Как открыли позитрон? Открытие позитрона.

💖 Нравится? Поделись с друзьями ссылкой

Содержание 1. Определения – античастица, антивещество, антимир. 2. История открытия. 3. Опровержение теории. 4. Открытие позитрона. 5. Процесс аннигиляции. 6. Теория большого взрыва. 7. Зарождение античастиц. 8. Последние открытия и разработки. 9. Применение.


Античастица – частица двойник некоторой другой элементарной частицы, обладающая той же массой и тем же спином, но отличающиеся от нее знаками некоторых характеристик взаимодействия. Античастица – частица двойник некоторой другой элементарной частицы, обладающая той же массой и тем же спином, но отличающиеся от нее знаками некоторых характеристик взаимодействия.










«Если мы встанем на ту точку зрения, что полная асимметрия между положительными и отрицательными электрическими зарядами является фундаментальным законом природы, то мы должны рассматривать его как своего рода случайность, вся Солнечная система содержит избыток обычных отрицательных электронов и положительных протонов. Некоторые звезды построены иным путем: из позитронов и отрицательных протонов. В мире должно быть одинаковое число звезд каждого сорта,» - Поль Дирак. «Если мы встанем на ту точку зрения, что полная асимметрия между положительными и отрицательными электрическими зарядами является фундаментальным законом природы, то мы должны рассматривать его как своего рода случайность, вся Солнечная система содержит избыток обычных отрицательных электронов и положительных протонов. Некоторые звезды построены иным путем: из позитронов и отрицательных протонов. В мире должно быть одинаковое число звезд каждого сорта,» - Поль Дирак.




К чему Природе создавать дублирующие системы? К чему Природе создавать дублирующие системы? Скопление антивещества в нашей Вселенной не найдено. Скопление антивещества в нашей Вселенной не найдено. При неизменной однонаправленности времени отношение вещества и антивещества к пространству времени различны При неизменной однонаправленности времени отношение вещества и антивещества к пространству времени различны «упрощение» Природы «упрощение» Природы






Позитрон был открыт в 1932 году при помощи камеры Вильсона. Андерсон сфотографировал следы частиц, которые очень напоминали следы электронов, но имели изгиб противоположный следам электронам, что свидетельствовало о положительном электрическом заряде обнаруженных частиц. Позитрон был открыт в 1932 году при помощи камеры Вильсона. Андерсон сфотографировал следы частиц, которые очень напоминали следы электронов, но имели изгиб противоположный следам электронам, что свидетельствовало о положительном электрическом заряде обнаруженных частиц.










Образование античастиц Рождение античастиц происходит в столкновениях частиц вещества, разогнанных до энергий, превосходящих порог рождения пары частица-античастица. Рождение античастиц происходит в столкновениях частиц вещества, разогнанных до энергий, превосходящих порог рождения пары частица-античастица. В лабораторных условиях античастицы рождаются во взаимодействиях частиц на ускорителях; хранение образующихся античастиц осуществляют в накопительных кольцах при высоком вакууме. В лабораторных условиях античастицы рождаются во взаимодействиях частиц на ускорителях; хранение образующихся античастиц осуществляют в накопительных кольцах при высоком вакууме. В естественных условиях античастицы рождаются при взаимодействии первичных космических лучей с веществом, например, атмосферы Земли, а также должны рождаться в окрестностях пульсаров и активных ядер галактик. В естественных условиях античастицы рождаются при взаимодействии первичных космических лучей с веществом, например, атмосферы Земли, а также должны рождаться в окрестностях пульсаров и активных ядер галактик.

