Красные ядра находятся в отделе мозга. Средний мозг

💖 Нравится? Поделись с друзьями ссылкой

Для каждого человека важно знать, как он устроен. И одним из самых интересных органов для изучения является головной мозг, который до сих пор не удалось познать полностью. Немногие после курса школьной биологии помнят функции среднего мозга и назначение. Приходит необходимость разобраться в сложных медицинских терминах уже в зрелом возрасте, когда человек начинает посещать врачей или сам собирается поступить в медицинский ВУЗ.

Если вы желаете узнать, что такое средний мозг и его расположение, необязательно изучать сложные медицинские энциклопедии и учиться в медицинском институте. Сознательные пациенты перед походом в медучреждение желают больше узнать о недуге, и какие функции выполняет больной орган. Тогда больничные процедуры не будут казаться такими пугающими и непонятными.

Базовые сведения

Центральная нервная система содержит нейроны с отростками и глия. Головной мозг имеет всего пять отделов. Первый – продолговатый – продолжение спинного. Он передает информацию в другие отделы и обратно. Выполняет регулирующую функцию по отношению к координации движений. Второй – мост – здесь находятся центры среднего мозга, отвечающие за усвоение аудиоинформации и видеоинформации. Данный отдел выступает за координацию движений. Третий – мозжечок – соединяет задний и передний отделы. Четвертый – средний – ответственен за мимику, движения глазных яблок, через него проходят слуховые пути. Именно его и будем рассматривать. Пятый – передний – нормализует психическую деятельность.

Это интересно. Связи между размером мозга и умственными способностями у человека не существует. Гораздо важнее количество нервных связей.

Где находится

Местоположение соответствует названию органа. Он входит в состав стволовой части. Располагается под промежуточным и над мостом. На формирование среднего мозга человека оказал воздействие механизм восприятия видеоинформации во время исторического развития организма. Так уж происходил процесс эволюции, что наиболее развитым стал передний отдел. А через средний стали проходить проводящие каналы сигналов в различные отделы.

Как развивается средний мозг

Находящиеся в чреве своей матери дети должны пройти множество стадий развития. В течение эмбриональной стадии, средний головной мозг вырастает из небольшого пузырька и остается целостным на протяжении всей жизни. На всем протяжении развития в этой части появляются все новые клетки, они сжимают мозговой водопровод. При нарушениях на этом этапе, может развиться проблемы с мозговым водопроводом – частичная или полная закупорка Одно из опаснейших последствий – такая опасная болезнь, как гидроцефалия.

Полезная информация. Каждый раз после того, как человек запоминает информацию, формируются нейронные связи. Это означает, что структуры различных отделов, в том числе, среднего мозга, постоянно меняется, он не замирает в определенном состоянии.

Какую роль играет


Именно средний отдел регулирует мышечный тонус. Его роль соответствует его промежуточному положению. За счет того, что средний мозг имеет особое строение, в его функции входит передача информации. У него масса разных предназначений:

  • сенсорные – чтобы передавать тактильные ощущения;
  • двигательные – координация зависит от данной части среднего мозга;
  • рефлекторные – например, глазодвигательная, реакция на свет и звук.

За счет работы среднего отдела, человек может стоять и ходить. Без него человек бы не смог полноценно перемещаться в пространстве. Также, работа вестибулярного аппарата управляется на уровне среднего мозга.

Устройство органа

Известно, что средний мозг человека имеет различные части, каждая из которых выполняет свою роль. Четверохолмия – структура представляет собой парные холмы. Верхние – это визуальные и нижние – аудиальные.

В ножках располагается черное вещество. Благодаря ему человек не только лежит, а может осуществлять точные движения кистями рук и принимать пищу. В определенный момент средний отдел обрабатывает информацию о том, когда нужно поднести ложку ко рту, как прожевать пищу и какая функция позволит проглотить ее.

Полезно узнать: Головной мозг: функции, строение

Глазной двигательный нерв берет свое начало между ножек, откуда и выходит. Он отвечает за сужение зрачка и некоторые двигательные функции глазного яблока. Чтобы понять строение среднего мозга, необходимо узнать где он находится. Составлен он из промежуточного и больших полушарий большого мозга, устроен несложно и имеет всего два отдела. Четверохолмие на располагающихся неподалеку двух парных двухолмиях, которые образуют верхнюю стенку. Напоминают по внешнему виду пластину. Ножки – там располагаются проводящие каналы, идущие к полушариям переднего отдела и соединяющие его с нижними участками нервной системы.

Сколько частей имеет средний отдел

Всего существует три части. Дорсальная – крыша срединного отдела. Она разделяется на 4 холмика с помощью канавок, пересекающихся попарно. Два верхние холма – подкорковые центры регуляции зрения, а оставшиеся нижние – слуховые. Вентральная – это так называемые ножки мозга. Здесь базируются проводящие каналы к переднему отделу. Внутреннее пространство мозга – имеет вид полого канала.

Полезная информация. Если человек не будет дышать кислородом более пяти минут, мозг будет поврежден необратимо, что приведет к смерти.

Ядра


Внутри бугорков четверохолмия скапливается серое вещество, скопления которого называют ядрами. В качестве основной функции ядер называют иннервацию глаз. Они бывают следующих видов.

