Гистидин в продуктах питания. Гистидин: формула, химические реакции Аминокислота гистидин в каких продуктах содержится

💖 Нравится? Поделись с друзьями ссылкой

В организме человека она синтезируется в количестве, недостаточном для обеспечения нормальной жизнедеятельности, поэтому обязательно должна поступать с пищей. Для детей данная аминокислота является незаменимой.

Аминокислота гистидин входит в состав белков, поэтому называется протеиногенной. Она необходима для роста и развития всех органов и тканей, играет важную роль в синтезе гемоглобина – переносчика кислорода в крови, входит в активный центр многих ферментов, является предшественников важных соединений: гистамина, карнозина, ансерина.

Гистидин – гетероциклическая диаминомонокарбоновая аминокислота.

Молекула гистидина имеет один карбоксильный кислотный хвост, и две аминные головы, одна из которых включена в циклическое соединение. Имея две аминные головы, аминокислота обладает основными свойствами, т.е. в водном растворе сдвигает водородный показатель (рН) в щелочную сторону (>7). Аминокислота обладает высокогидрофильными свойствами, т.е. хорошо растворяется в воде. В глобулярных белках располагается преимущественно на поверхности.

Гистидин называют суперкатализатором по его значению в ферментативном катализе, т.к. он входит в активный центр многих ферментов.

Биологическая потребность .

Суточная потребность в гистидине составляет для взрослого человека 1,5-2 г., для грудных детей: 34 мг\кг. веса, т.е. 0,1 – 0,2 г.

Биосинтез гистидина

Биосинтез гистидина очень сложен, это каскад из 9 реакций, неудивительно, что организм предпочитает получить аминокислоту в готовом виде. Начальными соединениями для синтеза гистамина выступают: аденозин-трифосфорная кислота (АТФ) и 5-фосфорибозил-1-пирофосфат (ФРПФ).

АТФ – это та горючка, на которой работает организм, соединение, поставляющее энергию. Она имеет сложное строение и состоит из пуринового основания аденина, пятичленного сахара рибозы и трех хвостов – остатков фосфорной кислоты.

5-фосфорибозил-1пирофосфат (ФРПФ) – соединение, образующееся из рибозо-5-фосфата, пятичленного сахара рибозы с присоединенным хвостом фосфорной кислоты. Рибоза-5-фосфат образуется, как конечный продукт пентозо-фосфатного цикла, каскада реакций превращения глюкозы – обычного сахара.

Рибозо-5-фосфат присоединяет к себе два фосфорных хвоста из молекулы АТФ и превращается в необходимый для синтеза гистидина 5-фосфорибозил-1-пирофосфат (ФРПФ). Таким образом, начальными продуктами синтеза являются: сахар глюкоза и 2 молекулы АТФ.

Синтез молекулы гистидина начался. Конвейер заработал. К молекуле 5-фосфорибозил -1- пирофосфата (ФРПФ) присоединяется молекула АТФ.

При этом от молекулы ФРПФ отрывается пирофосфатный хвост, а пуриновое ядро азотистого основания АТФ присоединяется к углероду пятичленного сахара рибозы в молекуле ФРПФ.

На втором этапе от образовавшегося монстра отщепляются еще два фосфорных остатка, которые на начальном этапе принадлежали АТФ.

Образуется соединение фосфорибозилАМФ.

Третий этап. Гидролиз, т.е. присоединение воды к пуриновому ядру, принадлежащему изначально молекуле АТФ. Углеродное кольцо разрывается, кислород воды присоединяется к углероду, а пара водородов отходит к соседним азотам, каждому по водороду, чтобы никому обидно не было.

Четвертый этап. Кольцо пятичленного сахара рибозы размыкается, колечко рибозы разворачивается, при этом отщепляется молекула воды.

На пятом этапе происходит метаморфоза. В реакцию вступает глутамин , который отдает азотистый остаток, а забирает гидроксильный остаток — ОН, превращаясь в глутаминовую кислоту (глутамат) .

