Физиологические системы организма человека и их функции. Анатомия человека Что такое физиологическая система органов

💖 Нравится? Поделись с друзьями ссылкой

Орган это обособленная часть организма, имеющая определенную форму, строение, расположение и выполняющая определенные специфические функции. Орган образован системой тканей, в которой преобладает одна (две) из них. Группа органов, связанных друг с другом анатомически, имеющих общий план строения, единство происхождения и выполняющих определенную физиологическую функцию, образуют систему органов .

В организме человека обычно выделяют следующие системы органов: нервную, эндокринную, опорно-двигательную, кровеносную (сердечно-сосудистую), дыхательную, пищеварительную, выделительную, покровную, половую. Иногда из сердечно-сосудистой системы отдельно выделяют лимфатическую систему.

Опорно-двигательная система . Состоит из пассивной части (скелета) и активной части (мышц). Кроме опорной и двигательной, эта система выполняет защитную функцию (защищает от внешних механических воздействий ЦНС и внутренние органы) и кроветворную функцию (орган кроветворения – красный костный мозг).

Кровеносная система состоит из сердца и сосудов. Функция этой системы – обеспечение движения крови по сосудам. Это осуществляется, в первую очередь, за счет сокращений сердца.

Сосуды, по которым кровь течет от сердца, называются артериями, а по которым кровь течет к сердцу – венами. Из сердца выходят крупные артерии, они делятся на все более мелкие и переходят в капилляры, а те, в свою очередь, переходят в мелкие вены, объединяющиеся во все более крупные, которые впадают в сердце.

Кровь (жидкая соединительная ткань) выполняет транспортную и защитную функции. Транспортная функция заключается в том, что кровь, во-первых, переносит к тканям кислород, питательные вещества, биологически активные вещества, различные ионы и т.д. и, во-вторых уносит от тканей отходы обмена веществ, например углекислый газ. Защитная функция состоит, во-первых, в обеспечении иммунитета (борьбы с чужеродными веществами, попадающими в организм, а также бактериями, вирусами и т.п.) и, во-вторых, в обеспечении свертывания крови, благодаря чему прекращается кровотечение при травмах сосудов.

Лимфатическая система , состоящая из лимфатических сосудов и лимфатические узлов, обеспечивает движение лимфы. В отличие от кровеносной лимфатическая система начинается мелкими замкнутыми капиллярами, которые собираются во все более крупные. Два самых крупных лимфатических протока впадают в вены кровеносной системы. Лимфа, также как и кровь, принимает участие в создании иммунитета. Кроме того, главным образом через лимфу происходит отток тканевой жидкости.

Кровь, лимфа и тканевая жидкость образуют внутреннюю среду организма, основное свойство которой состоит в поддержании постоянства собственных физико-химических особенностей (гомеостаза). Тканевая (межклеточная) жидкость выделяется главным образом из крови, затем попадает в лимфатическую систему, а из нее снова в кровь.


Дыхательная система . Состоит из дыхательных путей (носовая полость, носоглотка, гортань, трахея, бронхи) и легких. Основная функция – доставка кислорода в кровеносную систему и удаление из организма углекислого газа. Кровью кислород переносится к тканям, где участвует в клеточном дыхании (см. выше). Таким образом, дыхательная система необходима для того, чтобы в клетках могла выделяться и запасаться энергия.

Пищеварительная система . Состоит из ротовой полости, глотки, пищевода, желудка и кишечника, а также пищеварительных желез (слюнных, кишечных, поджелудочной, печени). Основные функции – механическая и химическая переработка пищи, всасывание продуктов ее переваривания в кровь и лимфу, удаление из организма непереваренных остатков.

Питательные вещества (жиры, белки, углеводы) необходимы для синтеза органических молекул при росте и обновлении организма, а также для получения энергии в процессе клеточного дыхания. Однако эти вещества обычно представляют собой очень крупные молекулы, которые не могут проникнуть через стенки кишечника в кровь. Поэтому в процессе пищеварения при помощи ферментов крупные молекулы расщепляются на более мелкие, которые и попадают в кровь и лимфу. Далее они переносятся в ткани и используются в процессах ассимиляции и диссимиляции. Кроме жиров, белков и углеводов с пищей в организм попадают витамины и минеральные вещества. Витамины – это органические соединения различной химической природы, не синтезирующиеся в организме, но необходимые для выполнения целого ряда важнейших функций. Витамины обладают высокой биологической активностью, поэтому нужны в очень небольших количествах.

Выделительная система . В процессе метаболизма в организме образуется ряд отходов обмена веществ (уже ненужных и даже вредных соединений). Все они удаляются из организма через различные системы органов. Через дыхательную систему удаляется углекислый газ, из кишечника выделяются непереваренные остатки пищи, через потовые железы в коже вместе с водой удаляются конечные продукты белкового обмена (мочевина, мочевая кислота, аммиак).

В узком смысле под выделительной системой имеются в виду почки и связанные с ними органы (мочеточники, мочевой пузырь, мочеиспускательный канал). В почках образуется моча, представляющая собой водный раствор различных солей, конечных продуктов белкового обмена, чужеродных веществ, гормонов, витаминов. Все эти вещества почечный эпителий извлекает из крови, движущейся по кровеносным сосудам, густо пронизывающим почки.

Покровная система представлена кожным покровом. Функции кожи очень многочисленны. Она защищает организм от вредных воздействий среды, принимает участие в терморегуляции, выделяет конечные продукты обмена веществ и воду. Помимо этого в коже находится множество чувствительных образований – рецепторов, воспринимающих тактильные, температурные и болевые раздражения.

Половая система обеспечивает репродукцию организма. В половых железах созревают яйцеклетки (в яичниках) и сперматозоиды (в семенниках). Половые железы являются также железами внутренней секреции, в которых синтезируются половые гормоны.

Нервная и эндокринная системы осуществляют управляющие функции, т.е. стоят над всеми остальными системами организма. При этом нервная система обеспечивает связь с внешней средой, регуляцию и координацию деятельности внутренних органов. Высшие отделы центральной нервной системы (ЦНС) являются анатомической основой для реализации наиболее сложных психических функций. Эндокринная система осуществляет гуморальную (с помощью гормонов) регуляцию функций организма (см. следующий раздел).

Физиологические системы организма - костная (скелет человека), мышечная, кровеносная, дыхательная, пищеварительная, нервная, система крови, желез внутренней секреции, анализаторов и др. Кровь жидкая ткань, циркулирующая в кровеносной системе и обеспечивающая жизнедеятельность клеток и тканей организма в качестве органа и физиологической системы. Она состоит из плазмы (5560%) и взвешенных в ней форменных элементов: эритроцитов, лейкоцитов, тромбоцитов и других веществ (4045%) и имеет слабощелочную реакцию (7,36 РН). Общее количество крови составляет 78% массы тела человека.


Сердечно - сосудистая система. Сердце главный орган кровеносной системы представляет собой полый мышечный орган, совершающий ритмические сокращения, благодаря которым происходит процесс кровообращения в организме. Сердце автономное, автоматическое устройство.


Сердечно - сосудистая система состоит из большого и малого круга кровообращения. Левая половина сердца обслуживает большой круг кровообращения, правая – малый. Пульс - волна колебаний, распространяемая по эластичным стенкам артерий в результате гидродинамического удара порции крови, выбрасываемой в аорту под давлением при сокращении левого желудочка. Частота пульса соответствует частоте сокращений сердца.. Урежение частоты пульса увеличивает абсолютное время паузы для отдыха сердца и для протекания процессов восстановления в сердечной мышце.



Дыхательная система. Дыхательная система включает в себя носовую полость, гортань, трахею, бронхи и лёгкие. В процессе дыхания из атмосферного воздуха через альвеолы легких в организм постоянно поступает кислород, а из организма выделяется углекислый газ.


Процесс дыхания – это целый комплекс физиологических и биохимических процессов, в реализации которых участвует не только дыхательный аппарат, но и система кровообращения. Углекислый газ из клеток тканей поступает в кровь, из крови – в лёгкие, из лёгких – в атмосферный воздух.