Ретикулярной формации – принимает участие в стабилизации работы скелетных мышц. Активизируют клетки коры мозга головы, а на спинной оказывают тормозящее действие. Глазодвигательного нерва – содержат волокна, иннервирующие сфинктер и глазные мышцы. Блокового нерва – снабжают нервами косую мускулу органа зрения. Черное вещество – окрас связан с пигментом меланином. Нейроны этого веществ сами синтезируют дофамин. Координируют мышцы лица, мелкие движения. Красные ядра среднего мозга – активируют нейроны мышц-сгибателей и мышц-разгибателей

Профилактика патологий


Мозг без интеллектуальной деятельности и физических нагрузок не может функционировать правильно. Обычно сбои в работе ЦНС наблюдаются у людей старше 70 лет. Но заболевания данной группы диагностируют у тех, кто после выхода на пенсию перестает поддерживать свое здоровье и вести здоровый образ жизни. Однако, бывают и врожденные патологии в среднем мозге, заболеть можно в любом возрасте.

Полезно узнать: Функции и строение моста головного мозга, его описание

Регулярно заниматься спортом в меру физических возможностей, гулять на свежем воздухе, делать гимнастику по утрам. Отказаться от табака и спиртных напитков. Перейти на здоровое питание, употреблять как можно больше свежих овощей и фруктов. Не есть продукты с консервантами и эмульгаторами. Тренировать ум – для этого можно читать книги, решать кроссворды, играть в шахматы, получать новые знания в интересующей области.

Избавиться от авитаминоза – принимать витамины и антиоксиданты. Поскольку мозг на 60% состоит из жиров, нельзя отказываться от масла, но оно должно быть натуральным. К примеру, отлично подойдет оливковое. Избегать стрессовых ситуаций. Не заниматься монотонной работой слишком часто, делать перерывы, переключаясь на другие занятия. Следить за уровнем АД – гипертония может стать причиной инсульта.

Средний мозг входит в состав ствола мозга. С вентральной стороны к нему примыкает задняя поверхность сосцевидных тел и передний край моста сзади (Атл., рис. 23, с. 133). В нем выделяют крышу и ножки. Полостью среднего мозга является водопровод мозга - узкий канал, длиной около 1,5 см, который снизу сообщается с четвертым желудочком, а сверху - с третьим.

Крыша среднего мозга представляет собой пластинку четверохолмия и расположена над водопроводом мозга. Крыша среднего мозга состоит из четырех возвышений - холмиков, которые отделены друг от друга двумя бороздками - продольной и поперечной.

В плоской канавке между верхними бугорками лежит шишковидное тело . Каждый холмик переходит в так называемую ручку холмика, направляющуюся латерально, кпереди и кверху, к промежуточному мозгу. Ручка верхнего холмика направляется к латеральному коленчатому телу; ручка нижнего холмика - к медиальному коленчатому телу.

Верхние два холмика крыши среднего мозга и латеральные коленчатые тела являются подкорковыми центрами зрения. Оба нижних холмика и медиальные коленчатые тела - подкорковыми центрами слуха.

От крыши среднего мозга берет начало тектоспинальный путь . Его волокна после перекреста в покрышке среднего мозга идут к двигательным ядрам головного и клеткам передних рогов спинного мозга. Путь проводит эфферентные импульсы в ответ на зрительные и слуховые раздражения.

Ножки мозга занимают переднюю часть среднего мозга, расположены под мостом и направляются к правому и левому полушариям переднего мозга. Углубления между правой и левой ножками получило название межножковой ямки . Ножки состоят из основания и покрышки, которые разделяются пигментированными клетками черной субстанции.

В основании ножек проходит пирамидный путь , направляющийся через мост в спинной мозг и корково-ядерный , волокна которого доходят до нейронов двигательных ядер черепных нервов, расположенных в области четвертого желудочка и водопровода, а также корково-мостовой путь оканчивающийся на клетках основания моста. Следовательно, основания ножек мозга целиком состоят из белого вещества, здесь проходят нисходящие проводящие пути. Покрышка ножек продолжает покрышку моста и продолговатого мозга. Верхняя ее поверхность служит дном водопровода мозга. В покрышке расположены ядра блокового (IV) и глазодвигательного (III) нервов, и проходят восходящие проводящие пути.

В области III пары нервов лежит парасимпатическое ядро; оно состоит из вставочных нейронов автономной нервной системы. В верхней части покрышки среднего мозга проходит дорсальный продольный пучок, связывающий таламус и гипоталамус с ядрами ствола мозга.

Среди ядер серого вещества выделяются черная субстанция и красное ядро . Черная субстанция разделяет основание и покрышку ножек мозга. Ее клетки содержат пигмент меланин. Этот пигмент существует только у человека и появляется в возрасте 3-4 лет. Черная субстанция получает импульсы от коры головного мозга, полосатого тела и мозжечка и передает их нейронам верхнего двухолмия и ядрам ствола, а далее - на мотонейроны спинного мозга. Черная субстанция играет существенную роль в интеграции всех движений и в регуляции пластического тонуса мышечной системы.

Красное ядро является самым крупным ядром покрышки и располагается несколько выше (дорсальнее) черного вещества. Оно имеет удлиненную форму и простирается от уровня нижних холмиков до таламуса. На уровне нижнего двухолмия совершается перекрест верхних ножек мозжечка. Большая их часть заканчивается на красных ядрах, а меньшая часть проходит сквозь красное ядро и продолжается к таламусу. В красном ядре оканчиваются волокна из больших полушарий. От его нейронов идут восходящие пути, в частности к таламусу. Основной нисходящий путь красный ядер - руброспинальный (красноядерно-спинно-мозговой). Его волокна сразу по выходе из ядра совершают перекрест, направляются вдоль покрышек ствола головного мозга и бокового канатика спинного мозга к мотонейронам передних рогов спинного мозга.

Латеральнее красного ядра в покрышке расположена медиальная петля . Между ней и серым веществом, окружающим водопровод, лежат нервные клетки и волокна ретикулярной формации (продолжение ретикулярной формации моста и продолговатого мозга) и проходят восходящие и нисходящие пути.