Глутаминовая кислота и глутамин – два соединения, постоянно обменивающиеся азотными головами. Аммиак, образующийся при работе, захватывается глутаминовой кислотой, которая превращается в глутамин – транспортную форму переноса азотистой группы. Глутамин используется в разнообразных реакциях синтеза, вот и для образования имидазольного кольца гистидина пригодился.

Реакция обмена азотистой головой глутамина с глутаминовой кислотой выглядят так:

Соединение, идущее на синтез гистидина, перегруппировывается, от него отщепляется корона – рибонуклеотид — 5-аминоимидазол-4-карбоксамид – промежуточный продукт синтеза АТФ. На синтез АТФ оно и направится.

Другой продукт расщепления содержит пять атомов углерода из первоначального скелета сахара рибозы, один атом углерода и один атом азота, отщепленные от первоначально вступившей в реакцию молекулы АТФ, и один атом азота, принесенный глутамином. Одновременно замыкается имидазольное кольцо.

В результате получается заготовка для гистидина.

На шестом этапе отщепляется еще одна молекула воды

Седьмой этап: молекула глутаминовой кислоты жертвует свою аминную голову, превращаясь в α-кетоглутарат. Аминная голова глутаминовой кислоты (глутамата) приращивается к заготовке гистидина.

Соединение теряет фосфорный хвост, превращаясь в спирт

На заключительном этапе образовавшийся спирт окисляется молекулой НАД, и спирт превращается в аминокислоту.

Весь цикл превращения выглядит так:

Веществами – предшественниками для синтеза гистидина выступают:

  1. Глюкоза, которая в пентозо-фосфатном цикле превращается в фосфорибозил-пирофосфат (ФРПФ). Углеродный скелет сахара станет углеродным скелетом аминокислоты
  2. Две молекулы АТФ, одна жертвует фосфорным хвостом для синтеза ФРПФ, другая отдает пуриновое основание для синтеза имидазольного кольца гистидина
  3. Глутаминовая кислота, которая расходуется очень экономно: первоначально молекула глутаминовой кислоты захватывает аммиак, превращаясь в глутамин, необходимый для синтеза гистидина. В ходе реакции глутамин отдает азотную группу, вновь превращаясь в глутаминовую кислоту, которая может быть использована для дезаминирования, дабы отдать азотную группу заготовке гистидина.
  4. Две молекулы НАД для окисления спирта в аминокислоту.

Другая схема того же каскада реакций:

На всех этапах синтеза задействованы ферменты:

  1. АТФ-фосфорибозил трансфераза
  2. Пирофосфогидролаза
  3. Фосфорибозил АМФ циклогидролаза
  4. Фосфорибозил формимино-5-аминоимидазол-4-карбоксамид рибонуклеотид изомераза
  5. Глутамин амидо трансфераза
  6. Имидазолглицерол – 3 – фосфатдегидратаза
  7. Гистидинол фосфат амино трансфераза
  8. Гистидинол фосфат фосфатаза
  9. Гистидинол дегидрогеназа

(бета-имидазолил-альфа-аминопропионовая кислота, C 6 H 9 N 3 O 2) - гетероциклическая аминокислота с преобладанием основных свойств, содержится почти во всех белках.

Структурная формула:

В крови и тканях человека и животных, в растительных организмах находится в составе белков, а также в свободном виде и в виде некоторых производных, гл. обр. пептидов - карнозина (см.) и ансерина (см.). В плазме крови человека содержится ок. 1,7 мг% Г.; в довольно больших количествах (св. 100 мг в сутки) Г. выделяется с мочой (содержание Г. в крови и выделение его с мочой повышаются при беременности). Хотя необходимость присутствия Г. в пище человека не доказана и его относят к заменимым аминокислотам, он не заменим в питании крыс, собак, мышей, кур и многих других животных. В Neurospora crassa и других грибах содержится бетаин Г.- герцинин и его тиоловое производное эрготионеин (см. Бетаины). Эти соединения обнаружены также в крови человека и ряда животных, однако они, по-видимому, не синтезируются в животном организме и попадают в него с пищей.