Пищеварительная система. Пищеварительная система состоит из ротовой полости, слюнных желёз, глотки, пищевода, желудка, тонкого и толстого кишечника, печени и поджелудочной железы. В этих органах пища механически и химически обрабатывается, перевариваются поступающие в организм пищевые вещества и всасываются продукты пищеварения.


Выделительная система. Выделительную систему образуют почки, мочеточники и мочевой пузырь, которые обеспечивают выделение из организма с мочой вредных продуктов обмена веществ (до 75%). Кроме того, некоторые продукты обмена выделяются через кожу, легкие (с выдыхаемым воздухом) и через желудочно - кишечный тракт. С помощью почек в организме поддерживается кислотно - щелочное равновесие (РН), необходимый объем воды и солей, стабильное осмотическое давление.



Нервная система. Нервная система состоит из центрального (головной и спинной мозг) и периферического отделов (нервов, отходящих от головного и спинного мозга и расположенных на периферии нервных узлов). Центральная нервная система координирует деятельность различных органов и систем организма и регулирует эту деятельность в условиях изменяющейся внешней среды по механизму рефлекса. Процессы, протекающие в центральной нервной системе, лежат в основе всей психической деятельности человека. Головной мозг представляет собой скопление огромного количества нервных клеток.



Вегетативная нервная система – специализированный отдел нервной системы, регулируемый корой больших полушарий. Она подразделяется на симпатическую и парасимпатическую системы. Деятельность сердца, сосудов, органов пищеварения, выделения, регуляция обмена веществ, термо образования, участие в формировании эмоциональных реакций – все это находится в ведении симпатической и парасимпатической нервной системы и под контролем высшего отдела центральной нервной системы.


Опорно - двигательный аппарат. Двигательные процессы в организме человека обеспечиваются опорно - двигательным аппаратом, состоящим из пассивной части (кости, связки, суставы и фасции) и активной мышц, состоящих преимущественно из мышечной ткани. Обе эти части связаны между собой по развитию, анатомически и функционально.


Скелет. Скелет человека состоит их следующих отделов: скелета головы, скелета туловища, скелета верхних конечностей и скелета нижних конечностей. Скелет головы подразделяется на кости мозгового и висцерального черепа. В состав первого входят: затылочная, лобная, клиновидная, решетчатая, теменная и височная. Висцеральный череп состоит из нижнечелюстной, верхнечелюстной, скуловой, небной, носовой, слезной костей.


Скелет туловища состоит из позвоночного столба и грудной клетки. В состав первого входят позвонка, из которых 7 шейных, 12 грудных, 5 поясничных, 5 крестцовых и 3-5 копчиковых. Каждый позвонок состоит из тела и дуги, от которой отходят один остистый отросток и два боковых. Позвонки формируют спинномозговой канал. Грудная клетка образована грудиной, ребрами и грудными. Грудина состоит из рукоятки, тела и мечевидного отростка. Ребра, в количестве 12 пар, подразделяются на 7 пар истинных ребер (1- 7), соединяющихся непосредственно с грудиной, и 5 пар (8-12) ложных, из которых 3 пары (8-10) присоединяются своими хрящами к хрящу седьмого ребра, а две пары (11 и 12) с грудиной не связаны. Хрящ 7-10 пары образуют реберную дугу.



Скелет верхних конечностей и их пояса. Скелет верхних конечностей состоит из плечевой кости (анатомическое плечо), костей предплечья (лучевой и локтевой), скелета кисти (кости запястья, пястные кости и фаланги пальцев). Скелет запястья состоит из 8 костей. Скелет пястья состоит из 5 костей. Скелет пояса верхних конечностей (плечевого пояса) состоит из ключиц и лопаток.


Скелет нижних конечностей и их пояса. Скелет нижней конечности состоит из бедренной кости, костей голени (больше - и малоберцовой), скелета стопы, который имеет в своем составе кости предплюсны (7 костей), кости плюсны (5 костей) и фаланги пальцев. Скелет пояса нижних конечностей (тазового пояса) представлен тазовой костью, которая до 15 лет состоит из 3- х костей: подвздошной, седалищной и лонной. Две части лонной кости соединены так называемым лобковым симфизом – хрящевым соединением, имеющим особое строение.


Мышцы. Мышцы состоят из множества волокон, и каждое волокно функционирует отдельно от других. Волокна состоят из миоцитов - структурных единиц мышц. Эти клетки заключены в оболочку - сарколемму, заполненную специальной жидкостью саркоплазмой. Здесь же находятся миофибриллы - образования, от которых зависит цвет и скорость сокращения мышечного волокна. Благодаря саркоплазме происходит передача нервных импульсов по волокну. В мышечной ткани присутствует вода, гликоген, креатинин и различные кислоты.



Скелетные мышцы крепятся к костям и при сокращении обеспечивают передвижение тела или его отдельных частей в пространстве. В основе скелетных мышц лежат поперечнополосатые мышечные волокна. Кроме опорной и двигательной функций мышцы обеспечивают функцию дыхания, глотания, жевания, принимают участие в мимике, выработке тепла и артикуляции речи. Мышца состоит из сухожильных концов (сухожилий, прикрепляющих мышцу к кости) и брюшка (состоящего из поперечнополосатых мышечных волокон). Скоординированная работа опорно - двигательного аппарата осуществляется правильным функционированием мышц и необходимой для этого нервной регуляцией мышечных волокон.


Основными свойствами скелетных мышц являются: возбудимость – деятельность мышечных волокон осуществляется под влиянием нервных импульсов; проводимость – от нервных окончаний до ЦНС происходит быстрое проведение импульса; сократимость – в результате движения нервного импульса осуществляется сократимость скелетной мышцы.





Физиология – наука о механизмах функционирования и регуляции деятельности клеток, органов, систем организма в целом и взаимодействия его с окружающей средой.

Организм – это открытая макромолекулярная саморегулирующаяся, самовосстанавливающаяся и самовоспроизводящаяся с помощью непрерывного обмена веществ и энергии система, способная чувствовать, активно целенаправленно передвигаться и адаптироваться в окружающей среде.

Ткань – это система клеток и неклеточных структур, объединенных общностью происхождения, строения, функции. Различают 4 вида ткани: мышечную, нервную, эпителиальную и соединительную.

Орган – это часть организма, обособленная в виде комплекса тканей, выполняющего специфические функции. Орган состоит из структурно-функциональных единиц, представляющих собой клетку или совокупность клеток, способных выполнять основную функцию органа в малых масштабах.

Физиологическая система – это наследственно закрепленная совокупность органов и тканей, выполняющих общую функцию.

Функциональная система – это динамическая совокупность отдельных органов и физиологических систем, формирующаяся для достижения полезного для организма приспособительного результата.

Функция – это специфическая деятельность клеток, органов и систем органов по обеспечению жизнедеятельности целого организма.

Факторы надежности физиологических систем – процессы, способствующие поддержанию жизнедеятельности системы в сложных условиях окружающей среды. К факторам надежности физиологических систем относят

· Дублирование в физиологических системах;

· Резерв структурных элементов в органе и их функциональная мобильность;

· Регенерация поврежденной части органа или ткани и синтез новых структурных элементов;

· Адаптация;

· Совершенствование структуры органов в фило- и онтогенезе;

· Экономичность функционирования;

· Пластичность центральной нервной системы;

· Обеспечение организма кислородом.

Физиология клетки

Клетка – это структурно-функциональная единица органа (ткани), способная самостоятельно существовать, выполнять специфическую функцию в малом объеме, расти, размножаться, активно реагировать на раздражение.

Клеточная мембрана – оболочка клетки, образующая замкнутое пространство, содержащее протоплазму.

Протоплазма – совокупность всех внутриклеточных элементов (гиалоплазмы, органелл и включений).

Цитоплазма – это протоплазма, за исключением ядра.

Гиалоплазма (цитозоль) – гомогенная внутренняя среда клетки, содержащая питательные вещества (глюкозу, аминокислоты, белки, фосфолипиды, депо гликогена) и обеспечивающая взаимодействие всех органелл клетки.

