Физические и физиологические характеристики звука. Физические и физиологические характеристики шума, нормирование

💖 Нравится? Поделись с друзьями ссылкой

Звук является объектом слухового ощущения. Он оценивается человеком субъективно. Все субъективные характеристики слухового ощущения связаны с объективными (физическими) характеристиками звуковой волны.

Воспринимаемые звуки человек различает их по тембру, высоте, громкости.

Тембр – « окраска» звука и определяется его гармоническим спектром. Различные акустические спектры соответствуют разному тембру, даже в том случае, когда основной тон у них одинаков. Тембр – это качественная характеристика звука.

Высотатона – субъективная оценка звукового сигнала, зависящая от частоты звука и его интенсивности. Чем больше частота, главным образом, основного тона, тем больше высота воспринимаемого звука. Чем больше интенсивность, тем ниже высота воспринимаемого звука.

Громкость – также субъективная оценка, характеризующая уровень интенсивности.

Громкость главным образом зависит от интенсивности звука. Однако восприятие интенсивности зависит от частоты звука. Звук большей интенсивности одной частоты может восприниматься как менее громкий, чем звук меньшей интенсивности другой частоты.

Опыт показывает, что для каждой частоты в области слышимых звуков

(16 – 20 . 10 3 Гц) имеется так называемый порог слышимости. Это минимальная интенсивность, при которой ухо еще реагирует на звук. Кроме того, для каждой частоты имеется так называемый порог болевых ощущений, т.е. то значение интенсивности звука, которое вызывает боль в ушах. Совокупности точек, отвечающих порогу слышимости, и точек, соответствующих порогу болевых ощущений, образуют на диаграмме (L,ν) две кривые (рис.1), которые пунктиром экстраполированы до пересечения.

Кривая порога слышимости (а), кривая порога боли (б).

Область, ограниченная этими кривыми, называется областью слышимости. Из приведенной диаграммы, в частности, видно, что менее интенсивный звук, соответствующий точке А, будет восприниматься более громким, чем звук более интенсивный, соответствующий точке В, так как точка А более удалена от порога слышимости, чем точка В.

4. Закон Вебера-Фехнера .

Громкость может быть оценена количественно путем сравнения слуховых ощущений от двух источников.

В основе создания шкалы уровней громкости лежит психофизический закон Вебера-Фехнера. Если увеличивать раздражение в геометрической прогрессии (т.е. в одинаковое число раз), то ощущение этого раздражения возрастает в арифметической прогрессии (т.е. на одинаковое значение).

Применительно к звуку это формулируется так: если интенсивность звука принимает ряд последовательных значений, например, а I 0 , а 2 I 0,

а 3 I 0 ,….(а - некоторый коэффициент, а > 1) и т.д., то им соответствуют ощущения громкости звука Е 0 , 2 Е 0 , 3 Е 0 ….. Математически это означает, что уровень громкости звука пропорционален десятичному логарифму интенсивности звука. Если действуют два звуковых раздражителя с интенсивностями I и I 0, причем I 0 – порог слышимости, то согласно закону Вебера-Фехнера уровень громкости Е и интенсивность I 0 связаны следующим образом:



Е= k lg (I / I 0),

где k – коэффициент пропорциональности.

Если бы коэффициент k был постоянным, то следовало бы, что логарифмическая шкала интенсивностей звука соответствует шкале уровней громкостей. В этом случае уровень громкости звука так же, как и интенсивность, выражалась бы в белах или децибелах. Однако сильная зависимость k от частоты и интенсивности звука не позволяет измерение громкости свести к простому использованию формулы: Е= k lg(I / I 0).

Условно считают, что на частоте 1 кГц шкалы уровней громкости и интенсивности звука полностью совпадают, т.е. k = 1 и Е Б = lg (I / I 0). Чтобы различить шкалы громкости и интенсивности звука, децибелы шкалы уровней громкости называют фонами (фон).

Е ф = 10 k lg(I / I 0)

Громкость на других частотах можно измерить, сравнивая исследуемый звук

со звуком частотой 1 кГц.

Кривые равной громкости. Зависимость громкости от частоты колебаний в системе звуковых измерений определяется на основании экспериментальных данных при помощи графиков (рис. 2), которые называются кривыми равной громкости. Эти кривые характеризуют зависимость уровня интенсивности L от частоты ν звука при постоянном уровне громкости. Кривые равной громкости называют изофонамим.

Нижняя изофона соответствует порогу слышимости (Е = 0 фон). Верхняя кривая показывает верхний предел чувствительности уха, когда слуховое ощущение переходит в ощущение боли (Е = 120 фон).

Каждая кривая соответствует одинаковой громкости, но разной интенсивности, которые при определенных частотах вызывают ощущение этой громкости.

Звуковые измерения . Для субъективной оценки слуха применяется метод пороговой аудиометрии.

Аудиометрия – метод измерения пороговой интенсивности восприятия звука для разных частот. На специальном приборе (аудиометре) определяется порог слухового ощущения на разных частотах:

L п = 10 lg (I п /I 0),

где I п – пороговая интенсивность звука, которая приводит к возникновению слухового ощущения у испытуемого. Получают кривые – аудиограммы, которые отражают зависимость порога восприятия от частоты тона, т.е. это спектральная характеристика уха на пороге слышимости.

Сравнивая аудиограмму пациента (рис. 3, 2) с нормальной кривой порога слухового ощущения (рис. 3, 1), определяют разность уровней интенсивности ∆L=L 1 –L 2 . L 1 – уровень интенсивности на пороге слышимости нормального уха. L 2 - уровень интенсивности на пороге слышимости исследуемого уха. Кривая для ∆L (рис3, 3) называется потерей слуха.

Аудиограмма в зависимости от характера заболевания имеет вид, отличный от аудиограммы здорового уха.

Шумомеры – приборы для измерения уровня громкости. Шумомер снабжен микрофоном, который превращает акустический сигнал в электрический. Уровень громкости регистрируется стрелочным или цифровым измерительным прибором.

5. Физика слуха: звукопроводящая и звукопринимающая части слухового аппарата. Теории Гельмгольца и Бекеши.

Физика слуха связана с функциями наружного (1,2 рис.4), среднего (3, 4, 5, 6 рис.4) и внутреннего уха (7-13 рис. 4).

Схематическое представление основных элементов слухового аппарата человека: 1 – ушная раковина, 2 – наружный слуховой проход, 3 – барабанная перепонка, 4, 5, 6 – система косточек, 7 – овальное окно (внутреннего уха), 8 – вестибулярная лестница, 9 – круглое окно, 10 – барабанная лестница, 11 – геликотрема, 12 - улитковый канал, 13 - основная (базилярная) мембрана.