Функции среднего мозга . Средний мозг выполняет сенсорные функции, проводниковую, двигательную и рефлекторные функции.

Сенсорные функции осуществляются за счет поступления в средний мозг зрительной, слуховой информации. Верхние холмики четверохолмия являются первичными подкорковыми центрами зрительного анализатора (вместе с латеральными коленчатыми телами промежуточного мозга), нижние - слухового (вместе с медиальными коленчатыми телами промежуточного мозга). В них происходит первичное переключение зрительной и слуховой информации.

Проводниковая функция заключается в том, что через средний мозг проходят все восходящие пути к вышележащим отделам ЦНС: таламусу (медиальная петля, спинно-таламический путь), переднему мозгу и мозжечку. Нисходящие пути идут через средний мозг к продолговатому и спинному мозгу. К ним относятся пирамидный путь, корково-мостовые волокна, руброретикулоспинальный путь.

Двигательная функция реализуется за счет блокового нерва, ядер глазодвигательного нерва, красного ядра, черной субстанции. Красное ядро и окружающие его двигательные ядра имеют важное значение для осуществления всех движений, так как они рефлекторно регулируют тонус мускулатуры. Базальные ганглии головного мозга, мозжечок имеют свои окончания в красных ядрах. Нарушение связей красных ядер с ретикулярной формацией продолговатого мозга ведет к децеребрациальной ригидности . Это состояние характеризуется сильным напряжением мышц-разгибателей конечностей, шеи, спины. Основной причиной возникновения децеребрациальной ригидности служит выраженное активирующее влияние латерального вестибулярного ядра (ядро Дейтерса) на мотонейроны разгибателей. При перерезке мозга ниже ядра латерального вестибулярного нерва децеребрациальная ригидность исчезает.

Красные ядра, получая информацию от двигательной зоны коры больших полушарий, подкорковых ядер и мозжечка о готовящемся движении, посылают корригирующие импульсы к мотонейронам спинного мозга по руброспинальному пути и тем самым регулируют тонус мускулатуры, подготавливая его уровень к произвольному движению.

Черная субстанция регулирует акты жевания, глотания (их последовательность), обеспечивает точные движения пальцев кисти рук, например, при письме. Нейроны этого ядра способны синтезировать медиатор дофамин, который по аксонам поступает к базальным ганглиям головного мозга. Поражение черного вещества приводит к нарушению пластического тонуса мышц и связано с невралгическим заболеванием - болезнью Паркинсона. Паркинсонизм проявляется в нарушении тонких содружественных движений, функции мимической мускулатуры и в проявлении непроизвольных мышечных сокращений, или тремора.

Тонкая регуляция пластического тонуса при игре на скрипке, письме, выполнении графических работ обеспечивается черным веществом. В то же время при длительном удержании определенной позы происходят пластические изменения в мышцах, чтообеспечивает наименьшие затраты энергии. Регуляция этого процесса обеспечивается клетками черной субстанции.

Нейроны ядер глазодвигательного и блокового нервов регулируют движения глаз вверх, вниз, к носу и вниз к углу носа. Нейроны добавочного ядра глазодвигательного нерва (ядро Якубовича) регулируют просвет зрачка и кривизну хрусталика.

Рефлекторные функции. Функционально самостоятельными структурами среднего мозга являются бугры четверохолмия. Их основная функция заключается в организации реакций настараживания и так называемых старт-рефлексов на внезапные, еще не распознанные зрительные или звуковые сигналы. Активация среднего мозга в этих случаях через гипоталамус приводит к повышению тонуса мышц, учащению сокращений сердца; происходит подготовка к избеганию, к оборонительной реакции.

Четверохолмие организует ориентировочные зрительные и слуховые рефлексы. У человека этот рефлекс является сторожевым. В случаях повышенной возбудимости четверохолмий при внезапном звуковом или световом раздражении у человека возникает вздрагивание, иногда вскакивание на ноги, вскрикивание, максимально быстрое удаление от раздражителя, подчас безудержное бегство.

При нарушении четверохолмного рефлекса человек не может быстро переключаться с одного вида движения на другое. Следовательно, четверохолмия принимают участие в организации произвольных движений.

Развитие среднего мозга. Рост и функциональное развитие среднего мозга связано с развитием других отделов ствола мозга и формированием его путей к мозжечку и коре больших полушарий головного мозга.

У новорожденного масса среднего мозга составляет 2,5 г. Его форма и строение не отличаются от таковых у взрослого. Водопровод мозга более широк, глазодвигательный нерв имеет миелинизированные волокна. Черное вещество и ретикулярная формация распространяются по длине среднего мозга до бледного шара. Их клетки хорошо дифференцированы, но не содержат пигмента, его появление приходится на шестой месяц жизни и иногда почти к периоду полового созревания. Максимального развития они достигают около 16 лет. Развитие пигментации находится в прямой связи с совершенствованием функции черной субстанции. Медиальная часть черного вещества начинает миелинизироваться в первые 2-3 месяца жизни.

Красное ядро хорошо выражено, его связи с другими отделами мозга формируются раньше, чем пирамидная система. У новорожденного пирамидные волокна миелинизированы, а пути, идущие к коре, не имеют к этому периоду миелиновой оболочки. Они миелинизируются с 4-го месяца жизни. Медиальная петля, а также волокна, связывающие красное ядро и черное вещество, миелинизированы.

Пигментация красного ядра начинается с 2-летнего возраста и заканчивается к 4 годам.

Функциональное развитие среднего мозга. Ряд рефлексов, осуществляющихся с участием среднего мозга, формируется в период внутриутробного развития. Уже на ранних этапах эмбриогенеза отмечены тонические и лабиринтные рефлексы, оборонительные и другие двигательные реакции в ответ на различные раздражения.