Функции клеток:

1. Общие функции обеспечивают жизнедеятельность самой клетки. Делятся на

а) синтез тканевых и клеточных структур и необходимых для жизнедеятельности соединений;

б) выработка энергии (происходит в результате катаболизма - процесса расщепления);

в) трансмембранный перенос веществ;

г) размножение клеток;

д) детоксикация продуктов метаболизма, которая реализуется с помощью следующих механизмов: детоксикация аммиака с помощью образования глутамина и мочевины; перевод токсических веществ, образовавшихся в клетке, в водорастворимые малотоксичные вещества; обезвреживание активных радикалов кислорода с помощью антиоксидантной системы;

е) рецепторная функция.

2. Специфические функции клеток : сократительная; восприятие, передача сигнала, усвоение и хранение информации; газообменная; опорная; защитная.

Функции органелл клетки

Клетка содержит в себе два вида органелл – мембранные (ядро, эндоплазматический ретикулум, аппарат Гольджи, митохондрии, лизосомы) и безмембранные (рибосомы, микротрубочки, микрофиламенты, промежуточные филаменты).

Функции мембранных органелл :

· Ядро – несет генетическую информацию и обеспечивает регуляцию синтеза белка в клетке.

· Эндоплазматический ретикулум – является резервуаром для ионов, обеспечивает синтез и транспорт различных веществ, обеспечивает детоксикацию ядовитых веществ.

· Аппарат Гольджи – обеспечивает этап формирования и созревания ферментов лизосом, белков, гликопротеидов мембраны.

· Лизосомы – переваривание поступающих в клетку органических веществ (нуклеиновых кислот, гранул гликогена, компонентов самой клетки, фагоцитированных бактерий).

· Пероксисомы – своими ферментами катализируют образование и разложение перекиси водорода.

· Митохондрии – в них высвобождается основное количество энергии из поступающих в организм питательных веществ, участвуют в синтезе фосфолипидов и жирных кислот.

Функции безмембранных органелл :

· Рибосомы – синтезируют белки.

· Микротрубочки – в аксонах и дендритах нейронов они участвуют в транспорте веществ.

· Микрофиламенты, промежуточные филаменты образуют цитоскелет клетки, который обеспечивает поддержание формы клетки, внутриклеточное перемещение мембранных органелл, движение мембраны клетки и самих клеток, организации митотических веретен, образование псевдоподий.

Структурно-функциональная характеристика клеточной мембраны

Клеточная мембрана представляет собой тонкую липопротеиновую пластинку, содержание липидов в которой составляет 40%, белков – 60%. На внешней поверхности мембраны имеется небольшое количество углеводов, соединенных либо с белками (гликопротеиды), либо с липидами (гликолипиды). Эти углеводы участвуют в рецепции биологически активных веществ, реакциях иммунитета.

Структурную основу клеточной мембраны – матрикса – составляет биомолекулярный слой фосфолипидов, который является барьером для заряженных частиц и молекул водорастворимых веществ. Липиды обеспечивают высокое электрическое сопротивление мембраны клетки. Молекулы фосфолипидов мембраны состоят из двух частей: одна из них несет заряд и гидрофильна, другая не несет заряда и гидрофобна. В клеточной мембране гидрофильные участки одних молекул направлены внутрь клетки, а других наружу. В толще мембраны молекулы фосфолипидов взаимодействуют с гидрофобными участками. Так образуется прочная двухслойная липидная структура. В липидном слое находится много холестерина.

В клеточной мембране имеется большое количество белков, которые разделяют на следующие классы: интегральные, структурные, ферменты, переносчики, каналообразующие белки, ионные насосы, специфические рецепторы. Один и тот же белок может быть ферментом, рецептором и насосом. Многие молекулы белков имеют гидрофобную и гидрофильную части. Гидрофобные части белков погружены в липидный слой не несущий заряда. Гидрофильные участки белков взаимодействуют с гидрофильными участками липидов, что обеспечивает прочность мембраны. Молекулы белков, встроенные в матрикс, называют интегральными. Большинство этих белков являются гликопротеидами. Они образуют ионные каналы. Белки, прикрепленные снаружи мембраны, называются поверхностными. Это как, правило, белки-ферменты.

Клеточная мембрана обладает избирательной проницаемостью. Так, любая мембрана хорошо пропускает жирорастворимые вещества. Некоторые мембраны хорошо пропускают воду. Мембрана совсем не пропускает анионы органических кислот. В мембране имеются каналы, которые избирательно пропускают ионы натрия, калия, хлора и кальция. Большинство мембран имеет отрицательный поверхностный заряд, который обеспечивается выступающей из мембраны углеводной частью фосфолипидов, гликолипидов, гликопротеидов. Мембрана обладает текучестью, то отдельные её части могут перемещаться.

Функции клеточной мембраны:

· рецепторная - выполняется гликопротеидами и гликолипидами мембран – осуществляет распознавание клеток, развитие иммунитета;

· барьерная или защитная - выполняется клеточными мембранами всех тканей организма;

· транспортная - работает вместе с барьерной функцией - формирует состав внутриклеточной среды, наиболее благоприятный для оптимального протекания метаболических реакций. Обеспечивает: а) осмотическое давление и рН; б) поступление через жкт в кровь и лимфу веществ, необходимых для синтеза клеточных структур и выработки энергии; в) создание электрических зарядов, возникновение и распространение возбуждения; г) сократительную деятельность мышц; д) выделение продуктов обмена в окружающую среду; е) выделение гормонов, ферментов;

· создание электрического заряда и возникновение потенциала действия в возбудимых тканях;

· выработка биологичсеки активных веществ – тромбоксанов, лейкотриенов, протогландинов.

Первичный транспорт веществ

Первичный транспорт осуществляется вопреки концентрационному и электрическому градиентам с помощью специальных ионных насосов и микровезикулярного механизма в клетку или из клетки. Он обеспечивает перенос подавляющего большинства веществ и воды в организме, жизнедеятельность всех клеток и организма в целом.

1. Транспорт с помощью насосов (помп). Насосы локализуются на клеточных мембранах или на мембранах клеточных органелл и представляют собой интегральные белки, обладающие свойствами переносчика и АТФазной активностью. Основными характеристиками насосов являются следующие:

а) насосы работают постоянно и обеспечивают поддержание концентрационных градиентов ионов, это обеспечивает создание электрического заряда клетки и способствует движению воды и незаряженных частиц согласно законам диффузии и осмоса, создание электрического заряда клетки. Почти все клетки заряжены внутри отрицательно по отношению к внешней среде.

б) принцип работы насосов одинаков: Na/K-насос (Na/K-АТФаза) является электрогенным, так как за один цикл выводится из клетки 3 иона Na + , а возвращается в клетку 2 иона К + . На один цикл работы Na/K-насоса расходуется одна молекула АТФ, причем эта энергия расходуется только на перенос иона Na + .

в) натрий-калиевый насос – это интегральный белок, который состоит из четырех полипептидов и имеет центры связывания с натрием и калием. Он существует в двух конформациях: Е 1 и Е 2 . Конформация Е 1 обращена внутрь клетки и имеет сродство к иону натрия. К ней присоединяется 3 иона натрия. В результате активизируется АТФаза, которая обеспечивает гидролиз АТФ и высвобождение энергии. Энергия изменяет конформацию Е 1 в конформацию Е 2 , при этом 3 натрия оказываются снаружи клетки. Теперь конформация Е 2 теряет сродство к натрию и приобретает сродство к калию. К белку-насосу присоединяется 2 калия и сразу же конформация меняется. Калий оказывается внутри клетки и отщепляется. Это один цикл работы помпы. Затем цикл повторяется. Такой вид транспорта называется антипортом. Главным активатором такого насоса являются альдостерон и тироксин, а ингибитором – строфантины и кислородное голодание.

г) кальциевые насосы (Са-АТФазы) работают также, только переносится только кальций и в одном направлении (из гиалоплазмы в сарко- или эндоплазматический ретикулум, а также – наружу клетки). Здесь для высвобождения энергии необходим магний.