По выполняемым функциям в слуховом аппарате человека можно выделить звукопроводящую и звукопринимающую части, основные элементы которых представлены на рис.5.

1 – ушная раковина, 2 – наружный слуховой проход, 3 – барабанная перепонка, 4– система косточек, 5 – улитка, 6 – основная (базилярная мембрана, 7 – рецепторы, 8 – разветвление слухового нерва.

Основная мембрана весьма интересная структура, она обладает частотно-избирательными свойствами. На это обратил внимание еще Гельмгольц, который представлял основную мембрану аналогично ряду построенных струн пианино. По Гельмгольцу, каждый участок базилярной мембраны резонировал на определенную частоту. Лауреат Нобелевской премии Бекеши установил ошибочность этой резонансной теории. В работах Бекеши было показано, что основная мембрана является неоднородной линией передачи механического возбуждения. При воздействии акустическим стимулом по основной мембране распространяется волна. В зависимости от частоты эта волна по-разному затухает. Чем меньше частота, тем дальше от овального окна (7 рис.4) распространяется волна по основной мембране, прежде чем она начнет затухать. Так, например, волна с частотой 300 Гц до начала затухания распространяется приблизительно на 25 мм от овального окна, а волна с частотой 100 Гц достигает своего максимума вблизи 30 мм.

Согласно современным представлениям восприятие высоты тона определяется положением максимума колебаний основной мембраны. Эти колебания, воздействуя на рецепторные клетки кортиева органа, вызывают возникновение потенциала действия, который по слуховым нервам передается в кору головного мозга. Головной мозг окончательно обрабатывает поступающие сигналы.


1. Характеристики слухового ощущения, их связь с физическими

характеристиками звука. Зависимость громкости от частоты.

Закон Вебера-Фехнера.

Звуковой тон характеризуется частотой (периодом), гармоническим спектром, интенсивностью или силой звука и звуковым давлением. Все эти характеристики звука являются физическими или объективными характеристиками. Однако звук является объектом слухового ощущения, поэтому оценивается человеком субъективно, т.е. звук имеет и физиологические характеристики, которые являются отражением его физических характеристик. Задачей системы звуковых измерений является - установить эту связь и таким образом дать возможность при исследовании слуха у различных людей единообразно сопоставить субъективную оценку слухового ощущения с данными объективных измерений.

Частота колебаний звуковой волны оценивается как высота звука (высота тона). Чем больше частота колебаний, тем более высоким воспринимается звук.

Другой физиологической характеристикой является тембр, который определяется спектральным составом сложного звука. Сложные тоны одинаковых основных частот могут отличатся по форме колебаний и соответственно по гармоничному спектру. Это различие воспринимается как тембр (окраска звука). Например, ухо различает одну и ту же мелодию, воспроизведенную на разных музыкальных инструментах.

Громкость – ещё одна субъективная оценка звука, которая характеризует уровень слухового ощущения. Она зависит, прежде всего, от интенсивности и частоты звука.

Рассмотрим вначале зависимость чувствительности уха от частоты. Ухо человека не одинаково чувствительно к различным частотам при одной и той же интенсивности. Диапазон частот воспринимаемый им – 16Гц-20кГц. Способность человека воспринимать высокочастотные звуки ухудшается с возрастом. Молодой человек может слышать звуки с частотой до 20 000 Гц, но уже в среднем возрасте тот же человек не способен воспринимать звуки с частотой выше 12-14 кГц. В пределах частоты 1 000-3 000 Гц чувствительность наибольшая. Она снижается к частотам 16 Гц и 20 кГц. Очевидно, что характер изменения порога слышимости обратен изменению чувствительности уха, т.е. при увеличении частоты от 16 Гц, он вначале снижается, в области частот 1000-3000 Гц остается почти неизменным, затем опять повышается. Это отражено на графике зависимости изменения порога слышимости от частоты (см. рис.1).

График построен в логарифмическом масштабе. Верхняя кривая на графике соответствует болевому порогу. Нижний график называют кривой порогового уровня громкости, т.е. J 0 = f(ν).

Громкость звука зависит от его интенсивности. Она является субъективной характеристикой звука. Эти два понятия являются неравнозначными. Зависимость громкости от интенсивности звука имеет сложный характер, обусловленный чувствительностью уха к действию звуковых волн. Человек может только приблизительно оценить абсолютную интенсивность ощущения. Однако он достаточно точно устанавливает разницу при сравнении двух ощущений различной интенсивности. Это вызвало появление сравнительного метода измерения громкости. При этом измеряют не абсолютную величину громкости, а соотношение ее с некоторой другой величиной, которая принята за начальный или нулевой уровень громкости.

Кроме этого условились при сравнении интенсивности и громкости звука исходить из тона, с частотой 1 000 Гц, т.е. считать громкость тона частотой 1 000 Гц эталоном для шкалы громкости. Как уже было сказано, сравнительный метод применяется и при измерении интенсивности (силы) звука. Поэтому имеются две шкалы: одна для измерения уровней интенсивности; вторая - для измерения уровней громкости. В основе создания шкалы уровней громкости лежит важный психофизический закон Вебера-Фехнера. Согласно этому закону, если увеличивать раздражение в геометрической прогрессии (т.е. в одинаковое число раз), то ощущение этого раздражения возрастает в арифметической прогрессии (на одинаковую величину). Например, если интенсивность звука принимает ряд последовательных значений: a J 0 , a 2 J 0 , a 3 J 0 (a>1 - некоторый коэффициент), то соответствующие им изменения громкости звука будут равны Е 0 , 2Е 0 , 3Е 0 . Математически это означает, что громкость звука прямопропорциональна логарифму интенсивности.

Если действует звуковой раздражитель с интенсивностью J, то на основании закона Вебера-Фехнера уровень громкости Е связан с уровнем интенсивности следующим образом:

Е = КL = Кlg , (1)

где - относительная сила раздражения, К - некоторый коэффициент пропорциональности, зависящий от частоты и интенсивности, принятый равный единице для ν =1000 Гц. Следовательно, если принять К=1 на всех частотах, то в соответствии с формулой (1) мы получим шкалу уровней интенсивностей; при К≠1 - шкалу громкости, где единицей измерения будет уже не децибел, а фон . Учитывая, что на частоте 1кГц шкалы громкости и интенсивности совпадают, значит Е ф =10 .

Зависимость громкости от интенсивности и частоты колебаний в системе звуковых измерений определяется на основании экспериментальных данных при помощи графиков, которые называются кривыми равной громкости, т.е. J=f(ν) при Е = const. Нами была построена кривая нулевого уровня громкости или порога слышимости . Эта кривая является основной (нулевой уровень громкости - Е ф =0).