За 2-3 месяца до рождения у плода наблюдаются двигательные реакции в ответ на звуковые, температурные, вибрационные и другие раздражения.

В первые дни жизни ребенка появляется рефлекс Моро , который выражается в том, что в ответ на громкий внезапный звук у ребенка разгибаются руки в сторону под прямым углом к туловищу, разгибаются пальцы и туловище. Этот рефлекс исчезает к 4-му году жизни ребенка. Он сохраняется у умственно отсталых детей, и его считают связанным с незрелостью мозга.

Рефлекс Моро сменяется противоположной реакцией. Так, например, при таком же резком раздражении у ребенка возникает общая двигательная реакция с преобладанием сгибательных движений. Она нередко сопровождается движением головы и глаз, изменением дыхания или задержкой сосательного рефлекса. Эта реакция названа реакцией испуга или вздрагивания и рассматривается как первое проявление ориентировочного рефлекса.

При повторных раздражениях этот рефлекс исчезает. С возрастом в ответ на раздражение он становится менее обобщенным, со 2-й недели жизни появляется сосредоточение на звуке, а на 3-м месяце возникает типичная ориентировочная реакция, проявляющаяся в повороте головы в сторону раздражителя. Начальные стадии этой реакции связаны с ранним формированием рецепторов внутреннего уха, проводящих путей и четверохолмий, ее совершенствование - с развитием коленчатых тел и коркового отдела слухового анализатора.

К моменту рождения у плода хорошо развиты структуры, лежащие в основе рефлексов, возникающих в ответ на зрительные раздражения. Первоначальной формой ответных реакций являются защитные рефлексы .

Так, например, у новорожденных детей прикосновение к ресницам, конъюнктиве, роговице или дуновение вызывает смыкание век. Зона этого рефлекса у новорожденного шире - у него закрываются глаза и при прикосновении к кончику носа и лбу. При освещении спящего ребенка веки его смыкаются сильнее. Рефлекторное мигание (ответ на быстрое приближение предмета к глазам) появляется к 1,6-2 месяцам жизни.

У новорожденного хорошо развит зрачковый рефлекс . Этот рефлекс имеется даже у недоношенных детей. Расширение зрачков на звуковые и кожные раздражители появляется позже - с 10-й недели жизни ребенка.

В течение первого полугодия у большинства детей проявляется тонический рефлекс с глаз на мышцы шеи . Он проявляется в том, что в вертикальном положении тела ребенка (не поддерживая голову) при освещении глаз голова быстрым движением откидывается назад, тело при этом впадает в опистонус, то есть состояние, при котором тело выгибается назад вследствие повышения тонуса мышц-разгибателей. Реакция сохраняется до тех пор, пока глаза освещены. Этот рефлекс особенно хорошо выражен у новорожденных детей.

Лабиринтный , или установочный рефлекс , вследствие которого правильное положение в пространстве занимает сначала голова, а затем все тело, у новорожденного отсутствует. Этот рефлекс связан с формированием вестибулярного аппарата и красных ядер. Он хорошо выражен с 2-3месяцев жизни ребенка.

Лабиринтные рефлексы , возникающие при вращении (отклонении головы и глазных яблок в сторону, противоположную вращению), по данным большинства исследователей, имеют место сразу после рождения, они хорошо выражены с 7-го дня жизни ребенка. С первых дней жизни наблюдается и лифтная реакция, которая у ребенка выражается в поднимании рук вверх при быстром опускании тела (движение «падения»).

Рефлексы положения тела в пространстве зависят от правильного распределения тонуса мышц и суставов. Статические, установочные и выпрямительные рефлексы формируются после рождения. Их формирование связано с дальнейшим развитием головного мозга и коры больших полушарий. При этом происходит смена простейших рефлекторных актов на более сложные.

Так, например, врожденные предварительные локомоторные акты исчезают в 4-5 месяцев жизни ребенка. Первым исчезает рефлекс с глаз на шею (в 3 месяца), затем вестибулярная реакция на конечности (в 4-5 месяцев). Сокращение приводящих мышц противоположной ноги, сопровождающее коленный рефлекс, угасает к 7-ми месяцам, перекрестный сгибательный рефлекс ног - в 7-12месяцев, а ручной и ножной хватательный рефлекс переходит в произвольное хватание к концу первого года жизни. К этому времени почти полностью исчезает рефлекс Бабинского.

В течение первого года жизни ребенок учится переворачиваться на живот, ползать на животе и на четвереньках, сидеть, вставать и к концу года ходить.

Ретикулярная формация ствола мозга и ее влияние на активность различных отделов мозга. Ретикулярная формация (РФ) представлена сетью нейронов с многочисленными разветвлениями в разных направлениях. Нейроны расположены либо диффузно, либо образуют ядра.

Большинство нейронов РФ имеют длинные дендриты и короткий аксон. Имеются гигантские нейроны с длинным аксоном, которые образуют Т-образное ветвление : одна из ветвей аксона имеет нисходящее, а вторая восходящее направление. Так, например, в нисходящем направлении - ретикулоспинальный и руброспинальный пути. Аксоны нейронов РФ образуют большое число коллатералей и синапсов, которые оканчиваются на нейронах различных отделов мозга. Ретикулярная формация располагается в толще серого вещества продолговатого, среднего, промежуточного мозга (Атл., рис. 26, с. 135) и изначально связана с РФ спинного мозга. В связи с этим ее рассматривают как единую систему.