д) протонный насос (Н-АТФаза) локализуется в канальцах почек, в мембране обкладочных клеток в желудке. Он постоянно работает во всех митохондриях.

е) насосы специфичны – это проявляется в том, что они обычно переносят какой-то определенный ион или два иона.

2. Микровезикулярный транспорт. С помощью этого вида транспорта переносятся крупномолекулярные белки, полисахариды, нуклеиновые кислоты. Различают три вида этого транспорта: а) эндоцитоз – перенос вещества в клетку; б) экзоцитоз – это транспорт вещества из клетки; в) трансцитоз – совокупность эндоцитоза и экзоцитоза.

3. Фильтрация – первичный транспорт, при котором переход раствора через полупроницаемую мембрану осуществляется под действием градиента гидростатического давления между жидкостями по обе стороны этой мембраны.

Вторичный транспорт веществ

Вторичный транспорт – переход различных частиц и молекул воды за счет ранее запасенной (потенциальной) энергии, которая создается в виде электрического, концентрационного и гидростатического градиентов. Он осуществляет транспорт ионов через ионные каналы и включает следующие механизмы.

1. Диффузия – частицы перемещаются из области с высокой концентрацией в область с низкой концентрацией. Если частицы заряжены, то направление диффузии определяется взаимодействием концентрационного (химического) и электрического градиентов (их совокупность называют электрохимическим градиентом). Если частицы не заряжены, то направление их диффузии определяется только градиентом концентрации. Полярные молекулы диффундируют быстрее неполярных. Ионы диффундируют только через ионные каналы. Вода диффундирует через каналы, сформированными аквапорионами. Углекислый газ, кислород, недиссоциированные молекулы жирных кислот, гормоны – неполярные молекулы – диффундируют медленно.

2. Простая диффузия происходит либо через каналы, либо непосредственно через липидный слой. Стероидные гормоны, тироксин, мочевина, этанол, кислород, углекислый газ, лекарственные препараты, яды – могут с помощью простой диффузии попасть в клетку.

3. Облегченная диффузия характерна для частиц-неэлектролитов, способных образовывать комплексы с молекулами-переносчиками. Например, инсулин переносит глюкозу. Перенос осуществляется без непосредственной затраты энергии.

4. Натрийзависимый транспорт – вид диффузии, который осуществляется с помощью градиента концентрации ионов натрия, на создание которого затрачивается энергия. Имеется два варианта данного механизма транспорта веществ в клетку или из клетки. Первый вариант – это симпорт , направление движения транспортируемого вещества совпадает с направлением движения натрия согласно его электрохимическому градиенту. Идет без непосредственной затраты энергии. Например, перенос глюкозы в проксимальных канальцах нефрона в клетки канальца из первичной мочи. Второй вариант – антипорт . Это перемещение транспортируемых частиц направлено в противоположную по отношению к движению натрия сторону. Например, так движется кальций, ион водорода. Если транспорт двух частиц сопряжен друг с другом, то такой транспорт называется контраспортом .

5. Осмос – это частный случай диффузии: движение воды через полупроницаемую мембрану в область с большей концентрацией частиц, то есть с большим осмотическим давлением. Энергия в данном виде транспорта не затрачивается.

Ионные каналы

Число ионных каналов на клеточной мембране огромно: на 1 мкм 2 насчитывают примерно 50 натриевых каналов, в среднем они располагаются на расстоянии 140 нм друг от друга.

Структурно-функциональная характеристика ионных каналов. Каналы имеют устье и селективный фильтр, а управляемые каналы еще и воротный механизм. Каналы заполнены жидкостью. Селективность ионных каналов определяется их размером и наличием в канале заряженных частиц. Эти частицы имеют заряд, противоположный заряду иона, который они притягивают. Через каналы могут проходить и незаряженные частицы. Ионы, проходя через канал должны освободиться от гидратной оболочки, иначе их размеры будут больше диаметра канала. Слишком маленький ион, проходя через селективный фильтр, не может отдать свою гидратную оболочку, поэтому он не может пройти через канал.

Классификация каналов . Существуют следующие виды каналов:

· Управляемые и неуправляемые – определяется наличием воротного механизма.

· Электро-, хемо- и механоуправляемые каналы.

· Быстрые и медленные – по скорости закрытия и открытия.

· Ионоселективные – пропускающие один ион, и каналы не обладающие селективностью.

Основное свойство каналов, то, что они могут блокироваться специфическими веществами и лекарственными препаратами. Например, новокаин, атропин, тетродотоксин. Для одного и того же вида иона может быть несколько видов каналов.

Свойство биологической ткани. Раздражители

Основные свойства биологической ткани следующие:

1. Раздражимость – способность живой материи активно изменять характер своей жизнедеятельности при действии раздражителя.

2. Возбудимость – это способность клетки генерировать потенциал действия при раздражении. Невозбудимыми являются соединительная и эпителиальная ткани.

3. Проводимость – это способность ткани и клетки передавать возбуждение.

4. Сократимость – это способность ткани изменять свою длину и/или напряжение при действии раздражителя.

Раздражитель – это изменение внешней или внутренней среды организма, воспринимаемое клетками и вызывающее ответную реакцию. Адекватный раздражитель – это такой раздражитель, к которому клетка в процессе эволюции приобрела наибольшую чувствительность вследствие развития специальных структур, воспринимающих этот раздражитель.

Характеристика регуляции функций организма

Регуляция функций – это направленное изменение интенсивности работы органов, тканей, клеток для достижения полезного результата согласно потребностям организма в различных условиях его жизнедеятельности. Классифицируется регуляция по двум направлениям: 1. По механизму её осуществления (три механизма: нервный, гуморальный и миогенный ); 2. по времени её включения относительно момента изменения величины регулируемого показателя организма (два типа регуляции: по отклонению и по опережению ). В любом случае различают клеточный, органный, системный и организменный уровни регуляции.

Нервный механизм регуляции

Этот вид регуляции функций является ведущим и наиболее быстрым. Кроме того, она оказывает точное, локальное влияние на отдельный орган или даже на отдельную группу клеток органа. Одним из основных механизмом нервной регуляции является однонаправленные влияния симпатической и парасимпатической систем. Различают следующие виды влияний вегетативной нервной системы:

· Пусковое влияние – вызывает деятельность органа, находящегося в покое. Например, запуск сокращения покоящейся мышцы при поступлении к ней импульсов от мотонейронов спинного мозга или ствола по эфферентным нервным волокнам. Пусковое влияние реализуется с помощью электрофизиологических процессов.

· Модулирующее (корригирующее) влияние – вызывает изменение интенсивности деятельности органа. Оно проявляется в двух вариантах: а) модулирующее влияние на уже работающий орган; и б) модулирующее влияние на органы, работающие в автоматическом режиме. Реализуется модулирующее влияние с помощью трофического, электрофизиологического и сосудодвигательного действия нервной системы.

Таким образом, вегетативная и соматическая нервные системы оказывают, как пусковое, так и модулирующее влияние на деятельность органов. На скелетную и сердечную мышцы вегетативная нервная система оказывает только модулирующее действие .

Следующим важным моментом является то, что нервная регуляция осуществляется по рефлекторному принципу . Рефлекс – это ответная реакция организма на раздражение сенсорных рецепторов, осуществляемая с помощью нервной системы. Каждый рефлекс осуществляется посредством рефлекторной дуги. Рефлекторная дуга – это совокупность структур, при помощи которых осуществляется рефлекс. Рефлекторная дуга любого рефлекса состоит их пяти звеньев:

1. Воспринимающее звено – рецептор – обеспечивает восприятие изменений внешней и внутренней среды организма. Совокупность рецепторов называется рефлексогенной зоной .

2. Афферентное звено . Для соматической нервной системы - это афферентный нейрон с его отростками, тело его находится в спинномозговых ганглиях или ганглиях черепномозговых нервов. Роль этого звена заключается в передаче сигнала в ЦНС к третьему звену рефлекторной дуги.

3. Управляющее звено – совокупность центральных (для ВНС и периферических) нейронов, формирующих ответную реакцию организма.