Позитрон (от англ. positive —положительный и «-трон») — античастица электрона. Относится к антивеществу, имеет электрический заряд +1, спин 1/2, лептонный заряд −1 и массу, равную массе электрона. Существование позитрона впервые было предположено в 1928 году Полем Дираком. Теория Дирака описывала не только электрон с отрицательным электрическим зарядом, но и аналогичную частицу с положительным зарядом. Отсутствие такой частицы в природе рассматривалось как указание на «лишние решения» уравнений Дирака. Зато открытие позитрона явилось триумфом теории. Позитрон был открыт в 1932 году американским физиком Андерсоном при наблюдении космического излучения с помощью камеры Вильсона, помещённой в магнитное поле. Направление искривления трека частицы указывало знак ее заряда. По радиусу кривизны и энергии частицы было определено отношение ее заряда к массе. Полученное значение по модулю было равно значению электрона. На рисунке представлена одна из первых фотографий, доказавшая существование позитрона. Можно сделать вывод о том, что позитрон двигался снизу вверх, и, пройдя свинцовую пластинку, потерял часть своей энергии. В связи с этим кривизна траектории увеличилась.
(14.3) Вы видите фотографию, на которой запечатлен процесс образования пары электрон - позитрон. В камере Вильсона, находящейся в магнитном поле, пара оставляет характерный след и виде двурогой вилки. В результате проведения данных исследований ученые смогли сделать вывод о том, что такие преобразования, связанные с исчезновением (аннигиляцией) частиц и образованием новых, является именно превращением. Особенно наглядно обнаруживается это при аннигиляции пары электрон — позитрон. Обе частицы обладают определенной массой в состоянии покоя и электрическими зарядами. Фотоны же, которые при этом рождаются, не имеют зарядов и не обладают массой покоя, так как не могут существовать в состоянии покоя. В свое время открытие рождения и аннигиляции электронно-позитронных пар вызвало настоящую сенсацию в науке. До того никто не предполагал, что электрон, старейшая из частиц, важнейший строительный материал атомов, может оказаться не вечным. Впоследствии двойники — античастицы — были найдены у всех частиц. Античастицы противопоставляются частицам именно потому, что при встрече любой частицы с соответствующей античастицей происходит их аннигиляция. Обе частицы исчезают, превращаясь в кванты излучения или другие частицы. Сравнительно недавно были обнаружены антипротон и антинейтрон. Электрический заряд антипротона отрицателен. Атомы, ядра которых состоят из антинуклонов, а оболочка — из позитронов, образуют антивещество. В 1969 г. в нашей стране был впервые получен антигелий. Антивещество — самый совершенный источник энергии, самое калорийное «горючее». В состоянии ли будет человечество когда-либо это «горючее» использовать, сейчас сказать трудно.

Открытие позитрона. Античастицы

Существование частицы, идентичной электрону, но обладающей противоположным электрическим зарядом, было предсказано Полем Адриеном Морисом Дираком (1902–1984) на основании уравнения, введенного им в 1928 году. Уравнение Дирака описывает заряженную частицу со спином с учетом релятивистских эффектов, т.е., например, релятивистский электрон. Однако интересно, что вывести это уравнение Дирак пытался исходя из совсем других соображений: он пытался справиться с проблемой отрицательной плотности вероятности. Эта проблема заключалась в том, что при попытке обобщить уравнение Шредингера для волновой функции квантовой частицы

на релятивистский случай получалось уравнение Клейна–Гордона,

для которого нельзя было построить неотрицательную сохраняющуюся величину, имеющую смысл плотности вероятности. Другими словами, либо частица могла рождаться и исчезать, либо надо было интерпретировать понятие отрицательной вероятности. Обе альтернативы были разрушительными для квантовой механики.

Дирак же догадался, что появление отрицательных вероятностей связано с тем, что уравнение Клейна–Гордона содержит вторую производную волновой функции по времени, и постарался построить уравнение с первой производной, переходящее в нерелятивистском пределе в уравнение Шредингера или его подобие. Оказалось, что для этого функция должна быть не комплексным числом, как ранее, а набором из четырех комплексных чисел:

Для уравнения Дирака существовала неотрицательная плотность вероятность, равная , причем полная вероятность нахождения дираковской частицы хоть где-нибудь в пространстве со временем не меняется . Другими словами, частица сама собой не исчезает.

Оказалось, что полученное уравнение обладает неожиданными свойствами. Во-первых, в нерелятивистском пределе оно описывало частицу с энергией спином и магнитным моментом, который соответствует g-фактору, равному двум. Состояние этой частицы определяли две из четырех компонент волновой функции Дирака. Во-вторых, две оставшихся компоненты описывали электрон с отрицательной энергией . Чтобы избежать спонтанное падение частиц в этот отрицательный континуум , Дирак предположил, что этот континуум квантовых состояний уже занят , и электроны не могут проникнуть в него в силу принципа Паули. Этот полностью занятый континуум состояний получил название моря Дирака (см. рис. ниже).