Если построить аналогичные кривые для различных уровней громкостей, например, ступенями через 10 фонов, то получится система графиков (рис.2), которая дает возможность найти зависимость уровня интенсивности от частоты при любом уровне громкости. Эти кривые построены на основании средних данных, которые были получены у людей с нормальным слухом. Нижняя кривая соответствует порогу слышимости, т.е. для всех частот Е ф =0 (для частоты ν=1кГц интенсивность J 0 = Вт/м 2). Исследование остроты слуха называется аудиометрией. При аудинометрии на специальном приборе аудиометре определяют у обследуемого порог слухового ощущения на разных частотах. Полученный график называют аудиограммой. Потеря слуха определяется путем сравнения ее с нормальной кривой порога слышимости.

2. Звуковые методы исследования в клинике.

Звуковые явления сопровождают ряд процессов, происходящих в организме, например, работа сердца, дыхание и т.д. Непосредственное выслушивание звуков, возникающих внутри организма, составляют один из важнейших приемов клинического исследования и называются аускультацией (выслушивание). Этот метод известен еще со 2-го века до н. э. Для этой цели используют стетоскоп - прибор в виде прямой деревянной или пластмассовой трубки с небольшим раструбом на одном конце и плоским основанием на другом для прикладывания уха. Звук от поверхности тела к уху проводится как самим столбом воздуха, так и стенками трубки.

Для аускультации используют фонендоскоп, состоящий из полой капсулы с мембраной, прикладываемой к телу больного. От капсулы идут две резиновых трубки, которые вставляются в уши врача. Резонанс столба воздуха в капсуле усиливает звук.

Для диагностики состояния сердечно-сосудистой системы применяется метод - фонокардиография (ФКГ) - графическая регистрация тонов и шумов сердца с целью их диагностической интерпретации. Запись производится с помощью фонокардиографа, состоящего из микрофона, усилителя, системы частотных фильтров и регистрирующего устройства.

Отличным от двух указанных методов является перкуссия - метод исследования внутренних органов посредством постукивания по поверхности тела и анализа возникающих при этом звуков. Характер этих звуков зависит от способа постукивания и свойств (упругости, плотности) тканей, находящихся вблизи места, по которому производится постукивание. Постукивание может производится специальным молоточком с резиновой головкой, пластинкой из упругого материала, называемой плессиметром, или постукиванием кончиком согнутого пальца одной руки по фаланге пальца другой, наложенной на тело человека. При ударе по поверхности тела возникают колебания, частоты которых имеют широкий диапазон. Одни колебания быстро будут затухать, другие, вследствие резонанса, усилятся и будут слышны. По тону перкуторных звуков определяют состояние и топографию внутренних органов.

3. Ультразвук (УЗ), источники УЗ. Особенности распространения ультразвуковых волн.

Ультразвуком называют звуковые колебания, частота которых занимает диапазон от 20 кГц до 10 10 Гц. Верхний предел принят совершенно условно из таких соображений, что длина волны в веществе и тканях для такой частоты оказывается соизмерима с межмолекулярными расстояниями с учетом того, что скорость распространения УЗ в воде и тканях одинакова. Смещение в УЗ волне описывается ранее рассмотренным уравнением волны.

Наибольшее распространение как в технике, так и в медицинской практике получили пьезоэлектрические излучатели УЗ. Пьезоэлектрическим излучателями служат кристаллы кварца, титаната бария, сегнетовой соли и др. Пьезоэффектом (прямым) называют явление возникновения на поверхностях упомянутых кристаллических пластинок противоположных по знаку зарядов под действием механических деформаций (рис.3а). После снятия деформации заряды исчезают.

Существует и обратный пьезоэффект, который нашел применение и в медицинской практике для получения высокочастотного УЗ. Если на посеребренные грани поверхности пластинки пьезоэлемента (рис.3б) подать переменное напряжение от генератора, то кварцевая пластинка придет в колебание в такт переменного напряжения генератора. Амплитуда колебаний будет максимальной, когда собственная частота кварцевой пластинки (ν 0) совпадает с частотой генератора (ν г), т.е. наступит резонанс (ν 0 = ν г). Приемник УЗ можно создать на основе прямого пьезоэлектрического эффекта. При этом под воздействием УЗ-волн происходит деформация кристалла, что приводит к появлению переменного напряжения, которое может быть измерено или зафиксировано на экране электронного осциллографа после предварительного его усиления.

Ультразвук может получатся с помощью аппаратов, основанных на явлении магнитострикции (для получения низких частот), которая заключается в изменении длины (удлинении и укорочении) ферромагнитного стержня, помещенного в высокочастотное магнитное поле. Торцы этого стержня будут излучать низкочастотный УЗ. Кроме указанных источников УЗ имеются механические источники (сирены, свистки), в которых механическая энергия преобразуется в энергию УЗ колебаний.

По своей природе УЗ, как и звук, является механической волной, распространяющейся в упругой среде. Скорости распространения звуковых и ультразвуковых волн примерно одинаковы. Однако длина волны УЗ значительно меньше, чем звука. Это позволяет легко сфокусировать УЗ колебания.

Ультразвуковая волна обладает значительно большей интенсивностью, чем звуковая, вследствие большой частоты она может достигать нескольких Ватт на квадратный сантиметр (Вт/см 2), а при фокусировке можно получить УЗ с интенсивностью 50 Вт/см 2 и более.

Распространение УЗ в среде отличается (благодаря малой длине волны) и другой особенностью - жидкости и твердые тела представляют собой хорошие проводники УЗ, а воздух и газ - плохие. Так, в воде при прочих равных условиях УЗ затухает в 1 000 раз слабее, чем в воздухе. При распространении УЗ в неоднородной среде возникает отражение его и преломление. Отражение УЗ на границе двух сред зависит от соотношения их волновых сопротивлений. Если УЗ в среде с w 1 = r 1 J 1 падает перпендикулярно на плоскую поверхность второй среды с w 2 = r 2 J 2 , то часть энергии пройдет через граничную поверхность, а часть отразится. Коэффициент отражения будет равен нулю, если r 1 J 1 = r 2 J 2 т.е. УЗ-энергия не будет отражаться от границы раздела поверхностей, а будет переходить из одной среды в другую без потерь. Для границ раздела воздух-жидкость, жидкость-воздух, твердое тело-воздух и наоборот коэффициент отражения будет равен почти 100%. Объясняется это тем, что воздух имеет очень малое акустическое сопротивление.