4. Эфферентное звено – это аксон эффекторного нейрона (для соматической нервной системы – мотонейрона).

5. Эффектор – рабочий орган. Эффекторным нейроном соматической нервной системы является мотонейрон.

Все рефлексы делят на группы:

· Врожденные (безусловные) и приобретенные (условные);

· Соматические и вегетативные;

· Гомеостатические, защитные, половые, ориентировочный рефлекс;

· Моно- и полисинаптические;

· Экстероцептивные, интероцептивные и проприоцептивные;

· Центральные и периферические;

· Собственные и сопряженные.

Гуморальная регуляция

Гормональное звено регуляции функций организма включается с помощью вегетативной нервной системы, то есть эндокринная система подчиняется нервной системе. Гуморальная регуляция осуществляется медленно и оказывает, в отличие от нервной системы, генерализованное воздействие. Кроме того, у гуморального механизма регуляции нередко наблюдается противоположное влияние биологически активных веществ на один и тот же орган. Гормоны – это биологически активные вещества, вырабатываемые эндокринными железами или специализированными клетками. Гормоны вырабатываются также нервными клетками – в этом случае они называются нейрогормонами. Все гормоны попадают в кровь и действуют на клетки мишени в различных частях организма. Существуют также гормоны, которые вырабатываются неспециализированными клетками – это тканевые или паракринные гормоны. Гормональное влияние на органы, ткани и системы организма подразделяется на

· функциональное, которое в свою очередь, делится на пусковое, модулирующее и пермиссивное;

· морфогенетическое.

Кроме эндокринной регуляции существует ещё регуляция с помощью метаболитов – продуктов, образующихся в организме в процессе обмена веществ. Метаболиты действуют в основном как местные регуляторы. Но существуют влияния метаболитов и на нервные центры.

Миогенный механизм регуляции

Сущность миогенного механизма регуляции состоит в том, что предварительное умеренное растяжение скелетной или сердечной мышцы увеличивает силу их сокращений. Миогенный механизм играет важную роль в регуляции гидростатического давления в полых органах и в сосудах.

Единство регуляторных механизмов и системный принцип регуляции

Единство регуляторных механизмов заключается в их взаимодействии. Так, при действии холодного воздуха на терморецепторы кожи увеличивается поток афферентных импульсов в ЦНС; это ведет к выбросу гормонов, увеличивающих интенсивность обмена веществ и к увеличению теплопродукции. Системный принцип регуляции заключается в том, что различные показатели организма поддерживаются на оптимальном уровне с помощью многих органов и систем. Так, парциальное давление кислорода и диоксида углерода обеспечивается деятельностью систем: сердечно-сосудистой, дыхательной, нервно-мышечной, крови.

Функции гематоэнцефалического барьера

Регулирующая функция ГЭБ заключается в том, что он формирует особую внутреннюю среду мозга, обеспечивающую оптимальный режим деятельности нервных клеток, и избирательно пропускает многие гуморальные вещества. Барьерную функцию выполняет особая структура стенок капилляров мозга – их эндотелий, а также базальная мембрана, окружающая капилляр снаружи. Кроме ГЭБ выполняет защитную функцию – предотвращает попадание микробов, чужеродных или токсичных веществ. ГЭБ не пропускает многие лекартсвенные вещества.

Надежность регуляторных систем

Надежность регуляторных систем обеспечивается следующими факторами:

1. Взаимодействие и дополнение трех механизмов регуляции (нервного, гуморального и миогенного).

2. Действие нервного и гуморального механизмов может быть разнонаправленной.

3. Взаимодействие симпатического и парасимпатического отделов вегетативной нервной системы является синергичными.

4. Симпатический и парасимпатический отделы ВНС могут вызвать двоякий эффект (как активизацию, так и торможение).

5. Существует несколько механизмов регуляции уровня гормонов в крови, что усиливает надежность гуморальной регуляции.

6. Существует несколько путей системной регуляции функций.



В организме человека существуют следующие физиологические системы (костная система, мышечная, кровеносная, дыхательная, пищеварительная, нервная, система крови и др.).

Кровь представляет собой жидкую ткань, которая циркулирует в кровеносной системе и обеспечивает жизнедеятельность клеток и тканей организма в качестве физиологической системы. Она состоит из плазмы и ферментных элементов:

эритроцитов – красные кровяные клетки, заполненные гемоглобином, который способен образовать соединение с кислородом и транспортировать его из легких к тканям, а из тканей переносить углекислый газ к легким, таким образом осуществляет дыхательную функцию. Продолжительность жизни в организме 100-120 дней. В 1 мл крови содержится 4.5 –5 млн. эритроцитов. У спортсменов достигает 6 млн. и более.

Лейкоциты белые кровяные тельца, выполняют защитную функцию, уничтожая кислородные тела. В 1 мл – 6-8 тыс.

Тромбоциты участвуют в свертывании крови, в 1 мл – от 100-300 тыс.

Постоянство крови поддерживается химическими механизмами самой крови и контролируются регуляторными механизмами ЦНС. Лимфа крови выполняет следующие функции: возвращает белки из межтканевого пространства в кровь, доставляет жиры к клеткам тканей, а также участвует в обмене веществ и удаляет болезнетворные микроорганизмы. Общее количество крови составляет 7-8% массы тела, в покое 40-50%.

Потеря 1/3 крови опасна для жизни человека. Различают 4 группы крови (I-II-III-IV).

Сердечно-сосудистая система

Сердечно-сосудистая система состоит из большого и малого круга кровообращения. Левая половина сердца обслуживает большой круг кровообращения, правая – малый. Большой круг кровообращения начинается от левого желудочка сердца, проходит через ткани всех органов и возвращается в правый желудочек. Откуда начинается малый круг кровообращения, который проходит через легкие, где венозная кровь, отдавая углекислый газ и насыщается кислородом, превращается в артериальную и направляется в левое предсердие. Из левого предсердия кровь поступает влевый желудочек и от туда вновь в большой круг кровообращения. Деятельность сердца заключается в ритмичной смене сердечных циклов, которые состоят из трех фаз: сокращение предсердия, желудочков и общего расслабления.

Пульс – это волна колебаний при выбросе крови в аорту. В среднем частота пульса 60-70 уд/мин. Существуют 2 вида кровяного давления. Оно измеряется в плечевой артерии. Максимальное (систолическое) и минимальное (дистолическое). У здорового человека в возрасте от 18 до 40 лет в покое равно 120/70 мм рт. ст.



Дыхательная система включает в себе носовую полость, гортань, трахею, бронхи и легкие. Процесс дыхания – это целый комплекс физиологических и биохимических процессов, в процессе дыхания также участвует и система кровообращения. Этап дыхания, при котором кислород из атмосферного воздуха переходит в кровь, а углекислый газ из крови – в атмосферный воздух называется внешним. Перенос газов кровью – следующий этап и, наконец, тканевое (или внутреннее) дыхание: потребление клетками кислорода и выделение ими углекислоты, как результат биохимических реакций, связанных с образованием энергии.

Пищеварительная система состоит из ротовой полости, слюнных желез, глотки, пищевода, желудочка, тонкого и толстого кишечника, печени и поджелудочной железы. В этих органах пища механически и химически обрабатывается, переваривается, и образуются продукты пищеварения.

Выделительную систему образуют почки, мочеточники и мочевой пузырь, которые обеспечивают выделение из организма с мочой вредных продуктов обмена веществ. Продукты обмена выделяются через кожу, легкие, желудочно-кишечный тракт. С помощью почек поддерживается кислотно-щелочное равновесие, т.е. процесс гомеостаза.

Нервная система состоит из центральной (головной и спинной мозг) и периферических отделов (нервов, отходящих от головного и спинного мозга и расположенных на периферии нервных узлов). ЦНС регулирует деятельность человека, а также его психическое состояние.