Если частице из отрицательного континуума придать энергию, большую , она перейдет в положительный, при этом в отрицательном континууме образуется незанятое квантовое состояние - дырка. Эта дырка будет иметь положительный заряд и массу, равную электрону. Таким образом, при выходе электрона в положительный континуум физически наблюдается рождение пары частиц: электрона и его античастицы - позитрона. Именно такой перескок и изображен на рисунке выше.

Экспериментально существование предсказанной положительно заряженной частицы было подтверждено Карлом Дэвидом Андерсоном (1905–1991) в 1932 году. Эта частица была открыта в космических лучах по ее отклонению в магнитном поле в камере Вильсона. По тому, по часовой или против часовой стрелке изгибалась траектория частицы, можно было судить о знаке ее заряда. Это является прямым следствием уравнения движения частицы в магнитном поле:

(для простоты мы выписали нерелятивистское уравнение). Однако по фотографии трека в камере Вильсона напрямую нельзя определить направление движения частицы вдоль него. Две же одинаковые частицы, движущиеся в противоположных направлениях, будут отклоняться в магнитном поле в одну сторону. Чтобы определить истинное направление движения частицы, Андерсон разделил камеру Вильсона на две половины свинцовой перегородкой. Частица в результате прохождения через перегородку теряла скорость, поэтому радиус кривизны ее траектории

уменьшался, что наблюдалось по фотографии. Таким образом Андерсон восстановил «начало» и «конец» трека частицы и сделал вывод об ее положительном заряде. Радиус кривизны траектории также давал отношение массы к заряду для открытой частицы - оно оказалось равным по модулю этому же отношению для электрона.

В современной квантовой теории поля античастицы есть у всех частиц, обладающих каким бы то ни было зарядом. Тождественными себе являются фотон, бозон хиггса, ‑мезон и еще некоторые частицы. Кроме того, развитие квантовой теории поля, начавшейся, по сути дела, с уравнения Дирака, реабилитировало уравнение Клейна–Гордона и разрешило проблему отрицательных вероятностей совершенно другим способом - через так называемое вторичное квантование . Тем не менее, подход Дирака важен сам по себе как первый способ описания процессов рождения и уничтожения частиц. Уравнение Дирака является фундаментальным уравнением теоретической физики и описывает природу на фундаментальном уровне. Алгебраический же смысл, заложенный в это уравнение Дираком на этапе его вывода, заставляет задуматься о фундаментальной роли математики (и алгебры, в частности) в устройстве Вселенной.

−1 и , равную массе электрона. При позитрона с электроном их масса превращается в энергию в форме двух (и гораздо реже - трёх и более) .

Позитроны возникают в одном из видов (позитронная эмиссия), а также при взаимодействии с энергией больше 1,022 МэВ с . Последний процесс называется «рождением пар», ибо при его осуществлении фотон, взаимодействуя с электромагнитным полем , образует одновременно и позитрон.

Открытие

Существование позитрона впервые было предположено в . Теория Дирака описывала не только электрон с отрицательным электрическим зарядом, но и аналогичную частицу с положительным зарядом. Отсутствие такой частицы в природе рассматривалось как указание на «лишние решения» уравнений Дирака. Зато открытие позитрона явилось триумфом теории.

В соответствии с теорией Дирака электрон и позитрон могут рождаться парой, и на этот процесс должна быть затрачена энергия, равная энергии покоя этих частиц, 2×0,511 МэВ. Поскольку были известны естественные , испускавшие γ-кванты с энергией больше 1 МэВ, представлялось возможным получить позитроны в лаборатории, что и было сделано. Экспериментальное сравнение свойств позитронов и электронов показало, что все физические характеристики этих частиц, кроме знака электрического заряда, совпадают.