Вот поэтому во всех случаях связи излучателя УЗ с облучаемой средой, например, с телом человека, необходимо строго следить, чтобы между излучателями и тканью не было даже минимального воздушного слоя (волновое сопротивление биологических сред в 3000 раз больше волнового сопротивления воздуха). Чтобы исключить воздушный слой, поверхность УЗ излучателя покрывается слоем масла или оно наносится тонким слоем на поверхность тела.

При распространении УЗ в среде возникает звуковое давление, которое колеблется, принимая положительное значение в области сжатия и отрицательное в следующей за ней области разряжения. Так, например, при интенсивности ультразвука 2 Вт/см 2 в тканях человека создается давление в области сжатия + 2,6 атм., которое в следующей области переходит в разряжение - 2,6 атм. (рис.4). Сжатие и разряжение, создаваемые ультразвуком, приводят к образованию разрывов сплошной жидкости с образованием микроскопических полостей (кавитация). Если этот процесс происходит в жидкости, то пустоты заполняются парами жидкости или растворенными в ней газами. Затем на месте полости образуется участок сжатия вещества, полость быстро захлопывается, выделяется значительное количество энергии в малом объеме, что приводит к разрушению микроструктур вещества.

4. Медико-биологическое применение ультразвука.

Медико-биологическое действие УЗ весьма разнообразно. До настоящего времени нельзя еще дать исчерпывающего объяснения действия УЗ на биологические объекты. Не всегда легко выделить из многочисленных эффектов, вызываемых УЗ, основные. Тем не менее, показано, что при облучении УЗ биологических объектов необходимо считаться в основном со следующими действиями УЗ:

тепловое; механическое действие; косвенное, в большинстве случаев, физико-химическое действие.

ТЕПЛОВОЕ ДЕЙСТВИЕ УЗ имеет важное значение, т.к. процессам обмена веществ в биологических объектах свойственна значительная температурная зависимость. Тепловой эффект определяется поглощенной энергией. При этом используются небольшие интенсивности УЗ (около 1 Вт/см 2). Тепловой эффект вызывает расширение тканей, кровеносных сосудов в результате чего усиливается обмен веществ, наблюдается усиление кровотока. Благодаря тепловому действию сфокусированного ультразвука его можно использовать в качестве скальпеля для резки не только мягких тканей, но и костной ткани. В настоящее время разработан метод "сваривания" поврежденных или трансплантируемых костных тканей.

МЕХАНИЧЕСКОЕ ДЕЙСТВИЕ. Механические колебания частиц вещества в ультразвуковом поле могут вызвать положительный биологический эффект (микромассаж тканевых структур). К этому виду воздействия относится и микровибрация на клеточном и субклеточном уровне, разрушение биомакромолекул, разрушение микроорганизмов грибков, вирусов, разрушение злокачественных опухолей, камней в мочевом пузыре и почках. Ультразвук используется для дробления веществ, например, при изготовлении коллоидных растворов, высокодисперсных лекарственных эмульсий, аэрозолей. Путем разрушения растительных и животных клеток из них выделяют биологически активные вещества (ферменты, токсины). УЗ вызывает повреждения и перестройку клеточных мембран, изменение их проницаемости.

ФИЗИКО-ХИМИЧЕСКОЕ ДЕЙСТВИЕ УЛЬТРАЗВУКА. Действие ультразвука можно ускорить некоторые химические реакции. Считают, что это связано с активацией УЗ молекул воды, которые затем распадаются, образуя активные радикалы Н + и ОН - .

Медико-биологическое приложение УЗ можно разделить в основном на два направления: диагностика и терапия. К первому относится локационные методы с использованием главным образом импульсного излучения. Это эхоэнцефалография – определение опухолей и отеков мозга.

Локационные методы основаны на отражении УЗ от границы раздела сред с различной плотностью. К этому методу относится и ультразвуковая кардиография – измерение размеров сердца в динамике. УЗ локация используется и в офтальмологии для определения размеров глазных сред. Ультразвуковой эффект Доплера используется для изучения характера движения сердечных клапанов и скорости кровотока.

Весьма большое будущее ультразвуковых голографических методов получения изображения таких органов как почек, сердца, желудка и др.

Ко второму направлению относится ультразвуковая терапия. Обычно применяются УЗ с частотой 800 кГц и интенсивностью 1 Вт/см 2 и меньше. Причем первичными механизмами действия являются механическое и тепловое действие на ткань. Для целей ультразвуковой терапии используется аппарат УТП-ЗМ и др.

5. Инфразвук (ИЗ), особенности его распространения.

Действие инфразвуков на биологические объекты.

Инфразвуком (ИЗ) называют звуковые колебания, верхний диапазон которых не превышает 16 – 20 Гц. Нижний диапазон 10 -3 Гц. Большой интерес представляют ИЗ частотой 0,1 и даже 0,01 Гц. ИЗ входят в состав шумов. Источниками ИЗ являются движение (штормовое) морской или речной воды, шум леса, ветра, грозовые разряды, землетрясение и обвалы, колебания фундаментов зданий, станков, дорог от движущегося транспорта. ИЗ возникает во время вибраций механизмов, при обдувании ветром зданий, деревьев, столбов, при движении человека и животных.

Характерным свойством ИЗ является его малая поглощаемость средами. Поэтому он распространяется на большие расстояния. ИЗ хорошо распространяется в ткани организма человека, особенно в костной ткани. Скорость ИЗ-волн в воздухе 1200 км/ч, в воде 6000 км/ч.

Малая поглощаемость ИЗ позволяет по распространению его в земной коре обнаружить взрывы и землетрясения на большом расстоянии от источника. По измеренным ИЗ колебаниям прогнозируют цунами. В настоящее время разработаны чувствительные приемники ИЗ, с помощью которых, например, удается предсказать шторм за много часов до его наступления.

ИЗ колебания обладают биологической активностью, которая объясняется совпадением их частоты с альфа ритмом головного мозга.

ИЗ частотой 1-7 Гц с интенсивностью в 70 Дб в течение 8-10 мин. облучения вызывают: головокружение, тошноту, затруднение дыхания, чувство угнетения, головную боль, удушье. Все эти факторы усиливаются при повторном воздействии ИЗ. ИЗ определенной частоты может привести к смертельному исходу.

Вибрации механизмов являются источником ИЗ. В связи с неблагоприятным действием вибрации и ИЗ на организм человека, возникает вибрационная болезнь (ВБ). ВБ возникает при длительном воздействии указанных факторов на определенный участок ткани или органа человека и приводит к утомляемости не только отдельных органов, но и всего организма человека. Она приводит вначале к атрофированию мышц рук и других органов, к понижению чувствительности к механическим вибрациям, к появлению судорог пальцев рук, ног и других органов.