Ретикулярная формация имеет прямые и обратные связи с корой переднего мозга, базальными ганглиями, промежуточным мозгом, мозжечком, средним, продолговатым и спинным мозгом. Согласно современным представлениям, переход коры к активному состоянию связан с колебаниями количества восходящих сигналов от ретикулярной формации ствола мозга. Количество этих сигналов зависит от поступления в ретикулярную формацию сенсорных импульсов по коллатералям специфических афферентных восходящих путей. Практически к ретикулярной формации приходит информация от всех органов чувств по коллатералям от спинно-ретикулярного тракта, проприоспинальных путей, афферентных черепно-мозговых нервов, от таламуса и гипоталамуса, от моторных и сенсорных областей коры (рис. 9).

Большинство нейронов ретикулярной формации являются полисенсорными , то есть отвечают на раздражение различных модальностей (световых, звуковых, тактильных и т. д.). Ее нейроны имеют большие рецептивные поля, большой скрытый период и слабую воспроизводимость реакций. Эти свойства противоположны свойствам специфических ядер, и поэтому ретикулярные нейроны относят к неспецифическим .

Спинной мозг

Рис. 10. Афферентные и эфферентные связи ретикулярной формации стволовой части мозга (по: Ноздрачев и др., 2004)

Однако исследования с раздражением РФ ствола мозга показали, что она может избирательно оказывать активирующее или тормозящее влияние на разные формы поведения, на сенсорные, моторные, висцеральные системы мозга.

Активность нейронов РФ различна и в принципе сходна с активностью нейронов других структур мозга, но среди нейронов РФ имеются такие, которые обладают устойчивой ритмической активностью, не зависящей от приходящих сигналов. В то же время в РФ среднего мозга и моста имеются нейроны, которые в покое «молчат», то есть не генерируют импульсы, но возбуждаются при стимуляции зрительных или слуховых рецепторов. Это так называемые специфические нейроны , обеспечивающие быструю реакцию на внезапные сигналы.

В ретикулярной формации продолговатого, среднего мозга и моста конвергируют сигналы различных модальностей. Сигналы от зрительной и слуховой сенсорных систем в основном приходят на нейроны среднего мозга.

РФ контролирует передачу сенсорной информации, идущей через ядра таламуса, за счет затормаживания нейронов неспецифических ядер таламуса, тем самым облегчается передача сенсорной информации в кору больших полушарий. В ретикулярной формации моста, продолговатого, среднего мозга имеются нейроны, которые реагируют на болевые раздражения, идущие от мышц или внутренних органов, что создает общее диффузное дискомфортное, не всегда четко локализуемое, болевое ощущение («тупая боль»).

Ретикулярная формация ствола мозга имеет прямое отношение к регуляции мышечного тонуса, поскольку на РФ ствола мозга поступают сигналы от зрительного и вестибулярного анализаторов и мозжечка. От РФ к мотонейронам спинного мозга и ядрам черепных нервов поступают сигналы, организующие положение головы, туловища и т. д. Ретикулярная формация ствола мозга участвует в передаче информации от коры больших полушарий, спинного мозга к мозжечку и, наоборот, от мозжечка к этим же системам. Функция данных связей заключается в подготовке и реализации моторики, связанной с привыканием, ориентировочными реакциями, болевыми реакциями, организацией ходьбы, движениями глаз. Ретикулярная формация принимает участие в регуляции функционирования дыхательного и сердечно-сосудистых центров. Так, например, повреждение дыхательного центра, расположенного в РФ продолговатого мозга, приводит к остановке дыхания.

Другим жизненно важным центром РФ является сосудодвигательный центр, который регулирует изменения просвета сосудов вен и артерий, артериальное давление. В регуляции вегетативных функций большое значение имеют так называемые стартовые нейроны РФ. Они дают начало циркуляции возбуждения внутри группы нейронов, обеспечивая тонус регулируемых вегетативных систем. Влияния ретикулярной формации на все отделы мозга можно разделить на нисходящие и восходящие. В свою очередь каждое из этих влияний имеет тормозное и возбуждающее действие.

Нисходящие влияния РФ ствола мозга на регуляторную деятельность спинного мозга были установлены еще И. М. Сеченовым (1862). Им было показано, что при раздражении среднего мозга кристалликами соли у лягушки рефлексы отдергивания лапки возникают медленно, требуют более сильного раздражения или не появляются вообще, то есть тормозятся.

Г. Мэгун (1945-1950), нанося локальные раздражения на РФ продолговатого мозга, нашел, что при раздражении одних точек тормозятся, становятся вялыми рефлексы сгибания передней лапы, коленный, роговичный. При раздражении РФ в других точках продолговатого мозга эти же рефлексы вызывались легче, были сильнее, то есть их реализация облегчалась. По мнению Мэгуна, тормозные влияния на рефлексы спинного мозга может оказывать только РФ продолговатого мозга, а облегчающие влияния регулируются всей РФ ствола и спинного мозга.

Восходящие влияния РФ на кору больших полушарий повышают ее тонус, регулируют возбудимость ее нейронов, не изменяя специфику ответов на адекватные раздражения. РФ влияет на функциональное состояние всех сенсорных областей мозга, следовательно, она имеет значение в интеграции сенсорной информации от разных анализаторов.

Ретикулярная формация имеет прямое отношение к регуляции цикла бодрствование - сон. Стимуляция одних структур РФприводит к развитию сна, стимуляция других вызывает пробуждение. Г. Мэгун и Дж. Моруцци выдвинули концепцию, согласно которой все виды сигналов, идущих от периферических рецепторов, достигают по коллатералям РФ продолговатого мозга и моста, где переключаются на нейроны, дающие восходящие пути в таламус и затем в кору больших полушарий.

