством играет двусторонняя диффузия – движение молекул от среды с высокой концентрацией в среду, где концентрация ниже. Водорастворимые неорганические вещества (натрий,калий,хлор, а также глюкоза, аминокислоты, кислород диффундируют из крови в ткани, а мочевина, углекислый газ и другие продукты обмена – в обратном направлении. Высокой скорости диффузии различных веществ способствует наличие в стенках капилляров большого количества мельчайших пор и окошек (фенестр).При прохождении через капилляры жидкость плазмы 40 раз полностью обменивается с жидкостью межклеточного пространства. Скорость диффузии через общую обменную поверхность организма – 60 л в минуту (85000 л в сутки).

Средняя скорость фильтрации во всех капиллярах организма составляет 14 мл в минуту, или 20 л в сутки. Скорость реабсорбции равна 12,5 мл в минуту, т.е. 18 л в сутки. Оставшааяся нереабсорбированной тканевая жидкость возвращается в виде лимфы по лифатическим сосудам в венозное русло (2 л в сутки).

Кровь после обмена веществ и газов из микроциркуляторного русла (венул) поступает в венозную систему. Движению крови по венам способствуют следующие факторы: 1) работа сердца, создающего разность давления крови в артериальной системе и правом предсердии; 2) клапанный аппарат вен;3) сокращение скелетных мышц («мышечный насос»); 4) натяжение фасций; 5) сокращение диафрагмы: при вдохе и выдохе она перекачивает кровь из нижней полой вены в сердце.6) присасывающая функция грудной клетки, создающая отрицательное внутригрудное давление в фазу вдоха.

2. Лимфатическая система – составная часть сердечно-сосудистой системы, которая осуществляет проведение лимфы от органов и тканей в венозное русло и поддерживает баланс тканевой жидкости в организме Представляет собой систему разветвленных в органах и тканях лимфатических капилляров, сосудов, стволов и протоков. По пути следования лимфатических сосудов лежат многочисленные узлы (органы иммунной системы).Являясь частью микроциркуляторного русла, лимфатическая система осуществляет всасывание из тканей воды, коллоидных растворов, эмульсий, взвесей нерастворимых частиц и перемещение их в виде лимфы в общий кровоток

Лимфатические капилляры являются начальным звеном, в них из тканей всасываются коллоидные растворы белков, осуществляется дополнительный к венам дренаж тканей: всасывание воды и растворенных в ней кристаллоидов, удаление из тканей инородных частиц. Лимфатические капилляры имеются во всех органах и тканях тела человека, кроме головного и спинного мозга, их оболочек, глазного яблока, внутреннего уха, эпителиального покрова кожи и слизистых оболочек, хрящей, паренхимы селезенки, костного мозга и плаценты. В отличие от кровеносных, лимфатические капилляры имеют следующие особенности:1) они не открываются в межклеточные пространства, а оканчиваются слепо;2) при соединении друг с другом они образуют замкнутые лимфокапиллярные сети;3) их стенки тоньше и более проницаемы, чем стенки кровеносных капилляров;4) диаметр их во много раз больше диаметра кровеносных капилляров (до 200 мкм и 5-30 мкм соответственно).

Лимфатические сосуды образуются при слиянии капилляров. Они являются системой коллекторов (лат. collector – собиратель), представляющих собой цепочки лимфангионов. Лимфангион, или клапанный сегмент – это структурная и функциональная единица лимфатических сосудов Он содержит все необходимые элементы для осуществления самостоятельной пульсации и перемещения лимфы в соседний отрезок сосуда. Это:два клапана – дистальный и проксимальный, направляющие ток лимфы, мышечная манжетка, обеспечивающая сокращение, и богатая иннервация,позволяющая автоматически регулировать интенсивность работы всех элементов. Размеры лимфангионов от 2-4 мм до 12-15 мм.

Лимфатические стволы и протоки – это крупные коллекторные лимфатические сосуды, по которым лимфа от областей тела оттекает в венозный угол у основания шеи. Лимфа оттекает по лимфатическим сосудам к стволам и протокам, проходя через узлы, не являющиеся частями лимфатической системы, а выполняющие барьерно-фильтрационную и иммунную функции. Различают два наиболее крупных лимфатических протока.