Предполагают, что первичный механизм действия ИЗ на организм имеет резонансную природу. Внутренние органы человека имеют собственную частоту колебаний. При воздействии ИЗ с частотой, равной собственной, возникает резонанс, который и вызывает указанные неприятные ощущения, а в некоторых случаях может привести к тяжелым последствиям: остановке сердца или разрыву кровеносных сосудов.

Частота собственных колебаний тела человека в положении лежа – (3 – 4 Гц), стоя – (5 – 12 Гц), грудной клетки – (5 –8 Гц), брюшной полости – (3 – 4 Гц) и других органов соответствуют частоте ИЗ.


Звук или шум возникает при механических колебаниях в твердых, жидких и газообразных средах. Шумом являются различные звуки, мешающие нормальной деятельности человека и вызывающие неприятные ощущения. Звук представляет собой колебательное движение упругой среды, воспринимаемое нашим органом слуха. Звук, распространяющийся в воздушной среде, принято называть воздушным шумом; звук, передающийся по строительным конструкциям, называют структурным. Движение звуковой волны в воздухе сопровождается периодическим повышением и понижением давления. Периодическое повышение давления в воздухе по сравнению с атмосферным в невозмущенной среде называют звуковым давлением р (Па), именно на изменение давления в воздухе реагирует наш орган слуха. Чем больше давление, тем сильнее раздражение органа слуха и ощущение громкости звука. Звуковая волна характеризуется частотой f и амплитудой колебания. Амплитуда колебаний звуковой волны определяет звуковое давление; чем больше амплитуда, тем больше звуковое давление и громче звук. Время одного колебания называют периодом колебаний Т (с): T=1/f.

Расстояние между двумя соседними участками воздуха, имеющими в одно и то же время одинаковое звуковое давление, определяется длиной волны X.

Часть пространства, в котором распространяются звуковые волны называют звуковым полем. Любая точка звукового поля характеризуется определенным звуковым давлением р и скоростью движения частиц воздуха.

Звуки в изотропной среде могут распространяться в виде сферических, плоских и цилиндрических волн. Когда размеры источника звука малы по сравнению с длиной волны, звук распространяется по всем направлениям в виде сферических волн. Если размеры источника больше, чем длина излучаемой звуковой волны, то звук распространяется в виде плоской волны. Плоская волна образуется на значительных расстояниях от источника любых размеров.

Скорость распространения звуковых волн с зависит от упругих свойств, температуры и плотности среды, в которой они распространяются. При звуковых колебаниях среды (например, воздуха) элементарные частички воздуха начинают колебаться около положения равновесия. Скорость этих колебаний v намного меньше скорости распространения звуковых волн в воздухе с.

Скорость распространения звуковой волны (м/с)

C=λ/Т или C=λf

Скорость звука в воздухе при t = 20 °С примерно равна 334, а стали - 5000, в бетоне - 4000 м/с. В свободном звуковом поле, в котором отсутствуют отраженные звуковые волны, скорость относительных колебаний

v = р/ρс,

где р - звуковое давление, Па; ρ - плотность среды, кг/м 3 ; ρс - удельное акустическое сопротивление сред (для воздуха ρс = 410 Па-с/м).

При распространении звуковых волн происходит перенос энергии. Переносимая звуковая энергия определяется интенсивностью звука I . В условиях свободного звукового поля интенсивность звука измеряют средним количеством энергии, проходящей в единицу времени через единицу поверхности, перпендикулярной направлению распространения звука.

Интенсивность звука (Вт/м 2) является векторной величиной и может быть определена из следующей зависимости

I=p 2 /(ρc); I=v∙p:

где р - мгновенное значение звукового давления, Па; v - мгновенное значение колебательной скорости, м/с.

Интенсивность шума (Вт/м 2), проходящего через поверхность сферы радиуса г, равна излучаемой мощности источника W, деленной на площадь поверхности источника:

I= W/(4πr 2).

Эта зависимость определяет основной закон распространения звука в свободном звуковом поле (без учета затухания), согласно которому интенсивность звука уменьшается обратно пропорционально квадрату расстояния.

Характеристикой источника звука является звуковая мощность W (Вт), которая определяет общее количество звуковой энергии, излучаемой всей поверхностью источника S в единицу времени:

где I н - интенсивность потока звуковой энергии в направлении нормали к элементу поверхности.

Если на пути распространения звуковых волн встречается препятствие, то в силу явлений дифракции происходит огибание препятствия звуковыми волнами. Огибание тем больше, чем больше длина волны по сравнению с линейными размерами препятствия. При длине волны меньше размера препятствия наблюдается отражение звуковых волн и образование за препятствием «звуковой тени», где уровни звука значительно ниже по сравнению с уровнем звука, воздействующим на преграду. Поэтому звуки низкой частоты легко огибают препятствия и распространяются на большие расстояния. Это обстоятельство необходимо всегда учитывать при использовании шумозащитных экранов.

В закрытом пространстве (производственном помещении) звуковые волны, отражаясь от преград (стен, потолка, оборудования), образуют внутри помещения так называемое диффузное звуковое поле, где все направления распространения звуковых волн равновероятны.

Разложение шума на составляющие его тона (звуки с одной частотой) с определением их интенсивностей называют спектральным анализом, а графическое изображение частотного состава шума - спектром. Для получения частотных спектров шумов производят измерение уровней звукового давления на различных частотах с помощью шумо-мера и анализатора спектра. По результатам этих измерений на фиксированных стандартных среднегеометрических частотах 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц строят спектр шума.

На рис! 11.1, а...г приведены графики звуковых колебаний в координатах (уровень звукового давления - время). На рис. 11.1, д...з изображены соответственно спектры звука в координатах (уровень звукового давления - частота). Частотный спектр сложного колебания, состоящего из множества простых тонов (колебаний), представлен рядом прямых линий разной высоты, построенных на различных частотах.

Рис. 11.1. Графики звуковых колебаний соответствующие им спектры звука.

Орган слуха человека способен воспринимать значительный диапазон интенсивностей звука - от едва различимых (на пороге слышимости) до звуков на пороге болевого ощущения. Интенсивность звука на грани болевого порога в 10 16 раз превышает интенсивность звука на пороге слышимости. Интенсивность звука (Вт/м 2) и звуковое давление (Па) на пороге слышимости для звука с частотой 1000 Гц соответственно составляют I 0 =10 -12 и p о = 2∙.1О -5 .