Г. впервые был получен А. Косселем в 1896 г. из гидролизата протамина осетра - стурина и в том же году Гедином (S. Hedin)- из гидро-лизата казеина. Г. может быть получен и из гидролизатов других белков. Много Г. содержит глобин (белковая часть гемоглобина), благодаря чему богатым источником для получения Г. служит кровь.

Г. кристаллизуется в виде бесцветных пластинок, хорошо растворим в воде, плохо - в спирте, нерастворим в эфире и хлороформе, t°пл 277° (с разложением). Изоэлектрическая точка Г. находится при pH 7,6. Природный L-гистидин, [a] 20 D -39,3, имеет слегка горьковатый вкус.

Гистидин как препарат

Histidinum выпускается в виде гистидина гидрохлорида (Histidini hydrochloridum; син.: Cloristin, Gerulcin, Herulcin, Histifan, Laristin, Laristidin, Stellidin, Ulcostidine). Хорошо растворим в воде. Быстро всасывается при любом способе введения.

Г. несколько повышает секреторную и моторную функцию жел.-киш. тракта, что, вероятно, связано с образованием из Г. гистамина. Г. обнаруживает свойства адаптогена: при высоком содержании в пище уменьшает отрицательное влияние на животных высокой температуры, пониженного атмосферного давления, ионизирующей радиации; одновременно повышается активность ферментов, участвующих в метаболизме Г.

Применяют Г. для лечения при гепатитах, хрон, гастритах с повышенной кислотностью, при язвенной болезни желудка и двенадцатиперстной кишки. Вводят внутримышечно по 5 мл 4% р-ра ежедневно. Курс лечения 20-30 инъекций, после чего назначают по 5-6 инъекций каждые 2-3 мес. Г. улучшает самочувствие, сон, устраняет болевой синдром и диспептические явления; у значительной части больных наблюдается регенерация слизистой оболочки желудка или рубцевание язвы. При паренхиматозном гепатите аналогичный курс лечения ускоряет выздоровление, быстрее нормализует пигменто-, протромбинообразовательную и синтетическую функции печени. Г. используют в комплексном противоревматическом лечении. У больных атеросклерозом Г. улучшает показатели липидного обмена. Побочного действия препараты Г. обычно не оказывают. Изредка возникают быстро проходящая слабость, бледность, боли в подложечной области.

Форма выпуска: ампулы по 5 мл 4% р-ра; сохраняют в защищенном от света месте.

Библиография Браунштейн А. Е. Биохимия аминокислотного обмена, М., 1949, библиогр.; Визир А. Д. Применение гистидина при атеросклерозе, Врач, дело, № 7, с. 129, 1964; Майстер А. Биохимия аминокислот, пер. с англ., М., 1961; Мардашев G. Р. Биохимические проблемы медицины, с. 109, М., 1975; Шелыгина H. М. Влияние гистидина на показатели сосудистой проницаемости при ревматизме, Казанск. мед. журн., № 4, с. 19, 1968; В го qui st H. P. a. T г u p i n J. S. Amino acid metabolism, Ann. Rev. Biochem., v. 35, p. 231, 1966, bibliogr.; Histidine, Meth. Enzymol., v. 17B, Sect. 1, p. 1, N. Y. - L., 1971; Meister A. Biochemistry of the amino acids, v. 1 - 2, N. Y. - L., 1965; Truff a-Bachi P. a. Cohen G. N. Amino acid metabolism, Ann. Bev. Biochem., v. 42, p. 113, 1973, bibliogr.

И. Б. ЗбарекиЙ; И. В. Комиссаров (фарм.).