Спинной мозг лежит в спинно-мозговом отделе, образованном позвонками. Первый шейный позвонок – граница верхнего отдела, второй поясничный нижний отдел спинного мозга. Спинной мозг делится на 5 отделов: шейный, грудной, поясничный, крестцовый, копчиковый. В спинном мозге имеется 2 вещества. Серое вещество образовано скоплением тел нервных клеток (нейронов), которые достигают различных рецепторов кожи, сухожилий, слизистых оболочек. Белое вещество окружает серое, которое связывает между собой нервные клетки спинного мозга.



Спинной мозг выполняет рефлекторную и проводниковую для нервных импульсов функции. Поражения спинного мозга влекут за собой различные нарушения, связанные с выходом из строя проводниковой функции.

Головной мозг представляет собой огромное количество нервных клеток. Он состоит из переднего, промежуточного, среднего и заднего отдела.

Кора больших полушарий является высшим отделом ЦНС, мозговая ткань потребляет в 5 раз больше кислорода, чем мышцы. Составляет 2% массы тела человека.

Вегетативная нервная система – это специализированный отдел нервной системы, регулируемый корой больших полушарий. В отличии от соматической нервной системы, которая регулирует скелетную мускулатуру, вегетативная нервная система регулирует дыхание, кровообращение, выделение, размножение, железы внутренней секреции. Вегетативная система подразделяется на симпатическую, которая контролирует деятельность сердца, сосудов, органов пищеварения и др., участвует в формировании эмоциональных реакций(страх, гнев, радость), и парасимпатической нервной системы и под контролем высшего отдела ЦНС. Способность организма приспосабливаться к меняющимся условия внешней среды, реализуется специальными рецепторами. Рецепторы подразделяются на 2 группы: внешние и внутренние. Высшим отделом анализатора является корковый отдел. Существуют следующие анализаторы (кожный, двигательный, вестибулярный, зрительный, слуховой, вкусовой, висцеральный – внутренние органы). Железы внутренней секреции или эндокринные железы вырабатывают особые биологические вещества – гормоны. Гормоны обеспечивают гуморальную регуляцию через кровь физиологических процессов в организме. Они могут ускорять рост, физическое и психическое развитие, участвовать в обмене веществ. К железам внутренней секреции относят: щитовидную, околощитовидную, надпочечники, поджелудочную, гипофиз, половые железы и другие, функцию эндокринной системы регулирует ЦНС.

Принято выделять следующие физиологические системы организма: костную (скелет человека), мышечную, кровеносную, дыхательную, пищеварительную, нервную, систему крови, желез внутренней секреции, анализаторов и др.

Кровь как физиологическая Кровь - жидкая ткань, циркулирующая в система, жидкая ткань кровеносной системе и обеспечивающая жиз-недеятельность клеток и тканей организма в качестве органа и физиологической системы. Она состоит из плазмы (55-60%) и взвешенных в ней форменных элементов: эритроцитов, лейкоцитов, тромбоцитов и других веществ (40-45%) (рис. 2.8); имеет слабощелочную реакцию (7,36 рН).

Эритроциты - красные кровяные клетки, имеющие форму круглой вогнутой пластинки диаметром 8 и толщиной 2-3 мкм, заполнены особым белком - гемоглобином, который способен образовывать соединение с кислородом (оксигемоглобин) и транспортировать его из легких к тканям, а из тканей переносить углекислый газ к легким, осуществляя таким образом дыхательную функцию. Продолжительность жизни эритроцита в организме 100-120 дней. Красный костный мозг вырабатывает до 300млрд молодых эритроцитов, ежедневно поставляя их в кровь. В 1 мл крови человека в норме содержится 4,5-5млн эритроцитов. У лиц, активно занимающихся двигательной деятельностью, это число может существенно возрастать (6млн и более). Лейкоциты - белые кровяные тельца, выполняют защитную функцию, уничтожая инородные тела и болезнетворные микробы (фагоцитоз). В 1 мл крови содержится 6-8 тыс. лейкоцитов. Тромбоциты (а их содержится в 1 мл от 100 до 300 тыс.) играют важную роль в сложном процессе свертывания крови. В плазме крови растворены гормоны, минеральные соли, питательные и другие вещества, которыми она снабжает ткани, а также содержатся продукты распада, удаленные из тканей.



В плазме крови находятся и антитела, создающие иммунитет (невосприимчивость) организма к ядовитым веществам инфекционного или какого-нибудь иного происхождения, микроорганизмам и вирусам. Плазма крови принимает участие в транспортировке углекислого газа к легким.

Постоянство состава крови поддерживается как химическими механизмами самой крови, так и специальными регуляторными механизмами нервной системы.

При движении крови по капиллярам, пронизывающим все ткани, через их стенки постоянно просачивается в межтканевое пространство часть кровяной плазмы, которая образует межтканевую жидкость, окружающую все клетки тела. Из этой жидкости клетки поглощают питательные вещества и кислород и выделяют в нее углекислый газ и другие продукты распада, образовавшиеся в процессе обмена веществ. Таким образом, кровь непрерывно отдает в межтканевую жидкость питательные вещества, используемые клетками, и поглощает вещества, выделяемые ими. Здесь же расположены мельчайшие лимфатические сосуды. Некоторые вещества межтканевой жидкости просачиваются в них и образуют лимфу, которая выполняет следующие функции: возвращает белки из межтканевого пространства в кровь, участвует в перераспределении жидкости в организме, доставляет жиры к клеткам тканей, поддерживает нормальное протекание процессов обмена веществ в тканях, уничтожает и удаляет из организма болезнетворные микроорганизмы. Лимфа по лимфатическим сосудам возвращается в кровь, в венозную часть сосудистой системы.

Общее количество крови составляет 7-8% массы тела человека. В покое 40-50% крови выключено из кровообращения и находится в «кровяных депо»: печени, селезенке, сосудах кожи, мышц, легких. В случае необходимости (например, при мышечной работе) запасной объем крови включается в кровообращение и рефлекторно направляется к работающему органу. Выход крови из «депо» и ее перераспределение по организму регулируется ЦНС.

Потеря человеком более 1/3 количества крови опасна для жизни. В то же время уменьшение количества крови на 200-400 мл (донорство) для здоровых людей безвредно и даже стимулирует процессы кроветворения. Различают четыре группы крови (I, II,III, IV)..При спасении жизни людей, потерявших много крови, или при некоторых заболеваниях делают переливание крови с учетом группы. Каждый человек должен знать свою группу крови.

Сердечно-сосудистаясистема. Кровеносная система состоит из сердца и кровеносных сосудов. Сердце - главный орган кровеносной системы - представляет собой полый мышечный орган, совершающий ритмические сокращения, благодаря которым происходит процесс кровообращения в организме. Сердце - автономное, автоматическое устройство. Однако его работа корректируется многочисленными прямыми и обратными связями, поступающими от различных органов и систем организма. Сердце связано с центральной нервной системой, которая оказывает на его работу регулирующее воздействие.

Сердечно-сосудистая система состоит из большого и малого кругов кровообращения (рис. 2.9). Левая половина сердца обслуживает большой круг

кровообращения, правая - малый. Большой круг кровообращения начинается от левого желудочка сердца, проходит через ткани всех органов и возвращается в правое предсердие. Из правого предсердия кровь переходит в правый желудочек, откуда начинается малый круг кровообращения, который проходит через легкие, где венозная кровь, отдавая углекислый газ и насыщаясь кислородом, превращается в артериальную и направляется в левое предсердие. Из левого предсердия кровь поступает в левый желудочек и оттуда вновь в большой круг кровообращения.

Деятельность сердца заключается в ритмичной смене сердечных циклов, состоящих из трех фаз: сокращения предсердий, сокращения желудочков и общего расслабления сердца.

Пульс - волна колебаний, распространяемая по эластичным стенкам артерий в результате гидродинамического удара порции крови, выбрасываемой в аорту под большим давлением при сокращении левого желудочка. Частота пульса соответствует частоте сокращений сердца. Частота пульса в покое (утром, лежа, натощак) оказывается ниже из-за увеличения мощности каждого сокращения. Урежение частоты пульса увеличивает абсолютное время паузы для отдыха сердца и для протекания процессов восстановления в сердечной мышце. Впокoe пульс здорового человека равен 60-70 удар/мин.