Практическое использование абсолютных значений акустических величин, например, для графического представления распределения звукового давления и интенсивностей звука по частотному спектру неудобно из-за громоздких графиков. Кроме того, важно учитывать факт реагирования органа слуха человека на относительное изменение звукового давления и интенсивности по отношению к пороговым величинам. Поэтому в акустике принято оперировать не абсолютными величинами интенсивности звука или звукового давления, а их относительными логарифмическими уровнями L, взятыми по отношению к пороговым значениям ρ о или I 0 .

За единицу измерения уровня интенсивности звука принят один бел (Б). Бел - это десятичный логарифм отношения интенсивности звука I к пороговой интенсивности. При I/I 0 =10 уровень интенсивности звука L =1B, при I/I 0 =100 L = 2Б; при I/I 0 =1000 L = 3Б и т. д.

Однако ухо человека четко различает изменение уровня звука на 0,1 Б. Поэтому в практике акустических измерений и расчетов пользуются величиной 0,1 Б, которая названа децибелом (дБ). Следовательно, уровень интенсивности звука (дБ) определяется зависимостью

L=10∙lgI/I 0 .

Так как I = Р 2 /ρс, то уровень звукового давления (дБ) вычисляют по формуле

L = 20lgP/P 0 .

Орган слуха человека и микрофоны шумомеров чувствительны к изменению уровня звукового давления, поэтому нормирование шумов и градация шкал измерительных приборов осуществляется по уровню звукового давления (дБ). В акустических измерениях и расчетах пользуются не пиковыми (максимальными) значениями параметров I; Р; W, а их среднеквадратичными значениями, которые при гармонических колебаниях в раз меньше максимальных. Введение среднеквадратичных величин определяется тем, что они непосредственно отражают количество энергии, содержащейся в соответствующих сигналах, получаемых в измерительных приборах, а также и тем, что орган слуха человека реагирует на изменение среднего квадрата звукового давления.

В производственном помещении находятся обычно несколько источников шума, каждый из которых оказывает влияние на общий уровень шума. При определении уровня звука от нескольких источников пользуются специальными зависимостями, так как уровни звука складываются не арифметически. Например, если каждая из двух виброплощадок создает шум в 100 дБ, то суммарный уровень шума при их работе будет 103 дБ, а не 200 дБ.

Два одинаковых источника совместно создают уровень шума на 3 дБ больше, чем уровень каждого источника.

Суммарный уровень шума от п одинаковых по уровню шума источников в точке, равноудаленной от них, определяют по формуле

L сум =L+10lg n

где L - уровень шума одного источника.

Суммарный уровень шума в расчетной точке от произвольного числа источников разной интенсивности определяют по уравнению

где L 1 , ..., L n - уровни звукового давления или уровни интенсивности, создаваемые каждым из источников в расчетной точке.

11.2. ДЕЙСТВИЕ ШУМА

НА ОРГАНИЗМ ЧЕЛОВЕКА. ДОПУСТИМЫЕ УРОВНИ ШУМА

С физиологической точки зрения шумом является любой звук, неприятный для восприятия, мешающий разговорной речи и неблагоприятно влияющий на здоровье человека. Орган слуха человека реагирует на изменение частоты, интенсивности и направленности звука. Человек способен различать звуки в диапазоне частот от 16 до 20 000 Гц. Границы восприятия звуковых частот неодинаковы для различных людей; они зависят от возраста и индивидуальных особенностей. Колебания с частотой ниже 20 Гц (инфразвук) и с частотой свыше 20 000 Гц (ультразвук), хотя и не вызывают слуховых ощущений, но объективно существуют и производят специфическое физиологическое воздействие на организм человека. Установлено, что длительное воздействие шума вызывает в организме различные неблагоприятные для здоровья изменения.

Объективно действие шума проявляется в виде повышенного кровяного давления, учащенного пульса и дыхания, снижения остроты слуха, ослабление внимания, некоторого нарушения координации движения и снижения работоспособности. Субъективно действие шума может выражаться в виде головной боли, головокружения, бессонницы, общей слабости. Комплекс изменений, возникающих в организме под влиянием шума, в последнее время медиками рассматривается как «шумовая болезнь».

Медико-физиологические исследования показали, например, что при выполнении сложных работ в помещении с уровнем шума 80...90 дБА рабочий в среднем должен затратить на 20% больше физических и нервных усилий, чтобы иметь производительность труда, достигаемую при шуме 70 дБА. В среднем можно считать, что снижение уровня шума на 6... 10 дБА ведет к росту производительности труда на 10... 12%.

При поступлении на работу с повышенным уровнем шума рабочие должны пройти медицинскую комиссию с участием отоларинголога, невропатолога, терапевта. Периодические осмотры работающих в шумных цехах должны производиться в следующие сроки: при превышении уровня шума в любой октавной полосе на 10 дБ - 1 раз в три года; от 11 до 20 дБ- 1 раз и два года; свыше 20 дБ - 1 раз в год. На работу в шумные цехи не принимаются лица моложе 18 лет, и рабочие, страдающие пониженным слухом, отосклерозом, нарушением вестибулярной функции, неврозом, заболеванием центральной нервной системы, сердечнососудистыми заболеваниями.

Основой нормирования шума является ограничение звуковой энергии, воздействующей на человека в течение рабочей смены, значениями, безопасными для его здоровья и работоспособности. Нормирование учитывает различие биологической опасности 4 шума в зависимости от спектрального состава и временных характеристик и производится в соответствии с ГОСТ 12.1.003-83. По характеру спектра шумы подразделяются: на широкополосные с излучением звуковой энергии непрерывным спектром шириной более одной октавы; тональные с излучением звуковой энергии в отдельных тонах.

Нормирование осуществляется двумя методами: 1) по предельному спектру шума; 2) по уровню звука (дБА), измеренного при включении корректировочной частотной характеристики «А» шумомера. По предельному спектру нормируются уровни звукового давления в основном для постоянных шумов в стандартных октав-ных полосах частот со среднегеометрическими частотами 63; 125; 250; 500; 1000; 2000; 4000; 8000 гц.

Уровни звукового давления на рабочих местах в нормируемом частотном диапазоне не должны превышать значений, указанных в ГОСТ 12.1.003- 83. Для приближенной оценки шума можно пользоваться характеристикой шума в уровнях звука в дБА (при включении корректирующей характеристики шумомера «А»), при которой чувствительность всего шумоизмерительного тракта соответствует средней чувствительности органа слуха человека на различных частотах спектра.

Нормирование учитывает большую биологическую опасность тонального и импульсного шума путем ввода соответствующих поправок.

Нормативные данные по октавным уровням звукового давления в дБ, уровням звука в дБА для производственных предприятий и транспортных средств приводятся в ГОСТ 12.1003- 83. Для жилых и общественных зданий нормирование производится по СН 3077-84 «Санитарные нормы допустимого шума в помещениях жилой застройки, общественных зданий и на территории жилой застройки».