Введение

Таблица 1. Общая информация о гистидине
Тривиальное название Гистидин / Histidine
Трехбуквенный код His
Однобуквенный код H
Название по IUPAC L-α-амино-β-имидазолилпропионовая кислота
Структурная формула
Брутто-формула C₆H₉N₃O₂
Молярная масса 155,16 г/моль
Химические характеристики гидрофильный, протонируемый, ароматический
PubChem CID 6274
Заменимость Незаменимая
Кодируется CAU и CAC

Гистидин представляет собой альфа-аминокислоту с имидазольной функциональной группой. Гистидин был открыт немецким врачом Косселем Альбрехтом в 1896 году. Изначально полагалось, что эта аминокислота незаменима только для младенцев, однако в ходе долгосрочных исследований было установлено, что она также важна и для взрослых людей. Для человека суточная потребность в гистидине 12 мг на кг веса.
Вместе с лизином и аргинином образует группу основных аминокислот. Входит в состав многих ферментов, является предшественником в биосинтезе гистамина. В большом количестве содержится в гемоглобине.
Кольцо имидазола у гистидина является ароматическим при всех значениях рН. Оно содержит шесть пи-электронов: четыре из двух двойных связей, и два из пары азота. Оно может формировать пи-связи, однако это осложняется его положительным зарядом. При 280 нм оно не способно поглощать, однако в нижней части УФ-диапазона оно поглощает даже больше, чем некоторые аминокислоты.
Гистидином богаты такие продукты как тунец, лосось, свиная вырезка, говяжье филе, куриные грудки, соевые бобы, арахис, чечевица, сыр, рис, пшеница.
Было показано, что добавки гистидина вызывают быстрое выделение цинка у крыс при увеличении скорости экскреции от 3 до 6 раз .

Биохимия

Рисунок 1.

Предшественником гистидина, как и триптофана, является фосфорибозилпирофосфат. Путь синтеза гистидина пересекается с синтезом пуринов.
Имидазольная боковая цепь гистидина является общим координирующим лигандом в металлопротеинах и частью каталитических центров у определенных ферментов. В каталитических триадах основный азот гистидина используется для получения протона из серина, треонина или цистеина, и активации его в качестве нуклеофила. Гистидин используется для быстрого трансфера протонов, абстрагируя протон с его основным азотом, и создавая положительно заряженные промежуточные вещества, а затем используя другую молекулу, буфер, чтобы извлечь протон из азотной кислоты. В карбоангидразе гистидинный протонный трансфер используется для быстрого транспортирования протонов из цинк-связанной молекулы воды, чтобы быстро регенерировать активные формы фермента. Гистидин также присутствует в гемоглобиновых спиралях Е и F. Гистидин помогает стабилизировать оксигемоглобин и дестабилизировать CO-связанный гемоглобин. В результате, в гемоглобине связывание окиси углерода сильнее только лишь в 200 раз, по сравнению с 20 000 раз в свободной геме.
Некоторые аминокислоты могут быть превращены в промежуточные соединения в цикле Кребса. Углероды из четырех групп аминокислот образуют промежуточные вещества цикла – альфа-кетоглютарат (альфа-КТ), сукцинил-КоА, фумарат и оксалоацетат. Аминокислоты, образующие альфа-КГ - глутамат, глутамин, пролин, аргинин и гистидин. Гистидин преобразуется в формиминоглютамат (FIGLU).
Аминокислота является предшественником гистамина и биосинтеза карнозина.

Рисунок 2.

Гистидин входит в состав активных центров множества ферментов, является предшественником в биосинтезе гистамина (см. рис.2). Фермент гистидин аммиаклиазы преобразует гистидин в аммиак и уроканиновую кислоту. Недостаток этого фермента наблюдается при редком метаболическом расстройстве гистидинемии. В антинобактерии и нитчатых грибах, таких как Neurospora сrаssа, гистидин может быть преобразован в антиоксидант эрготионеин .

Основные функции :
синтез белков;
поглощение ультрафиолетовых лучей и радиации;
производство красных и белых кровяных телец;
выработка гистамина;
выделение эпинефрина;
секреция желудочного сока;
антиатеросклеротическое,
гиполипидемическое действие;
выведение солей тяжелых металлов;
здоровье суставов.

Системы и органы :
- органы ЖКТ;
- печень;
- надпочечники;
- костно-мышечная система;
- нервная система (миелиновые оболочки нервных клеток).

Последствия дефицита :
- ослабление слуха;
- задержка умственного и физического развития;
- фибромиалгия.

Болезни :
- гистидинемия.

Последствия избытка : Избыток гистидина может способствовать возникновению дефицита меди в организме.

Физико-химические свойства


Рисунок 3.