Кровяное давление создается силой сокращения желудочков сердца и упругостью стенок сосудов. Оно измеряется в плечевой артерии. Различают максимальное (или систолическое) давление, которое создается во время сокращения левого желудочка (систолы), и минимальное (или диастолическое) давление, которое отмечается во время расслабления левого желудочка (диастолы). Давление поддерживается за счет упругости стенок растянутой аорты и других крупных артерий. В норме у здорового человека в возрасте 18- 40 лет в покое кровяное давление равно 120/70 мм рт. ст. (120 мм систолическое давление, 70 мм - диастолическое). Наибольшая величина кровяного давления наблюдается в аорте.

По мере удаления от сердца кровяное давление оказывается все ниже. Самое низкое давление наблюдается в венах при впадении их в правое предсердие. Постоянная разность давления обеспечивает непрерывный ток крови по кровеносньм сосудам (в сторону пониженного давления).

Дыхателная система Дыхательная система включает в себя носовую полость, гортань, трахею, бронхи и легкие. В процессе дыхания из атмосферного воздуха через альвеолы легких в организм постоянно поступает кислород, а из организма выделяется углекислый газ (рис. 2.10 и 2.11).

Трахея в нижней своей части делится на два бронха, каждый из которых, входя в легкие, древовидно разветвляется. Конечные мельчайшие разветвления бронхов (бронхиолы) переходят в закрытые альвеолярные годы, в стенках которых имеется большое количество шаровидных образований - легочных пузырьков (альвеол). Каждая альвеола окружена густой сетью капилляров. Общая поверхность всех легочных пузырьков очень велика, она в 50 раз превышает поверхность кожи человека и составляет более 100 м 2 .

Легкие располагаются в герметически закрытой полости грудной клетки. Они покрыты тонкой гладкой оболочкой - плеврой, такая же оболочка выстилает изнутри полость грудной клетки. Пространство, образованное между этими листами плевры, называется плевральной полостью. Давление в плевральной полости всегда ниже атмосферного при выдохе на 3-4 мм рт. ст., при вдохе - на 7-9.

Процесс дыхания - это целый комплекс физиологических и биохимических процессов, в реализации которых участвует не только дыхательный аппарат, но и система кровообращения.

Механизм дыхания имеет рефлекторный (автоматический) характер. В покое обмен воздуха в легких происходит в результате дыхательных ритмических движений грудной клетки. При понижении в грудной полости давления в легкие в достаточной степени пассивно за счет разности давлений засасывается порция воздуха - происходит вдох. Затем полость грудной клетки уменьшается и воздух из легких выталкивается - происходит выдох. Расширение полости грудной клетки осуществляется в результате деятельности дыхательной мускулатуры. В покое при вдохе полость грудной клетки расширяет специальная дыхательная мышца - диафрагма, а также наружные межреберные мышцы; при интенсивной физической работе включаются и другие (скелетные) мышцы. Выдох в покое производится выражение пассивно, при расслаблении мышц, осуществлявших вдох, грудная клетка под воздействием силы тяжести и атмосферного давления уменьшается. При интенсивной физической работе в выдохе участвуют мышцы брюшного пресса, внутренние межреберные и другие скелетные мышцы. Систематические занятия физическими упражнениями и спортом укрепляют дыхательную мускулатуру и способствуют увеличению объема и подвижности (экскурсии) грудной клетки.

Этап дыхания, при котором кислород из атмосферного воздуха переходит в кровь, а углекислый газ из крови - в атмосферный воздух, называют внешним дыханием; перенос газов кровью - следующий этап и, наконец, тканевое (или внутреннее) дыхание - потребление клетками кислорода и выделение ими углекислоты как результат биохимических реакций, связанных с образованием энергии, чтобы обеспечить процессы жизнедеятельности организма.

Внешнее (легочное) дыхание осуществляется в альвеолах легких. Здесь через полупроницаемые стенки альвеол и капилляров кислород переходит из альвеолярного воздуха, заполняющего полости альвеол. Молекулы кислорода и углекислого газа осуществляют этот переход за сотые доли секунды. После переноса кислорода кровью к тканям осуществляется тканевое (внутриклеточное) дыхание. Кислород переходит из крови в межтканевую жидкость и оттуда в клетки тканей, где используется для обеспечения процессов обмена веществ. Углекислый газ, интенсивно образующийся в клетках, переходит в межтканевую жидкость и затем в кровь. С помощью крови он транспортируется к легким, а затем выводится из организма. Переход кислорода и углекислого газа через полупроницаемые стенки альвеол, капилляров и оболочек эритроцитов путем диффузии (перехода) обусловлен разностью парциального давления каждого из этих газов. Так, например, при атмосферном давлении воздуха 760 мм рт. ст. парциальное давление кислорода (р0а) в нем равно 159 мм рт. ст., а в альвеолярном - 102, в артериальной крови - 100, в венозной - 40 мм рт. ст. В работающей мышечной ткани р0а может снижаться до нуля. Из-за разницы в парциальном давлении кислорода происходит его поэтапный переход в легкие, далее через стенки капилляров в кровь, а из крови в клетки тканей.

Углекислый газ из клеток тканей поступает в кровь, из крови - в легкие, из легких - в атмосферный воздух, так как градиент парциального давления углекислого газа (СО 2) направлен в обратную относительно р0а сторону (в клетках СО 2 - 50-60, в крови - 47, в альвеолярном воздухе - 40, в атмосферном воздухе - 0,2 мм рт. ст.).

Система пищеварения ивыделения. Пищеварительная система состоит из ротовой полости, слюнных желез, глотки, пищевода, желудка, тонкого и толстого кишечника, печени и поджелудочной железы. В этих органах пища механически и химически обрабатывается, перевариваются поступающие в организм пищевые вещества и всасываются продукты пищеварения.

Выделительную систему образуют почки, мочеточники и мочевой пузырь, которые обеспечивают выделение из организма с мочой вредных продуктов обмена веществ (до 75%). Кроме того, некоторые продукты обмена выделяются через кожу (с секретом потовых и сальных желез), легкие (с выдыхаемым воздухом) и через желудочно-кишечный тракт. С помощью почек в организме поддерживается кислотно-щелочное равновесие (рН), необходимый объем воды и солей, стабильное осмотическое давление (т.е. гомеостаз).

Нервная система Нервная система состоит из центрального (головной и спинной мозг) w. периферического отделов (нервов, отходящих от головного и спинного мозга и расположенных на

периферии нервных узлов). Центральная нервная система координирует деятельность различных органов и систем организма и регулирует эту деятельность в условиях изменяющейся внешней среды по механизму рефлекса. Процессы, протекающие в центральной нервной системе, лежат в основе всей психической деятельности человека.

лекция № 4: внешняя среда и ее воздействие на

организм и жизнедеятельность человека.функциональная активность человека

Ha человека воздействуют различные факторы окружающей среды. При изучении многообразных видов его деятельности не

обойтись без учета влияния природных факторов (барометрическое давление, газовый состав и влажность воздуха, температура окружающей среды, солнечная радиация - так называемая физическая окружающая среда), биологических факторов растительного и животного окружения, а также факторов социальной среды с результатами бытовой, хозяйственной, производственной и творческой деятельности человека.

Из внешней среды в организм поступают вещества, необходимые для его жизнедеятельности и развития, а также раздражители (полезные и вредные), которые нарушают постоянство внутренней среды. Организм путем взаимодействия функциональных систем всячески стремится сохранить необходимое постоянство своей внутренней среды.

Деятельность всех органов и их систем в целостном организме характеризуется определенными показателями, имеющими те или иные диапазоны колебаний. Одни константы стабильны и довольно жесткие (например, рН крови 7,36-7,40, температура тела - в пределах 35- 42°С), другие и в норме отличаются значительными колебаниями (например, ударный объем сердца - количество крови, выбрасываемой за одно сокращение - 50-200 см*). Низшие позвоночные, у которых регуляция показателей, характеризующих состояние внутренней среды, несовершенна, оказываются во власти факторов окружающей среды. Например, лягушка, не обладая механизмом, регулирующим постоянство температуры тела, дублирует температуру внешней среды настолько, что зимой все жизненные процессы у нее затормаживаются, а летом, оказавшись вдалеке от воды, она высыхает и гибнет. В процессе филогенетического развития высшие животные, в том числе и человек, как бы сами себя поместили в теплицу, создав свою стабильную внутреннюю среду и обеспечив тем самым относительную независимость от внешней среды.