11.3. ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ ШУМА

Для измерения уровня шума применяют шумомеры, основными элементами которых являются микрофон, преобразующий звуковые колебания воздушной среды в электрические, усилитель и стрелочный или цифровой индикатор. Современные объективные шумомеры имеют корректирующие частотные характеристики «А» и «Лин». Линейная характеристика (Лин) используется при измерениях уровней звукового давления в октавных полосах 63...8000 Гц, когда шумомер имеет одинаковую чувствительность по всему частотному диапазону. Для того чтобы показания шумомера приближались к субъективным ощущениям громкости, используется характеристика шумомера «А», которая примерно соответствует чувствительности органа слуха при разной громкости. Диапазон измеряемых шумомерами уровней шума 30...140 дБ.

Частотный анализ шума производится шумомером с присоединенным анализатором спектра, который представляет собой набор акустических фильтров, каждый из которых пропускает узкую полосу частот, определяемую верхней и нижней границей октавной полосы. Для получения высокоточных результатов в производственных условиях регистрируется лишь уровень звука в дБА, а спектральный анализ производится по магнитофонной записи шума, которая расшифровывается на стационарной аппаратуре.

В дополнение к основным приборам (шумомеру и анализатору) используются самописцы, записывающие на бумажную ленту распределение уровней шума по частотам спектра, и спектрометр, позволяющий представить анализируемый процесс на экране. Эти приборы фиксируют практически мгновенную спектральную картину шума.

11.4. СРЕДСТВА И МЕТОДЫ ЗАЩИТЫ ОТ ШУМА

Разработка мероприятий по борьбе с производственным шумом должна начинаться на стадии проектирования технологических процессов и машин, разработки плана производственного помещения и генерального плана предприятия, а также технологической последовательности операций. Этими мероприятиями могут быть: уменьшение шума в источнике возникновения; снижение шума на путях его распространения; архитектурно-планировочные мероприятия; совершенствование технологических процессов и машин; акустическая обработка помещений.

Уменьшение шума в источнике возникновения является наиболее эффективным и экономичным. В каждой машине (электродвигатель, вентилятор, виброплощадка) в результате колебаний (соударений) как всей машины, так и составляющих ее деталей (зубчатых передач, подшипников, валов, шестерен) возникают шумы механического, аэродинамического и электромагнитного происхождения.

При работе различных механизмов снизить шум на 5...10 дБ можно путем: устранения зазоров в зубчатых передачах и соединениях деталей с подшипниками; применения глобоидных и шевронных соединений; широкого использования пластмассовых деталей. Шум в подшипниках качения и зубчатых передачах уменьшается также при снижении частоты вращения и нагрузки. Часто повышенные уровни шума возникают при несвоевременном ремонте оборудования, когда ослабляется крепление деталей и образуется недопустимый износ деталей. Снижение шума вибрационных машин достигается посредством: уменьшения площади вибрирующих элементов; замены зубчатых и цепных передач на клиноременные или гидравлические; замены подшипников качения на подшипники скольжения, там, где это не вызывает значительного повышения расхода энергии (снижение шума до 15 дБ); повышения эффективности виброизоляции, так как снижение уровня вибрации деталей всегда приводит к уменьшению шума; снижения интенсивности процесса виброформирования за счет некоторого увеличения времени вибрирования.

Снизить шумы аэродинамического и электромагнитного происхождения часто можно только уменьшением мощности или рабочих скоростей машины, что неизбежно приведет к снижению производительности или нарушению технологического процесса. Поэтому во многих случаях, когда существенного уменьшения шума в источнике не удалось достичь, используют методы " Снижения 1 шума на путях его распространения, т. е. применяют шумозащитные кожухи, экраны, глушители аэродинамического шума.

Архитектурно-планировочные мероприятия предусматривают меры защиты от шума, начиная с разработки генерального плана предприятия строительной индустрии и плана цеха. Наиболее шумные и вредные производства рекомендуется компоновать в отдельные комплексы с обеспечением разрывов между ближайшими соседними объектами согласно Санитарным нормам СН 245-71. При планировке помещений внутри производственных и вспомогательных зданий нужно предусматривать максимально возможное удаление малошумных помещений от помещений с «шумным» технологическим оборудованием.

Рациональной планировкой производственного помещения можно добиться ограничения распространения шума, уменьшения числа рабочих, подверженных действию шума. Например, при расположении виброплощадок или шаровых мельниц в помещении, изолированном от других участков цеха, достигается резкое снижение уровня производственного шума и улучшение условий труда для большинства рабочих. Облицовку стен, потолка производственного помещения звукопоглощающими материалами следует применять в комплексе с другими методами уменьшения шума, так как только акустической обработкой помещения можно добиться снижения шума в среднем на 2...3 дБА. Такое снижение шума, как правило, недостаточно для создания в производственном помещении благоприятной шумовой обстановки.

К технологическим мероприятиям по борьбе с шумом относится выбор таких технологических процессов, в которых используются механизмы и машины, возбуждающие минимальные динамические нагрузки. Например, замена машин, использующих вибрационный метод уплотнения бетонной смеси (виброплощадка и т. д.), машинами с применением безвибрационной технологии изготовления железобетонных изделий, когда формование изделий осуществляется прессованием или нагнетанием под давлением бетонной смеси в форму.

Для защиты работающих в производственных помещениях с шумным оборудованием, применяются: звукоизоляция вспомогательных помещений, смежных с шумным производственным участком; кабины наблюдения и дистанционного управления; акустические экраны и звукоизолирующие кожухи; обработка стен и потолка звукоизолирующими облицовками или применение штучных поглотителей; звукоизолирующие кабины и укрытия для регламентированного отдыха работников шумных постов; вибродемпфирующие покрытия на корпуса и кожухи виброактивных машин и установок; виброизоляция виброактивных машин на основе различных систем амортизации.

В необходимых случаях меры коллективной защиты дополняются применением средств индивидуальной защиты от шума в виде различных наушников, вкладышей, шлемов.