Имидазольная боковая цепь гистидина имеет рКа около 6,0. Это означает, что при физиологически соответствующих значениях рН, относительно небольшие изменения в рН могут изменять средний заряд цепи. При рН ниже 6 имидазольное кольцо является в основном протонированным, как в уравнении Хендерсона-Хассельблаха. При протонировании кольцо имидазола имеет две NH связи и положительный заряд. Положительный заряд равномерно распределяется между двумя атомами азота. На рис.3 представлена кривая титрования гистидина (файл Excel с вычислениями). Из кривой титрования следует, что остовная карбоксильная группа имеет рК a1 =1,82, протонированная аминогруппа амидазола — рК a2 = 6,00, а остовная протонированная аминогруппа — рК a3 =9,17. При рН = 7,58 гистидин существует в виде биполярного иона (цвиттер-иона), когда суммарный электрический заряд молекулы равен 0. При этом значении рН молекула гистидина электронейтральна. Такое значение рН называют изоэлектрической точкой и обозначают рI. Изоэлектрическая точка рассчитывается как среднее арифметическое двух соседних значений рК a .
Для гистидина: рI= ½ *c(рК a2 + рК a3) = ½ * (6,00 + 9,17) = 7,58 .

Рисунок 4.

На рис.4 показаны разные формы существования молекулы гистидина. Это стоит понимать так: при определенном рК a появляется соответствующая форма, и затем процент ее содержания постепенно увеличивается.

Белок-белковые контакты

Вы увидите (по порядку):
1) шаро-стержневая модель гистидина (до нажатия каких-либо кнопок)
2) общий вид пептидной связи на примере гистидина и глицина (PDB ID:1W4S, 198 и 199)(после нажатия "Запустить")
3) общий вид остовной водородной связи на примере гистидина и валина (PDB ID:1W4S, 974:A и 964:A) (после нажатия "Продолжить")
4) водородная связь с участием боковой цепи (PDB ID:5EC4, 119 и 100) (здесь и далее после следующих нажатий "Продолжить")
5) водородная связь с участием боковой цепи (PDB ID:5EC4, 93 и 72)
6) водородная связь с участием боковой цепи (PDB ID:5HBS, 48 и 63)
7) водородная связь с участием боковой цепи (PDB ID:5HBS, 137 и 135)
8) водородная связь с участием боковой цепи (PDB ID:5E9N, 219 и 284)
9) водородная связь с участием боковой цепи (PDB ID:3X2M, 112 и 14)
10) солевой мостик (PDB ID:1us0, 240 и 284)
11) солевой мостик (PDB ID:1US0, 187 и 185)
12) возможное стэкинг-взаимодействие (PDB ID:5E9N, 137 и 7)
13) возможное стэкинг-взаимодействие (PDB ID:5E9N, 10 и 50)

Гистидин способен образовывать не только водородные связи с участием остова, но и с участием боковой цепи. Кроме того, из-за полярности молекулы возможно образование солевых мостиков с отрицательно заряженными аминокислотами (схематично показаны желтым). Также ароматический гистидин может вступать в стэкинг-взаимодействия с другими ароматическими аминокислотами. В гидрофобные взаимодействия гистидин не вступает из-за своей гидрофильности.
Белок–белковые взаимодействия лежат в основе многих физиологических процессов, связанных с ферментативной активностью и ее регуляцией, электронным транспортом и др. Процесс образования комплекса двух белковых молекул в растворе можно условно разделить на несколько стадий:
1) свободная диффузия молекул в растворе на большом расстоянии от других макромолекул,
2) сближение макромолекул и их взаимная ориентация за счет дальнодействующих электростатических взаимодействий с образованием предварительного (диффузионно-столкновительного) комплекса,
3) трансформация предварительного комплекса в финальный, т. е. в такую конфигурацию, в которой осуществляется биологическая функция.
Альтернативно диффузионно-столкновительный комплекс может распасться без образования финального комплекса. При трансформации предварительного комплекса в финальный происходят вытеснение молекул растворителя из белок-белкового интерфейса и конформационные изменения самих макромолекул. Важную роль в этом процессе играют гидрофобные взаимодействия и образование водородных связей и солевых мостиков .