Возбуждение РФ продолговатого мозга или моста вызывает синхронизацию активности коры больших полушарий, появление медленных ритмов в электроэнцефалограмме, сонное торможение. Такое же состояние головного мозга (спящий мозг) наблюдается при повреждении восходящих путей ретикулярной формации.

Возбуждение РФ среднего мозга вызывает противоположный эффект пробуждения; десинхронизацию электрической активности коры, появление быстрых низкоамплитудных (b-ритма) в электроэнцефалограмме. Следовательно, важнейшей функцией восходящей РФ является регуляция цикла сон - бодрствование.

Реакция активации коры головного мозга наблюдается при раздражении РФ продолговатого, среднего, промежуточного мозга. В то же время раздражение некоторых ядер таламуса приводит к возникновению ограниченных локальных участков возбуждения, а не к общему ее возбуждению, как это бывает при раздражении других отделов РФ.

Одним из отделов большого головного мозга является самая маленькая его часть – средний мозг (mesencephalon), представленный в виде четырех «холмиков», в которые заключены ядра, выполняющие функцию центров зрения и слуха, проводником их сигналов. «Холмики» mesencephalon являются ключевой частью в области переработки информации, воспринимаемой органами чувств.

Что такое средний мозг

Между мостом и промежуточным мозгом находится серое вещество, размером около 2 см длиной и 3 см шириной, представляет собой второй верхний (superius) зрительный проводной центр. Там же расположены ядра медиального слухового анализатора, который выделился, стал отдельной структурой уже у древнейших людей и необходим для более качественной передачи сигналов от органов чувств к конечным слуховым центрам.

Расположение

Ядра mesencephalon, варолиев мост и продолговатый мозг составляют важнейшую структуру – ствол большого головного мозга, являющийся продолжением спинного. Расположилась стволовая часть в канале первого, второго шейного позвонков и частично в затылочной ямке. Комплекс нейронов иногда рассматривают не как отдельную самостоятельную часть, а как некую продольную разделительную прослойку или бугор мозгового вещества между варолиевым мостом и промежуточным мозгом.

Строение среднего мозга

Через стволовую часть проходят проводящие пути, связывающие кору больших полушарий с нейронами спинно-мозгового вещества и стволом, в которых выделяют:

  • подкорковые первичные центры зрительного анализатора;
  • подкорковые первичные центры слухового анализатора;
  • все проводящие пути, связывающие ядра больших полушарий со спинным мозгом;
  • комплексы (пучки) белого вещества, обеспечивающие прямое взаимодействие всех отделов головного мозга.

Исходя из этого, средний мозг (mesencephalon) состоит из двух основных частей: покрышки (или крыши), которой находятся первичные подкорковые центры слуха и зрения, ножки мозга с межножковым пространством, представляющих проводящие пути. Важнейшей составляющей является сильвиев водопровод – канал, соединяющий полость третьего желудочка с пазухой четвертого.

Водопровод со всех сторон окружает серое и белое центральное вещество. Серое вещество содержит ретикулярную формацию, ядра черепных нервов. В месте перехода водопровода в четвертый желудочек формируется мозговой парус (на латыни velum medullare). На боковых сечениях сильвиев водопровод имеет вид треугольника или узкой щели и выступает как ориентировочный элемент, который помогает отмечать местоположение мозговых отделов на рентгеновских снимках.

Крыша

Пластинка четверохолмия или крыша среднего мозга представляет собой две пары бугорков – верхние и нижние. Между ними пролегает большая щель –субпинеальный треугольник. От всех бугорков в направлении к нейронам больших полушарий отходят пучки волокон или коленчатых тел. Первая пара холмиков представляет собой первичные зрительные центры, а вторая – первичные слуховые.

Ножки

Два толстых тяжа, берущие свое начало из-под варолиева моста, называются ножками. В них размещены несколько групп нервных клеток чувствительного назначения вместе с нейронами двигательного. В мозговом веществе выделяют образования черного и красного цвета, которые регулируют произвольные, непроизвольные движения волокон поперечно-полосатой мышечной ткани.

Красные ядра

Структура, напрямую регулирующая координацию всех произвольных движений человека наравне с мозжечковыми нейронами. Красные ядра состоят из двух частей: мелкоклеточной, являющейся основой проводящих путей, а также крупноклеточной – образующей основу ядер. Располагаются в верхней покрышке рядом с черной субстанцией, представляют собой основные пирамидальные центры двигательной активности – основную часть мозга, контролирующую все осознанные и рефлекторные движения человеческого тела.

Черная субстанция

Местоположение черной субстанции в виде полумесяца – между покрышкой и ножками. В веществе содержится много пигмента меланина, который придает субстанции темный цвет. Принадлежит субстанция к экстрапирамидной двигательной системе, регулирует преимущественно тонус мышц и как будут выполняться автоматические движения. Особенность мозгового вещества состоит в том, что если черное вещество по каким-то причинам не выполняет свою функцию, то ее берут на себя красные ядра среднего мозга.

Функции среднего мозга

Долгое время сети ядер приписывали лишь одно назначение в анатомии – разделение ствола и больших полушарий. В ходе дальнейших исследований стало понятно, что они выполняют практически все функции, присущие высокодифференцированной нервной ткани, являются точкой пересечения большей части чувствительных нервных путей. Выделяют следующие функции среднего мозга человека:

  1. Регуляция физиологии двигательной реакции на сильный внешний раздражитель (боль, яркий свет, шум).
  2. Функция бинокулярного зрения – обеспечение способности видеть одновременно четкое изображение двумя глазами.
  3. Реакция в органах зрения, носящая вегетативный характер, проявляется аккомодацией.
  4. Рефлексы среднего мозга, обеспечивающие одновременный поворот глаз и головы на внешний раздражитель любой силы.
  5. Центр краткой обработки первичной сенсорного, чувствительного сигнала (зрение, слух, обоняние, осязание) и дальнейшее его направление в основные центры анализаторов).
  6. Регулировка осознанного и рефлекторного тонуса скелетной мускулатуры, позволяющая произвольные мышечные сокращения.