Правый лимфатический проток собирает лимфу от правой половины головы и шеи, правой половины грудной клетки, правой верхней конечности и впадает в правый венозный угол при слиянии правой внутренней яремной и подключичной вен. Это сосуд длиной 10 – 12 мм, который в 80% случаев вместо одного устья имеет 2-3 и более стволиков. Грудной лимфатический проток является основным, так как через него поступает лимфа от всех остальных частей тела, впадает в левый венозный угол при слиянии левой внутренней яремной и подключичной вен, имеет длину 30-41 см.

3. Лимфа (греч. lympha – чистая вода) – жидкая ткань, содержащаяся в лимфатических сосудах и узлах человека. Это бесцветная жидкость щелочной реакции, отличающаяся от плазмы меньшим содержанием белка (2%). В лимфе имеется протромбин и фибриноген, поэтому она может свертываться. В ней также имеются глюкоза (4,44 – 6,67 ммоль/л), минеральные соли (1%). В 1 мкл лимфы содержится от 2 до 20 тысяч лимфоцитов. Эритроциты, зернистые лейкоциты и тромбоциты обычно отсутствуют. Лимфа,оттекающая разных органов и тканей, имеет различный состав. За сутки у человека образуется 2 л лимфы.

Основные функции лимфы:1) поддерживает постоянство состава и объема межклеточной (тканевой) жидкости;2) обеспечивает гуморальную связь между межклеточной жидкостью и кровью, а также переносит гормоны;3) участвует в транспорте питательных веществ (жировых частиц -хиломикронов) из пищеварительного канала;4) переносит иммунокомпетентные клетки – лимфоциты;5) является депо жидкости (2 л).

Лимфообразование связано с переходом воды и растворенных в плазме крови веществ из кровеносных капилляров в ткани, а из тканей в лимфатические капилляры. Источник лимфы – тканевая жидкость – промежуточная среда между кровью и клетками организма. Попав в лимфатический капилляр, тканевая жидкость называется лимфой.

4. В отличие от кровеносных сосудов, по которым происходит как приток крови к тканям тела, так и ее отток от них, лимфатические сосуды служат лишь для оттока лимфы, т.е. возвращают в кровь поступившую тканевую жидкость.

Скорость движения лимфы по сосудам 4-5 мм/с. В лимфатических сосудах основной силой, обеспечивающей перемещение лимфы от мест ее образования до впадения протоков в крупные вены шеи, являются ритмические сокращения лимфангионов.Второстепенные факторы:1) непре-рывное образование тканевой жидкости и переход ее из тканевых пространств в лимфатические капилляры, создающие постоянный напор;2) натяжение рядом расположенных фасций, сокращение мышц, активность органов;3) сокращение капсулы лимфатических узлов;4) отрицательное давление в крупных венах и грудной полости;5) увеличение объема грудной клетки при вдохе;6) растяжение и массаж скелетных мышц.

5. Лимфа при своем движении проходит через один или несколько лимфатических узлов – периферические органы иммунной системы (биологические фильтры) (в организме их 500 -1000). Лимфатические узлы имеют округлую, бобовидную форму, размеры их от 0,5-1 мм до 30-50 мм и более; располагаются возле кровеносных сосудов, чаще рядом с крупными венами, группами от нескольких узлов до 10 и более, иногда по одному. Находятся под углом нижней челюсти, на шее, подмышкой, в локтевом сгибе, в средостении,брюшной полости, в паху, тазовой области, подколенной ямке. В лимфатический узел входят несколько (2-4) приносящих сосуда, выходят 1-2 выно-сящих, по которым лимфа оттекает от узла. Различают темное корковое вещество (на пери-ферии) и светлое мозговое (центральная часть).Капсула лимфатического узла и его трабекулы отделены от коркового и мозгового вещества щелевидными пространствами – синусами, протекая по ним, лимфа обогащается лимфоцитами и антителами (иммуноглобулинами), одновременно в этих синусах происходит фагоцитирование бактерий, задерживаются инородные частицы, попавшие в лимфатические сосуды из тканей (погибшие и опухолевые клетки, пылевые частицы.). На пути тока крови из артериальной системы (из аорты) в систему воротной вены, разветвляющейся в печени, лежит селезенка, функцией которой является иммунный контроль крови.



Рассказать друзьям