Факторы, регулирующие белок-белковые взаимодействия:

ДНК-белковые контакты

Рисунок 5. Взаимодействие гистидина и ДНК (PDB ID: 5B24, 31:G.NE2 и 112:I.OP2)

Устойчивость нуклеопротеидных комплексов обеспечивается нековалентным взаимодействием. У различных нуклеопротеидов в обеспечение стабильности комплекса вносят вклад различные типы взаимодействий.
На рис. 5 показано взаимодействие гистидина и фосфатной группы остова ДНК. Это взаимодействие обусловленно положительным зарядом гистидина. Было найдено множество подобных взаимодействий (все образованы по единому принципу, поэтому смысла приводить их все нет).

Примечания и источники:

Работа выполнялась вместе с Тепловой Анастасией //
Гистидин // LifeBio.wiki.
Компьютерные исследования и моделирование, 2013, Т. 5 No 1 С. 47−64 // С.С.Хрущевa, А.М.Абатурова и другие // Моделирование белок-белковых взаимодействий с применением программного комплекса многочастичной броуновской динамики ProKSim.
Белок-белковые взаимодействия // Wikipedia.
Нуклеопротеиды //

Гистидин – аминокислота, получаемая из протеинов в результате гидролиза. В наивысшей концентрации (почти 8,5 процента от общего количества) содержится в гемоглобине. Впервые был выделен из белков в 1896 году.

Что такое гистидин

Общеизвестно: когда мы едим мясо, мы потребляем , а в составе белков – аминокислоты. Гистидин – одна из наиболее значимых для поддержания жизни на Земле аминокислот. Это протеиногенное вещество участвует в образовании белков и влияет на ряд метаболических реакций в организме.

Все являются строительными блоками для протеинов. После переваривания белка организм получает отдельные аминокислоты. Часть из них – заменимые (организм способен производить их) и незаменимые (могут быть получены только через диету). Гистидин в этом плане является уникальным веществом – аминокислотой заменимой и незаменимой одновременно. Или как принято ее назвать – полузаменимой.

Наивысшую потребность в этой аминокислоте ощущают младенцы, так как гистидин необходим им в качестве агента роста. Малыши получают его через грудное молоко либо из детского питания. Также это вещество незаменимо для подростков и лиц после тяжелых болезней. Несбалансированное питание и частые стрессы ведут к дефициту аминокислоты, что может проявляться замедлением или полной остановкой роста у детей и ревматоидным артритом у взрослых.

Функции гистидина

Одна из наиболее ярких характеристик гистидина – возможность трансформироваться в другие вещества, в том числе гистамин и гемоглобин. Также участвует в ряде метаболических реакций, способствует снабжению кислородом органов и тканей. Кроме того, помогает выводить из организма тяжелые металлы, восстанавливать ткани и укреплять иммунитет.

Другие функции гистидина:

  • регулирование кислотности крови;
  • ускорение заживления ран;
  • координирование механизмов роста;
  • естественное восстановление организма.

Без гистидина все процессы, связанные с ростом, остановятся, а регенерация поврежденных тканей станет невозможной. Также последствием отсутствия гистидина в организме являются воспаления кожи и слизистых покровов тела, а восстановление после хирургических операций затянется на более долгое время. Кроме того, гистидин обладает терапевтическим эффектом при воспалениях, а значит, является действенным лекарством при артритах.

Помимо уже названных полезных свойств, эта аминокислота обладает еще одной не менее значимой способностью – помогает формировать миелиновые оболочки нервных клеток (их повреждение вызывает болезни Паркинсона и Альцгеймера, а также другие дегенеративные заболевания). Также эта полузаменимая аминокислота участвует в синтезе красных и белых кровяных клеток (эритроцитов и лейкоцитов), чем опять-таки способствует укреплению иммунитета. Ну и наконец, важно сказать, что гистидин оберегает организм от радиационных излучений.