Природные социально-экологические факторы и ихвоздействие на организм. Природные и социально-биологические факторы, влияющие на организм человека, неразрывно связаны с вопросами экологического характера. Экология (греч. oikos - дом, жилище, родина +logos - понятие, учение) - это и область знания, и часть биологии, и учебная дисциплина, и комплексная наука. Экология рассматривает взаимоотношения организмов друг с другом и с неживыми компонентами природы Земли (ее биосферы). Экология человека изучает закономерности взаимодействия человека с природой, проблемы сохранения и укрепления здоровья. Человек зависит от условий среды обитания точно так же, как природа зависит от человека. Между тем влияние производственной деятельности на окружающую природу (загрязнение атмосферы, почвы, водоемов отходами производства, вырубка лесов, повышенная радиация в результате аварий и нарушений технологий) ставит под угрозу существование самого человека. К примеру, в крупных городах значительно ухудшается естественная среда обитания, нарушаются ритм жизни, психоэмоциональная ситуация труда, быта, отдыха, меняется климат. В городах интенсивность солнечной радиации на 15-20% ниже, чем в прилегающей местности, зато среднегодовая температура выше на 1-2"С, менее значительны суточные и сезонные колебания, ниже атмосферное давление, загрязненный воздух. Все эти изменения оказывают крайне неблагоприятное воздействие на физическое и психическое здоровье человека. Около 80% болезней современного человека - результат ухудшения экологической ситуации на планете. Экологические проблемы напрямую связаны с процессом организации и проведения систематических занятий физическими упражнениями и спортом, а также с условиями, в которых они происходят.

Функциональная активность человека. Функциональная активность человека характеризуется различными двигательными актами: сокращением мышцы сердца, передвижением тела в пространстве, движением глазных яблок, глотанием, дыханием, а также двигательным компонентом речи, мимики.

На развитие функций мышц большое влияние оказывают силы гравитации и инерции, которые мышца вынуждена постоянно преодолевать. Важную роль играют время, в течение которого развертывается мышечное сокращение, и пространство, в котором оно.происходит.

Предполагается и целым рядом научных работ доказывается, что труд создал человека. Понятие «труд» включает различные его виды. Между тем существуют два основных вида трудовой деятельности человека - физический и умственный труд и их промежуточные сочетания.

Физический труд - это вид деятельности человека, особенности которой определяются комплексом факторов, отличающих один вид деятельности от другого, связанного с наличием каких-либо климатических, производственных, физических, информационных и тому подобных факторов. Выполнение физической работы всегда связано с определенной тяжестью труда, которая определяется степенью вовлечения в работу скелетных мышц и отражающая физиологическую стоимость преимущественно физической нагрузки. По степени тяжести различают физически легкий труд, средней тяжести, тяжелый и очень тяжелый. Критериями оценки тяжести труда служат эргометрические показатели (величины внешней работы, перемещенных грузов и др.) и физиологические (уровни энергозатрат, частота сердечных сокращении, иные функциональные изменения).

Умственный труд - это деятельность человека по преобразованию сформированной в его сознании концептуальной модели действительности путем создания новых понятий, суждений, умозаключений, а на их основе - гипотез и теории. Результат умственного труда - научные и духовные ценности или решения, которые посредством управляющих воздействий на орудия труда используются для удовлетворения общественных или личных потребностей. Умственный труд выступает в различных формах, зависящих от вида концептуальной модели и целей, которые стоят перед человеком (эти условия определяют специфику умственного труда). К неспецифическим особенностям умственного труда относятся прием и переработка информации, сравнение полученной информации с хранящейся в памяти человека, ее преобразование, определение проблемной ситуации, путей разрешения проблемы и формирование цели умственного труда в зависимости от вида и способов преобразования информации и выработки решения различают репродуктивные и продуктивные (творческие) виды умственного труда. В репродуктивных видах труда используются заранее известные преобразования с фиксированными алгоритмами действий (например, счетные операции), в творческом труде алгоритмы либо вообще неизвестны, либо даны в неясном виде. Оценка человеком себя как субъекта умственного труда, мотивов деятельности, значимости цели и самого процесса труда составляет эмоциональную составляющую умственного труда. Эффективность его определяется уровнем знаний и возможностью их осуществить, способностями человека, и его волевыми характеристиками. При высокой напряженности умственного труда, особенно если она связана с дефицитом времени, могут возникать явления умственной блокады (временное торможение процесса умственного труда), которые предохраняют функциональные системы центральной нервной системы от разобщения.

Взаимосвязь физической иумственной деятельностичеловека. Одна из важнейших характеристик личности -интеллект. Условием интеллектуальной деятельности и ее характеристикой служат умственные способности, которые формируются и развиваются в течение всей жизни. Интеллект проявляется в познавательной и творческой деятельности, включает процесс приобретения знаний, опыт и способность использовать их на практике.

Другой, не менее важной стороной личности является эмоционально-волевая сфера, темперамент и характер. Возможность регулировать формирование личности достигается тренировкой, упражнением и воспитанием. А систематические занятия физическими упражнениями, и тем более учебно-тренировочные занятия в спорте оказывают положительное воздействие на психические функции, с детского возраста формируют умственную и эмоциональную устойчивость к напряженной деятельности. Многочисленные исследования по изучению параметров мышления, памяти, устойчивости внимания, динамики умственной работоспособности в процессе производственной деятельности у адаптированных (тренированных) к систематическим физическим нагрузкам лиц и у неадаптированных (нетренированных) свидетельствуют, что параметры умственной работоспособности прямо зависят от уровня общей и специальной физической подготовленности. Умственная деятельность будет в меньшей степени подвержена влиянию неблагоприятных факторов, если целенаправленно применять средства и методы физической культуры (например, физкультурные паузы, активный отдых и т.п.).

Учебный день студентов насыщен значительными умственными и эмоциональными нагрузками. Вынужденная рабочая поза, когда мышцы, удерживающие туловище в определенном состоянии, долгое время напряжены, частые нарушения режима труда и отдыха, неадекватные физические нагрузки - все это может служить причиной утомления, которое накапливается и переходит в переутомление. Чтобы этого не случилось, необходимо один вид деятельности сменять другим. Наиболее эффективная форма отдыха при умственном труде - активный отдых в виде умеренного физического труда или занятий физическими упражнениями.

В теории и методике физического воспитания разрабатываются методы направленного воздействия на отдельные мышечные группы и на целые системы организма. Проблему представляют средства физической культуры, которые непосредственно влияли бы на сохранение активной деятельности головного мозга человека при напряженной умственной работе.

Занятия физическими упражнениями заметно влияют на изменение умственной работоспособности и сенсомоторики у студентов первого курса, в меньшей степени у студентов второго и третьего курсов. Первокурсники больше утомляются в процессе учебных занятий в условиях адаптации к вузовскому обучению. Поэтому для них занятия по физическому воспитанию - одно из важнейших средств адаптироваться к условиям жизни и обучения в вузе. Занятия физической культурой больше повышают умственную работоспособность студентов тех факультетов, где преобладают теоретические занятия, и меньше - тех, в учебном плане которых практические и теоретические занятия чередуются.

Большое профилактическое значение имеют и самостоятельные занятия студентов физическими упражнениями в режиме дня. Ежедневная утренняя зарядка, прогулка или пробежка на свежем воздухе благоприятно влияют на организм, повышают тонус мышц, улучшают кровообращение и газообмен, а это положительно влияет на повышение умственной работоспособности студентов. Важен активный отдых в каникулы: студенты после отдыха в спортивно-оздоровительном лагере начинают учебный год, имея более высокую работоспособность.



Рассказать друзьям