Аннигиляция

Из теории Дирака следует, что электрон и позитрон при столкновении должны с освобождением энергии, равной полной энергии сталкивающихся частиц. Оказалось, что этот процесс происходит главным образом после торможения позитрона в веществе, когда полная энергия двух частиц равна их энергии покоя 1,022 МэВ. На опыте были зарегистрированы пары γ-квантов с энергией по 0,511 МэВ, разлетавшихся в прямо противоположных направлениях от мишени, облучавшейся позитронами. Необходимость возникновения при аннигиляции электрона и позитрона не одного, а двух γ-квантов вытекает из . Суммарный импульс остановившегося позитрона и электрона до процесса превращения равен нулю, но он не может быть нулём при образовании вследствие аннигиляции только одного γ-кванта.

Последствия открытия позитрона

Позитрон оказался первой открытой . Существование античастицы электрона и соответствие суммарных свойств двух античастиц выводам теории Дирака, которая могла быть обобщена на другие частицы, указывало на возможность парной природы всех элементарных частиц и ориентировало последующие физические исследования. Такая ориентация оказалась необычайно плодотворной, и в настоящее время парная природа элементарных частиц является точно установленным законом природы, обоснованным большим числом экспериментальных фактов.

Литература

  • Климов А.Н. Ядерная физика и ядерные реакторы. М. Атомиздат, 1971.

Изучает взаимодействие γ-квантов с электронной оболочкой атома. Для наблюдения треков электронов он впервые использовал камеру Вильсона, помещенную в магнитное поле. Этот метод регистрации позволял по кривизне трека измерять энергию электронов. Источник γ-квантов располагался рядом с камерой Вильсона. Анализируя полученные фотографии, Д. Скобельцын впервые получил ряд новых результатов о механизме взаимодействия γ-квантов с атомом: измерил величины сечений взаимодействия γ-квантов с различными атомами, измерил ионизационные потери при движении заряженной частицы в среде. Однако гораздо больший интерес вызвали наблюдаемые в камере Вильсона не искривленные в магнитном поле траектории электронов высоких энергий. О том, что эти траектории принадлежат электронам, Д. Скобельцын заключил по величине ионизации вдоль трека пролетающей в камере Вильсона частицы. Скобельцын сделал вывод, что эти треки принадлежат электронам космического излучения, но они не искривляются, т.к. имеют большие энергии. Вскоре эта гипотеза получила подтверждение − треки не исчезали после того, как был убран источник γ-излучения. Энергия космических электронов по оценкам Скобельцына составляла ~1 ГэВ. Неожиданно оказалось, что не все частицы искривлялись в магнитном поле в одном направлении. Некоторые частицы отклонялись так, как будто бы имели положительный заряд. Вначале эти следы приняли за положительно заряженные протоны. Однако характер ионизации вдоль трека был такой же, как в случае электронов. Для того, чтобы понять природу этих частиц необходимо было измерить направление движения частиц, измерить их энергию.
Результаты Д. Скобельцына и разработанный им метод детектирования частиц космического излучения вызвали большой интерес физиков. В нескольких лабораториях стали создавать аналогичные установки. В Кавендишской лаборатории этим занялись П. Блэкетт и Дж. Оккиалини , а в США эксперименты с камерой Вильсона в магнитном поле начал молодой научный сотрудник
К. Андерсон , работавший под руководством Нобелевского лауреата Дж. Милликена . К 1932 г. К. Андерсон получил несколько сотен фотографий космических частиц в камере Вильсона в магнитном поле. Так же как и Д. Скобельцын К. Андерсон наблюдал треки как отрицательно, так и положительно заряженных частиц.
В 1932 г. в журнале “Science” появилась заметка К. Андерсона, в которой он сообщал об открытии в составе космических лучей новой частицы. Эта частица имела такую же массу, как и открытый ранее электрон, но имела в отличие от электрона не отрицательный, а положительный электрический заряд. Это наблюдение было сделано Андерсоном по наблюдениям траекторий частиц в камере Вильсона в сильном магнитном поле.
Оказалось, что частицы космических лучей, которые наблюдал К. Андерсон, искривляются в камере Вильсона, помещенной в магнитное поле, в противоположных направлениях, т.е. среди частиц зарегистрированных в камере Вильсона были как отрицательно, так и положительно заряженные частицы.

Рис. 3.1. Следы космических частиц, полученные Андерсоном в камере Вильсона, помещённой в магнитное поле 20000–25000 эрстед.