Хотя профилактический и терапевтический потенциал гистидина еще не изучен до конца, но ряд исследований уже доказал эффективность аминокислоты. В частности, известно, что это полезное вещество помогает снизить артериальное давление. Расслабляя сосуды, предотвращает гипертонию, атеросклероз, инфаркт и другие кардиологические болезни. Уже доказано, что ежедневное потребление этого вещества снижает риск сердечно-сосудистых заболеваний почти на 61 процент.

Еще одна сфера применения гистидина – нефрология. Аминокислота положительно сказывается на состоянии лиц с хронической почечной недостаточностью (особенно в преклонном возрасте).

Кроме того, это вещество показало свою эффективность при лечении гепатитов, язвы желудка, крапивницы, артрита и СПИДа.

Суточные нормы

Терапевтические дозы гистидина колеблются в пределах от 0,5 до 20 г в сутки.

Но даже употребление 30 г аминокислоты в день не вызывает побочных эффектов. Так, во всяком случае, убеждают исследователи. Но сразу уточняют: при условии, что прием препарата не длится долго. Но все же наиболее адекватной называют дозировку в 1-8 г в сутки. Более точно индивидуальную минимальную потребность в аминокислоте можно опередить по формуле: 10-12 мг вещества – на 1 кг веса тела. Гистидин в виде лучше принимать на голодный желудок. Так его действие более эффективно.

Сочетание с другими веществами

Недавние исследования показали, что комбинация гистидина и цинка – эффективное средство против простудных заболеваний. Кроме того, цинк способствует более легкому всасыванию аминокислоты. Кроме того, эксперимент при участии 40 человек показал, что «коктейль» из и гистидина сводит к минимуму продолжительность болезней, вызванных вирусами или бактериями. Простуда на фоне аминокислоты длится в среднем на 3-4 дня меньше.

Особенности приема

Гистидин в виде биодобавки полезен людям с артритом, анемиями или после операций.

Лицам с биполярными расстройствами, аллергиями, астмой и разного рода воспалениями лучше избегать этого препарата. Также с осторожностью к добавкам, содержащим аминокислоту, стоит относиться женщинам во время беременности и лактации, а также людям с дефицитом фолиевой кислоты.

Хронические заболевания, травмы и стрессы увеличивают потребность в гистидине. В таком случае удовлетворить потребности организма исключительно через продукты довольно сложно. Но проблемы решается с помощью биоактивных добавок. Нарушение пищеварения и пониженная кислотность также являются причиной более интенсивного приема вещества.

Нарушение метаболизма гистидина проявляется редким генетическим заболеванием гистидинемией. У таких больных отсутствует фермент, расщепляющий аминокислоту. В результате в моче и крови уровень аминокислоты резко повышается.

Опасности дефицита

Как показывают исследования, люди с ревматоидным артритом обычно имеют пониженный уровень гистидина. Дефицит аминокислоты у младенцев часто вызывает экзему. Кроме того, недостаточное потребление вещества ведет к катаракте, а также провоцирует болезни желудка и двенадцатиперстной кишки. Известно, что гистидин влияет на иммунную систему, по этой причине дефицит аминокислоты усиливает аллергии, делает организм более склонным к инфекциям и воспалительным процессам. Недостаточное потребление вещества крайне негативно сказывается на здоровье детей и подростков во время интенсивного роста и формирования организма.

Также дефицит аминокислоты может «напоминать» о себе задержками в развитии, сниженным либидо, ухудшением слуха и фибромиалгией.

Опасен ли избыток

Информации о возможной токсичности гистидина нет. Но все же потребление аминокислоты в особо высоких дозах может вызвать аллергические или астматические реакции, спровоцировать дефицит меди и цинка, а концентрацию холестерина в крови, наоборот, повысить. У мужчин переизбыток гистидина вызывает преждевременные эякуляции.

Гистидин в пище

Удовлетворить суточную потребность в аминокислоте помогут правильно подобранные продукты. К примеру, только 100 г бобов обеспечивают более чем 1-граммовой порцией гистидина (1097 мг), столько же куриного филе обогатят организм дополнительным 791 мг вещества, а аналогичная порция говядины даст примерно 680 мг гистидина. Что касается рыбной продукции, то примерно 550 мг аминокислоты содержится в 100-граммовом куске лосося. А среди растительной пищи наиболее питательными являются зародыши пшеницы. В 100 г продукта – в пределах 640 мг аминокислоты.