Видео

Оглавление темы "Средний мозг, mesencephalon.":

Черное вещество, substantia nigra. Красное ядро, nucleus ruber. Топография черного вещества. Топография красного ядра.

Substantia nigra простирается на всем протяжении ножки мозга от моста до промежуточного мозга; по своей функции относится к экстрапирамидной системе.

Расположенное вентрально от substantia nigra основание ножки мозга содержит продольные нервные волокна, спускающиеся от коры полушария большого мозга ко всем нижележащим отделам центральной нервной системы (tractus corticopontmus, corticonuclearis, corticospinalis и lдр.).
Tegmentum , находящаяся дорсально от substantia nigra , содержит преимущественно восходящие волокна, в том числе медиальную и латеральную петли. В составе этих петель восходят к большому мозгу все чувствительные пути, за исключением зрительного и обонятельного.

Среди ядер серого вещества самое значительное - красное ядро, nucleus ruber . Это удлиненное колбасовидное образование простирается в покрышке ножки мозга от гипоталамуса промежуточного мозга до нижнего двухолмия, где от него начинается важный нисходящий тракт, tractus rubrospinal , соединяющий красное ядро с передними рогами спинного мозга. Пучок этот после выхода из красного ядра перекрещивается с аналогичным пучком противоположной стороны в вентральной части срединного шва - вентральный перекрест покрышки.
Nucleus ruber является весьма важным координационным центром экстрапирамидной системы, связанным с остальными ее частями. К нему проходят волокна от мозжечка в составе верхних ножек последнего после их перекреста под крышей среднего мозга, вентрально от aqueductus cerebri , а также от pallidum - самого нижнего и самого древнего из подкорковых узлов головного мозга, входящих в состав экстрапирамидной системы. Благодаря этим связям мозжечок и экстрапирамидная система через посредство красного ядра и отходящего от него tractus rubrospinal оказывают влияние на всю скелетную мускулатуру в смысле регуляции бессознательных автоматических движений.

  • 1. Морфофункциональная организация спинного мозга. Нейронная организация сегментов спинного мозга. Функции задних и передних корешков сегментов спинного мозга. Закон Белла-Мажанди.
  • 1. Морфофункциональная организация спинного мозга.
  • 2. Альфа- и гамма-мотонейроны спинного мозга, их функции. Нейроны боковых рогов сегментов спинного мозга, их функции.
  • 4. Классификация спинномозговых рефлексов, их характеристика.
  • 5. Нервные центры продолговатого мозга, их функции. Роль продолговатого мозга в рефлексах регуляции позы. Нервные центры и ядра варолиевого моста, их функции.
  • 6. Функции ядер нижнего и верхнего двухолмия. Функции красного ядра и черной субстанции среднего мозга.
  • 7. Функции ретикулярной формации ствола мозга, их характеристика. Восходящие и нисходящие влияния ретикулярной формации на другие структуры головного и спинного мозга.
  • 8. Морфофункциональная организация таламуса. Классификация и функции ядер таламуса.
  • 9. Мозжечковый контроль двигательной активности. Роль мозжечка в регуляции мышечного тонуса.
  • 12. Морфофункциональная организация лимбической системы мозга. Лимбические круги. Гиппокамп, его функции. Миндалевидное тело, его функции.
  • 14. Морфофункциональная организация коры большого мозга. Сенсорные, ассоциативные и моторная области коры большого мозга. Биоэлектрическая активность головного мозга. Ритмы ээг.
  • 15. Межполушарные взаимоотношения. Функциональная межполушарная асимметрия.
  • 18. Синаптический процесс в симпатических и парасимпатических ганглиях.
  • 19. Синаптическое взаимодействие постганглионарных волокон с клетками органов в симпатической нервной системе.
  • 20. Синаптическое взаимодействие постганглионарных волокон с клетками органов в парасимпатической нервной системе.
  • 23. Особенности биосинтеза, секреции и транспорта гормонов разной химической природы.
  • 24. Виды и пути действия гормонов на клетки-мишени.
  • 25. Молекулярные механизмы действия гормонов разной химической природы на клетки-мишени.
  • 26. Нейросекреторная функция гипоталамуса. Рилизинг-факторы, их характеристика. Гипоталамо-гипофизарные связи.
  • 27. Гормоны нейрогипофиза, их функции. Гормоны аденогипофиза, их функции.
  • 28. Эндокринная деятельность щитовидной железы. Гипоталамо-гипофизарная система регуляции эндокринной деятельности щитовидной железы.
  • 29. Йодсодержащие гормоны щитовидной железы, биосинтез и физиологическое действие йодсодержащих гормонов щитовидной железы.
  • 30. Кальцитонин, паратирин, кальцитриол как компоненты системы гормональной регуляции кальциевого гомеостаза.
  • 31. Гормоны клубочковой зоны коры надпочечников, их физиологическое действие.
  • 32. Ренин-ангиотензин-альдостероновая система, ее физиологические функции.
  • 33. Атриопептид и его роль в системе гормональной регуляции натриевого гомеостаза.
  • 34. Гормоны пучковой зоны коры надпочечников, их физиологическое действие.
  • 35. Гипоталамо-гипофизарная система регуляции эндокринной деятельности пучковой зоны коры надпочечников.
  • 36. Гормоны сетчатой зоны коры надпочечников, их физиологическое действие.
  • 37. Гормоны мозгового вещества надпочечников, их физиологическое действие. Гипоталамо-симпато-адреналовая система.
  • 38. Механизм гипергликемического действия глюкагона. Механизм гипогликемического действия инсулина.
  • 39. Гипоталамо-гипофизарная система регуляции половых желез. Гормоны яичников, их функции. Гормоны семенников, их функции.
  • 40. Эндотелий кровеносных сосудов как эндокринная ткань. Физиологические эффекты биологически активных веществ, синтезируемых эндотелиальными клетками.
  • 6. Функции ядер нижнего и верхнего двухолмия. Функции красного ядра и черной субстанции среднего мозга.