После экспериментов Блэкетта и Оккиалини уже не было никаких сомнений, что позитрон − это новая частица. Кроме того им впервые удалось надежно зарегистрировать рождение электрон-позитронной пары при взаимодействии γ-квантов с веществом. Блэкетт и Оккиалини впервые указали на то, что позитрон является той самой частицей, которую предсказал незадолго до этого П. Дирак.
Вскоре выяснилось, что позитроны могут рождаться не только в космических лучах, но и под действием γ-квантов с энергией больше 1 МэВ. Если в камеру Вильсона поместить свинцовую пластинку и облучать её γ-квантами от радиоактивного источника с энергией γ-квантов >1 МэВ, то можно наблюдать две частицы, рождающиеся в одной точке, которые магнитным полем отклоняются в противоположные стороны, это электрон и позитрон. Рождение позитронов всегда происходит в паре с электроном.

γ → e + + e - .

На рис. 3.3 показано рождение электрон-позитронной пары в камере Вильсона, заполненной криптоном.


Рис. 3.3. Рождение пары электрон-позитрон в камере Вильсона.

Открытие позитрона − частицы по своим характеристикам идентичной электрону за исключением знака электрического заряда (у позитрона он положительный) − было исключительно важным событием в физике. Еще в 1928 году П. Дирак предложил уравнение для описания релятивистской квантовой механики электрона. Оказалось, что уравнение Дирака имеет два решения, как с положительной, так и с отрицательной энергией. Состояние с отрицательной энергией описывает частицу аналогичную электрону, но имеющую положительный электрический заряд.

П. Блэкетт, Г. Оккиалини: « Согласно сообщению Андерсона, им найдено несколько следов, которые должны быть приписаны положительно заряженным частицам с ничтожной массой. Андерсон приводит подробное описание этих фотографий, хотя самые фотографии не воспроизведены. На одной из них о направлении движения можно однозначно заключить по изменению кривизны пути после прохождения насквозь свинцовой пластинки. На другой фотографии два следа, выходящие из пластинки, искривляются в противоположных направлениях. На третьей две частицы покидают пластинку, отклоняясь в ту сторону, куда отклонились бы положительные заряды. Длина пробега и характеристическая ионизация − всё это вместе с предыдущим дает Андерсону основание утверждать, что перед нами − положительно заряженные частицы с массой, значительно меньшей, чем масса протона».

П. Блэкетт, Г. Оккиалини. «Разрушение атомов космическими лучами и положительный электрон».

Позитрон был первой обнаруженной частицей из целого класса частиц, которые получили название античастицы . До открытия позитрона казалась загадочной различная роль положительных и отрицательных зарядов в природе. Почему существует тяжелый положительно заряженный протон, и нет тяжелой частицы с массой протона и отрицательным зарядом? Зато существует легкий отрицательно заряженный электрон. Открытие позитрона по существу восстановило зарядовую симметрию для легких частиц. В квантовой теории поля электрон и позитрон полностью равноправные частицы. Позитрон является стабильной частицей и может в пустом пространстве существовать, так же как электрон, бесконечно долго. Однако при столкновении электрона и позитрона происходит их аннигиляция. Электрон и позитрон исчезают, и вместо них рождаются два γкванта (фотона):

е - + е + → 2γ.

Происходит превращение частиц с массой отличной от нуля (масса электрона mc 2 = 0.511 МэВ) в частицы с нулевой массой (фотоны).
Наряду с процессом аннигиляции был обнаружен и процесс рождения пары частиц – электрона и позитрона. Электрон-позитронные пары рождались γ-квантами с энергией несколько МэВ в кулоновском поле атомного ядра.
При взаимодействии частиц высокой энергии с веществом процессы рождения и аннигиляции частиц и античастиц приводят к рождению большого количества вторичных частиц порожденных высокоэнергетической первичной частицей – каскадных ливней (рис. 3.4, 3.5, 3.6).

  1. Описан метод, с помощью которого удается заставить частицы, обладающие огромной энергией, фотографировать следы своих собственных путей в камере Вильсона.
  2. Нарисована картина наиболее поразительных, характерных явлений, заснятых этим методом на некоторых из 500 удачных фотографий; подвергся обсуждению вопрос о природе «ливней», состоящих из частиц, дающих на снимках сочетание сразу нескольких и даже многих путей.
  3. Рассмотрение пробега, ионизации, кривизны и направления движения частиц приводит к подтверждению взгляда, высказанного впервые Андерсоном, о том, что должны существовать частицы с положительным зарядом, но с массой, скорее сравнимой с массой электрона, чем прогона…
  4. Разобран вопрос о происхождении положительных и отрицательных электронов в ливне… Последующее поведение положительных электронов рассмотрено в свете дираковской теории «дырок».