Однако важно отметить, что названные цифры – приблизительные, поскольку насыщенность пищи полезными веществами зависит от многих факторов. И немаловажное значение имеют условия хранения продукта. Если речь идет о гистидине, то для сохранения его максимального количества в горохе, грецких орехах или кукурузе, продукты необходимо держать в герметических условиях, подальше от прямых солнечных лучей и кислорода. В противном случае гистидин быстро разрушается.

Для поддержания баланса аминокислоты во взрослом организме обычно хватает того вещества, которое синтезируется в печени из других аминокислот. А вот детям в период интенсивного роста и некоторым другим группам людей важно дополнять аминозапасы из правильно подобранной пищи.

Протеиновые продукты содержат в себе, если не все, то, по крайней мере, большинство необходимых человеку аминокислот. Продукты животного происхождения содержат в себе, так называемые, полноценные белки, поэтому являются более полезными в плане снабжения аминовеществами. В растительной пище содержатся только некоторые из необходимых. Хотя пополнить запасы гистидина нетрудно, тем более что и организм способен производить его, но все же бывают случаи дефицита вещества. Избежать снижения концентрации поможет употребление продуктов из разных групп.

Высокая концентрация гистидина есть в мясе, рыбе, молочных продуктах, некоторых злаках (рис, рожь, пшеница). Другие источники аминокислоты: морепродукты, бобы, яйца, гречка, цветная капуста, картофель, грибы, бананы, цитрусовые, дыня.

Обеспечить суточную норму аминокислоты можно из блюд, приготовленных из говядины, свинины, баранины и домашней птицы, разных сортов твердого сыра, соевых продуктов, а также рыбы (тунец, лосось, форель, скумбрия, палтус, морской окунь). Из группы семян и орехов важно потреблять миндаль, кунжут, арахис, семена подсолнечника, фисташки. А из молочной продукции – натуральные йогурты, молоко и сметану. В категории злаков много гистидина содержится в диком рисе, просе и гречке.

Гистидин – важная для здоровья аминокислота. Она необходима для роста и восстановления тканей, производства клеток крови и нейротрансмиттера гистамина. Это вещество способно надежно защитить ткани от повреждений радиацией или тяжелыми металлами. Поэтому важно следить за своим рационом, дабы обеспечить организм достаточным количеством аминокислоты. Продукты, богатые веществом, необходимы детям и подросткам, а также лицам, после травм или операций. Эта полузаменимая аминокислота уже доказала свою эффективность для поддержания здоровья человека. А как обеспечить себя этим полезным веществом, вы уже знаете.

Брутто-формула

C 6 H 9 N 3 O 2

Фармакологическая группа вещества Гистидин

Нозологическая классификация (МКБ-10)

Код CAS

71-00-1

Характеристика вещества Гистидин

Прозрачные бесцветные кристаллы или белый кристаллический порошок слабокислого вкуса. Растворим в воде, очень мало - в этаноле.

Фармакология

Фармакологическое действие - гиполипидемическое, антиатеросклеротическое .

Незаменимая аминокислота. В организме подвергается декарбоксилированию с образованием гистамина. Вызывает спазм гладкой мускулатуры бронхов и ЖКТ , расширение капилляров, застой крови в капиллярах и увеличение проницаемости их стенок, отек окружающих тканей, снижение АД . Рефлекторно возбуждает мозговое вещество надпочечников, способствует выделению эпинефрина, сужению артериол, учащению сердечных сокращений.

Имеются данные о влиянии на секрецию желудочного сока и возможности использования в комплексной терапии язвенной болезни желудка и двенадцатиперстной кишки.

Применение вещества Гистидин

Гепатит, атеросклероз (комплексная терапия).

Противопоказания

Гиперчувствительность, бронхиальная астма, артериальная гипотензия, органические заболевания ЦНС .



Рассказать друзьям