    Верхние бугры четверохолмия являются первичными зрительными центрами. К ним подходят пути от нейронов сетчатки глаза. От них сигналы идут к таламусу, а по нисходящему тектоспинальному пути – к мотонейронам спинного мозга. В верхнем двухолмии происходит первичный анализ зрительной информации. Например, определение положения источника света, направление его движения. В них также формируются зрительные ориентировочные рефлексы (поворот головы в сторону источника света).

    Нижние бугры четверохолмия являются первичными слуховыми центрами. К ним идут сигналы от фонорецепторов уха, а от них – к таламусу. От них к мотонейронам также идут пути в составе тектоспинального тракта. В нижних буграх осуществляется первичный анализ слуховых сигналов, а за счет связей с мотонейронами формируются ориентировочные рефлексы на звуковые раздражители.

    Функции красного ядра и черной субстанции среднего мозга.

    Расположены в верхней части ножки мозга. К нему идут нервные пути от коры полушарий, подкорковых ядер, мозжечка. От него идет руброспинальный тракт к мотонейронам сгибателей спинного и ретикулярной формации продолговатого мозга. В связи с различным функциональным значением ядра Дейтерса и красного ядра, при перерезке ствола между средним и продолговатым мозгом у животных возникает децеребрационная ригидность (резкое повышение тонуса всех мышц разгибателей): голова животного

    запрокидывается, спина выгибается, конечности вытягиваются (красное ядро, активируя мотонейроны сгибателей, через вставочные тормозные нейроны тормозит мотонейроны разгибателей, одновременно исключается тормозящее влияние красного ядра на ретикулярную формацию продолговатого мозга, возле ядра Дейтерса, в отсутствии влияния красного ядра преобладает возбуждающее действие ядра Дейтерса на мотонейроны разгибателей).

    Располагается в ножках мозга, участвует в регуляции актов жевания, глотания и их последовательности, а также в координации мелких и точных движений пальцев рук. Нейроны этого ядра синтезируют дофамин, поставляемый к базальным ядрам головного мозга. Он играет важную роль в контроле сложных двигательных актов. Поражение черного вещества приводит к дегенерации дофаминергечиских волокон, проецирующихся в полосатое тело, нарушению тонких движений пальцев рук, развитию мышечной ригидности и тремору (болезнь Паркинсона). Принимает участие в пищевом поведении, регулирует пластический тонус, эмоциональное поведение.

    7. Функции ретикулярной формации ствола мозга, их характеристика. Восходящие и нисходящие влияния ретикулярной формации на другие структуры головного и спинного мозга.

    1. Соматодвигательный контроль (активация скелетной мускулатуры), может быть прямым через ретикулоспинальный путь и непрямым через мозжечок, оливы, бугорки четверохолмия, красное ядро, черное вещество, полосатое тело, ядра таламуса и соматомоторные зоны коры. 2. Соматочувствительный контроль, т.е. снижение уровней соматосенсорной информации - «медленная боль», модификация восприятия различных видов сенсорной чувствительности (слуха, зрения, вестибуляции, обоняния).

    3. Висцеромоторный контроль состояния сердечно-сосудистой, дыхательной систем, активности гладкой мускулатуры различных внутренних органов.

    4. Нейроэндокринная трансдукция через влияние на нейромедиаторы, центры гипоталамуса и далее гипофиз.

    5. Биоритмы через связи с гипоталамусом и шишковидной железой.

    6. Различные функциональные состояния организма (сон, пробуждение, состояние сознания, поведение) осуществляются посредством многочисленных связей ядер ретикулярной формации со всеми частями ЦНС.

    7. Координация работы разных центров ствола мозга, обеспечивающих сложные висцеральные рефлекторные ответы (чихание, кашель, рвота, зевота, жевание, сосание, глотание и др.).

    Восходящие и нисходящие влияния ретикулярной формации на другие структуры головного и спинного мозга.

    При восходящем влияние ретикулярной формации, повышается активность аналитико-синтетической деятельности, увеличивается скорость рефлексов, организм подготавливается к реакции на неожиданную ситуацию. Поэтому ретикулярная формация участвует в организации оборонительного, полового, пищеварительного поведения. С другой стороны, она может избирательно активировать или тормозить определенные системы мозга. В свою очередь кора больших полушарий, через нисходящие пути, может оказывать возбуждающее действие на ретикулярную формацию.

    Нисходящие ретикулоспинальные пути идут от ретикулярной формации к нейронам спинного мозга. Поэтому она может оказывать нисходящие возбуждающие и тормозящие влияния на его нейроны. Например, ее гипоталамические и мезэнцефальные отделы повышают активность альфа-мотонейронов спинного мозга. В результате этого растет тонус скелетных мышц, усиливаются двигательные рефлексы. Тормозящее влияние ретикулярной формации на спинальные двигательные центры осуществляется через тормозные нейроны Реншоу. Это приводит к торможению спинальных рефлексов.



    Рассказать друзьям