Нобелевская премия по физике

1948 г. − П. Блэкетт. За усовершенствование метода камеры Вильсона и сделанные в связи с этим открытия в области ядерной физики и космической радиации.


Рис. 3.4. Позитрон, созданный гамма-лучами в свинцовой пластине и прошедший сквозь алюминиевую пластину толщиной 0,55 мм. Энергия позитрона над алюминиевой пластиной 820 кэВ, под алюминиевой пластиной 520 кэВ.

П. Блэкетт, Г. Оккиалини: «Сделать первый шаг в раскрытии этих сложных явлений − значит, прежде всего, путем отождествления установить природу частиц, порождающих следы. Не совсем легко с этим справиться, так как данные, почерпнутые из фотографий и служащие для выводов, зачастую противоречивы. Однако, по-видимому, неизбежно следует придти к тому замечательному, рассеивающему затруднения заключению, которое уже сделал Андерсон при расшифровке аналогичных фотографий. Оно состоит в том, что некоторые из следов нужно приписать частицам, несущим положительный заряд, но имеющим массу, ничтожную сравнительно с массой протона».


Рис. 3.5. Развитие ливня в свинцовых пластинах.


Рис. 3.6. Развитие ливня в свинцовых пластинах.

П. Блэкетт, Г. Оккиалини: «Чтобы определить знак заряда частицы, надо знать, в каком направлении она двигалась вдоль следа. Есть четыре способа узнать об этом из фотографий:

    Частица пронизывает достаточно толстую металлическую пластинку, так что по выходе из нее частица успела потерять заметную долю своей энергии. Очевидно, что в этом случае движение совершается со стороны большего значения Hρ в сторону меньшего. В противном случае пришлось бы допустить существование выигрыша энергии внутри пластинки, а эта возможность настолько маловероятна, что мы вправе ее отбросить. Если, при фотографировании попадется частица совсем медленная, тогда представляется случай обнаружить изменение Hρ, вызываемое благодаря непрестанной потере энергии во время прохождения частицы через газ.

  1. С другой стороны, если частица служит причиной появления какой-либо вторичной частицы с достаточной энергией, скажем, при столкновении со свободным электроном, − тогда угол между вторичным следом и первичным, укажет направление движения частиц.
  2. Если группа следов расходится из некоторой общей точки или некоторой малой области пространства, тогда существует очень большая вероятность − хотя и не сама достоверность, − что всякая частица такой группы движется, удаляясь от этой области.
  3. Если след наблюдается в почти вертикальном направлении, то более вероятно, что частица двигалась вниз, а не вверх. В основу последнего предположения взят бесспорный факт, что ионизация под действием космического излучения увеличивается от глубин к высотам. Однако трудно оценить численно эту вероятность, поскольку не известна повторяемость таких явлений, как зафиксированное на рис. 13, где есть, по крайней мере, одна частица, отразившаяся кверху».

В классической физике понятия частицы и волны резко разграничены − одни физические объекты являются частицами, а другие − волнами. Превращение пары электрон-позитрон в фотоны стало дополнительным подтверждением представления о том, что между излучением и веществом много общего.

П. Блэкетт, Г. Оккиалини: «Очевидно, что существуют несколько различных процессов, дающих начало сложным путям ливней. В небольшом количестве случаев этот процесс совсем прост. Налетающая частица − обычно отрицательный или положительный электрон − выбивает из отдельного ядра, по всей вероятности, три или более частицы. Рис. 17 с большой наглядностью подтверждает, что налетающая частица выбрасывает из ядра меди 2 электрона (оба с E e ≈ 13·10 6 V) наряду с одним протоном. Извержение могло сопровождаться также и другими частицами, но они, по-видимому, имели слишком недостаточную длину пробега, чтобы преодолеть толщу пластинки и выйти из нее. Рис. 13 дает картину двух электронов (E e ≈ 10·10 6 и 13·10 6 V), вышибленных из ядра свинца книзу, и двух других, с большей энергией (E e > 100·10 6 V), выбитых кверху. Возможно, что один из последних двух представляет собою налетающую частицу, взрывающую ядро, и тогда другой электрон − один из осколков, летящий при взрыве кверху. Возможно и то, что обе верхние частицы суть продукты разрушения ядра; тогда в этом случае саморазрушение придется приписать какому-то неионизующему агенту.
Однако оба эти случая − сравнительно простые при сопоставлении со сложной картиной обильных ливней. В этом наиболее типичном процессе наблюдается одновременное извержение некоторого числа частиц, вылетающих с огромной энергией. Эти частицы выбрасываются обыкновенно в направлениях, заключенных внутри довольно узкого конуса, но бывают случаи (рис. 12), когда этот конус, довольно широкий. Вполне естественно искать объяснение узкого конуса разлета частиц в том импульсе, который сообщается им в момент удара налетающей частицей, обладающей чрезвычайно большой энергией. Пока еще невозможно установить природу всех частиц, выброшенных из ядра, но, по-видимому, среди них преобладают отрицательные и положительные электроны; есть некоторые, правда, еще недостаточные указания, что в ряде случаев те и другие электроны выбиваются приблизительно в одинаковом количестве.
Возникновение этих частиц возбуждает огромный интерес; в частности, они, несомненно, часто зарождаются внутри материала с легким и средним атомным весом, поскольку излучающие центры обнаружены и в воздухе, и в стекле, и в алюминии, и в меди. Согласно самым последним представлениям о структуре ядра, в таких легких ядрах не должно быть свободных отрицательных электронов. А уже найдено, по крайней мере, положительных и отрицательных электронов, исходящих из отдельного точечного центра излучения в стекле, меди или свинце (рис. 12, 11 и 10) и, следовательно, по всей вероятности, из отдельного ядра.
Существует три возможных гипотезы, которые мы вправе сделать относительно появления этих частиц: они могли существовать в разрушенном ядре с самого начала, еще до акта соударения; они могли существовать в налетающей частице; наконец, они могли возникнуть в течение процесса соударения. За отсутствием каких-либо независимых доказательств самостоятельного существования частиц прежде сотрясения ядра разумно принять последнюю из этих трех гипотез. Затем, учитывая хорошо известные трудности, вырастающие при обращении с электронами внутри ядер как с независимыми механическими объектами, последняя гипотеза, быть может, и в этом смысле имеет большее преимущество. Тогда согласно этой гипотезе все ливни (вместе с обычным β-распадом) следует представлять себе как процесс возникновения частицы в прямом смысле этого слова.
Этот вопрос чрезвычайно близко связан с проблемой строения нейтрона. Согласно взгляду на нейтрон как на сложную частицу, отрицательные электроны в ливнях могут получиться при расщеплении каждого из нейтронов на отрицательный электрон и протон, но эта схема не дает объяснения возникновению положительных электронов. Кроме того, она приводит к тому, что нужно ожидать большего количества следов протонов на фотографиях, чем наблюдается в действительности».

П. Блэкетт, Г. Оккиалини: «Существование положительных электронов в этих ливнях немедленно вызывает естественный вопрос: почему же до сих пор они ускользали от наблюдения? Ясно, что они могут обладать только ограниченной продолжительностью жизни как свободные частицы, поскольку они не встречаются ни в одном веществе при нормальных условиях.
Вполне допустимо, что они могут входить в соединение с другими элементарными частицами и образовывать устойчивые ядра, переставая при этом быть свободными. Но кажется более приемлемым, что они исчезают при взаимодействии с отрицательным электроном, выбрасывая при этом 2 кванта или более.
Этот последний механизм дан непосредственно в дираковской теории электронов, Согласно этой теории, квантовые состояния в области отрицательной кинетической энергии, представлявшие прежде непреодолимое препятствие для физической интерпретации, почти все, за немногими исключениями, заполнены отрицательными электронами. Немногие незанятые состояния ведут себя подобно обыкновенным частицам с положительной кинетической энергией и положительным зарядом. Сам Дирак думал отождествить эти «дырки» с протонами, но от этого пришлось отказаться, когда было установлено, что у этих «дырок» должна быть такая же масса, как и у отрицательных электронов. Предстоит непосредственная и важная задача экспериментального определения массы положительного электрона точными измерениями его ионизации и
. Сейчас же можно только сказать, что отсутствие разницы между ионизацией следов у отрицательных и положительных электронов при одинаковом стало достоверностью, а это косвенно служит временным доказательством равенства их масс.
По теории Дирака, положительные электроны имеют только очень короткую среднюю продолжительность жизни, пока какой-либо отрицательный электрон сверху не соскочит с легкостью вниз, в незанятое состояние. Таким образом «дырка» заполнится, и произойдет исчезновение сразу обоих − и положительного и отрицательного − электронов одновременно; при этом излучится 2 кванта энергии.
Мы чувствуем себя обязанными перед проф. Дираком не только за весьма ценное и неоднократное обсуждение этих вопросов, но также и за позволение привести результаты его вычислений по определению действительной вероятности этого процесса «аннигиляции» (исчезновения) электронов. Размеры поперечного сечения электронов при аннигиляции (в единицах площади) суть:

и γ = (1 − v2/c2) -1/2 , а v − скорость положительного электрона».

В стабильных атомных ядрах существует определенное равновесное соотношение между числом протонов Z и числом нейтронов в ядре N

где A + Z + N. Если число протонов превышает это равновесное значение, то протон p в ядре может в результате β + -распада превратиться в нейтрон n, позитрон e + и электронное нейтрино ν e

p → n + e + + ν e .

Позитроны образуются при β + -распаде атомных ядер. Впервые позитроны образующиеся при β + -распаде наблюдали Ф. Жолио и И. Кюри .
Такой распад происходит только внутри атомного ядра. Свободный протон является стабильной частицей, т.к. его масса m(p) меньше суммы масс нейтрона m(n), позитрона m(e +) и нейтрино m(ν e). Аналогичная ситуация имеет место и в случае ядер, перегруженных нейтронами относительно равновесного значения. Нейтрон n внутри ядра распадается, превращаясь в протон p, электрон e - и электронное антинейтрино e

n → p + e - + e .

Однако в отличие от протона распад свободного нейтрона возможен, т.к. масса покоя нейтрона m(n) больше суммы масс протона m(p), электрона m(e -) и электронного антинейтрино m( e). Распады протонов и нейтронов в атомном ядре привели к появлению чрезвычайно глубокой концепции физики частиц – в результате распада появляются новые частицы, которых не было в начальном состоянии . Протон, электрон и электронное антинейтрино не существуют внутри нейтрона, они образуются при β-распаде нейтрона. Эта концепция впервые была развита Э. Ферми в созданной им теории β-распада.
Процессы β‑распада, аннигиляции и рождения пар заставили по-новому осмыслить, что же такое элементарная частица. Элементарная частица перестала быть неизменным «кирпичиком» в строении материи. Возникла новая чрезвычайно глубокая концепция взаимного превращения элементарных частиц. Оказалось, что элементарные частицы могут рождаться и исчезать, превращаясь в другие элементарные частицы.

Источники позитронов

Позитроны образуются при распаде β + -радиоактивных ядер, большинство из которых получаются искусственным путем или остались на Земле как продукты нуклеосинтеза в звездах.

22 Na − источник позитронов

В качестве источника позитронов широко используется изотоп 22 Na. Период полураспада изотопа 22 Na равен 2.6 года. В 90% случаев распад происходит в результате β + -распада

22 Na → 22 Ne + e + + ν e ,

с образованием стабильного изотопа 22 Ne (рис. 3.7).
В 10% случаев распад 22 Na происходит в результате е-захвата

22 Na + e - → 22 Ne + ν e .


Рис. 3.7. Радиоактивный источник позитронов 22 Na.

Практически 100% распадов происходит на первое возбужденное состояние 22 Ne с энергией E* = 1.27 МэВ, J P = 2 + . Распад в основное состояние 22 Ne J P = 0 + составляет 0.05%. Поэтому β + -распад 22 Na практически всегда сопровождается появлением γ-кванта с энергией 1.27 МэВ.



Рассказать друзьям