11.5. ЗВУКОИЗОЛЯЦИЯ

Шум, распространяющийся по воздуху, может быть существенно снижен посредством устройства на его пути звукоизолирующих преград в виде стен, перегородок, перекрытий, специальных звукоизолирующих кожухов и экранов. Сущность звукоизоляции ограждения состоит в том, что наибольшая часть падающей на него звуковой энергии, отражается и только незначительная часть его.проникает через ограждение. Передача звука через ограждение осуществляется следующим образом: падающая на ограждение звуковая волна приводит его в колебательное движение с частотой, равной частоте колебаний воздуха в волне. Колеблющееся ограждение становится источником звука и излучает его и изолируемое помещение. Передача звука из помещения с источником шума в смежное помещение происходит по трем направлениям: 1 - через щели и отверстия; 2 - вследствие колебания преграды; 3 -через прилегающие конструкции (структурный шум) (рис. 11.2). Количество прошедшей звуковой энергии растет с увеличением амплитуды колебаний ограждения. Поток звуковой энергии

А при встрече с преградой частично отражается у4 отр, частично поглощается в порах материала преграды А погл и частично проходит за преграду за счет ее колебаний А прош - Количество отраженной, поглощенной и прошедшей звуковой энергии характеризуется коэффициентами: звукоотражения β=А отр /А; звукопоглощения α=А погл /А; звукопроводимости τ=A прош /А. По закону сохранения энергии α+β+τ=1. Для большинства применяемых строительных облицовочных материалов α= О,1 ÷0,9 на частотах 63...8000 Гц. Приближенно звукоизолирующие качества ограждения оцениваются по коэффициенту, звукопроводимости т. Для случая диффузного звукового поля значение собственной звукоизоляции ограждения R (дБ) определяется зависимостью

Звукоизоляция однослойных ограждений. Звукоизолирующие ограждающие конструкции принято называть однослойными, если они выполнены из однородного строительного материала или составлены из нескольких слоев различных материалов, жесткр (по всей поверхности) скрепленных между собой, или из материалов с сопоставимыми акустическими свойствами (например, слой кирпичной кладки и штукатурки). Рассмотрим характеристику звукоизоляции однослойного ограждения в трех частотных диапазонах (рис. 11.3). На низких частотах, порядка 20...63 Гц (частотный диапазон явлениями. Области резонансных колебаний ограждений зависят от жесткости и массы звукоизоляция ограждения определяется возникающими в нем резонансными ограждения, свойств материала. Как правило, собственная частота большинства строительных однослойных перегородок ниже 50 Гц. В первом частотном диапазоне рассчитать звукоизоляцию пока не удается. Однако определение звукоизоляции в этом диапазоне не имеет принципиального значения, так как нормирование уровней звукового давления начинается с частоты 63 Гц. Практически звукоизоляция ограждения в этом диапазоне незначительна вследствие относительно больших колебаний ограждения вблизи первых частот собственных колебаний, что графически изображено в виде провалов звукоизоляции в первом частотном диапазоне.


Рис. 11.2. Пути передачи звука из шумного помещения в смежное


(Z~3)f 0 0,5f Kp №

Рис. 11.3. Звукоизоляция однослойного ограждения в зависимости от частоты звука I),


На частотах, в 2...3 раза превышающих собственную частоту ограждения (частотный диапазон II), звукоизоляция определяется массой единицы площади ограждения. Жесткость ограждения в диапазоне II не влияет существенно на звукоизоляцию. Изменение звукоизоляции можно достаточно точно рассчитать по так называемому закону «массы»:

R = 20 lg mf - 47,5 ,

где R - звукоизоляция, дБ; т - масса 1 м 2 ограждения, кг; f - частота звука, Гц.

В частотном диапазоне II звукоизоляция зависит только от массы и частоты падающих звуковых волн. Здесь звукоизоляция возрастает на 6 дБ при каждом удвоении массы ограждения или частоты звука (т. е. 6 дБ на каждую октаву).

В частотном диапазоне III проявляется пространственный резонанс ограждения, при котором звукоизоляция резко уменьшается. Начиная с некоторой частоты звука f> 0,5f кр , амплитуда колебаний ограждения резко возрастает. Это явление происходит вследствие совпадения частоты вынужденных колебаний (частоты падающей звуковой волны) с частотой колебаний

ограждения. В данном случае происходит совпадение геометрических размеров и фазы колебаний ограждения с проекцией звуковой волны на ограждение. Проекция падающей на ограждение звуковой волны равна длине волны изгиба ограждения при совпадении фазы и частоты этих колебаний. В рассматриваемом диапазоне проявляется эффект волнового совпадения, в результате чего амплитуда колебаний волн изгиба ограждения возрастает, а звукоизоляция в начале диапазона резко падает. Изменение звукоизоляции здесь не поддается точному расчету. Наименьшую частоту звука (Гц), при которой становится возможным явление волнового совпадения, называют критической и вычисляют по формуле

где h - толщина ограждения, см; ρ - плотность материала, кг/м 3 ; Е - динамический модуль упругости материала ограждения, МПа.

На частоте звука выше критической существенное значение приобретает жесткость ограждения и внутреннее трение в материале. Рост звукоизоляции при f>f кр приближенно составляет 7,5 дБ при каждом удвоении частоты.

Приведенное выше значение собственной звукоизолирующей способности ограждения показывает, на сколько децибел снижается уровень шума за преградой, если предположить, что затем звуки распространяются беспрепятственно, т. е. отсутствуют другие преграды. При передаче шума из одного помещения в другое, в последнем уровень шума будет зависеть от эффекта многократных отражений звука от внутренних поверхностей. При высокой отражательной способности внутренних поверхностей будет проявляться «гулкость» помещения и уровень звука в нем будет больше (чем при отсутствии отражения) и, следовательно, будет ниже его фактическая звукоизоляция R ф. Звукопоглощением поверхностей ограждения помещения на заданной частоте является величина, рав-ная произведению площадей ограждения помещения S на ее коэффициенты звукопоглощения α ;

S экв =∑Sα

R ф =R+10 lg S экв /S

где S экв - эквивалентная площадь звукопоглощения изолируемого помещения, м 2 ; S - площадь изолирующей перегородки, м 2 .

Принцип звукоизоляции практически реализуется путем устройства звукоизолирующих стен, перекрытий, кожухов, кабин наблюдения. Звукоизолирующие строительные перегородки снижают уровень шума в смежных помещениях на 30...50 дБ.

Звукоизолирующие кожухи устанавливают как на отдельные механизмы (например, привод машины), так и на машину в целом. Конструкция кожуха многослойная: внешняя оболочка изготовлена из металла, дерева и покрытия упруговязким материалом (резина, пластмассы) для ослабления изгибных колебаний; внутренняя поверхность облицована звукопоглощающим материалом. Валы и коммуникации, проходящие через стенки кожуха, снабжают уплотнениями, а вся конструкция кожуха должна плотно закрывать источник шума. Для исключения передачи вибраций от основания кожух

Рис. 11.4. Звукоизолирующий кожух:1- отверстие для отвода тепла; 2- упруговязкий материал; 3- корпус; 4- звукопоглощающий материал; 5- виброизолятор

устанавливают на виброизоляторы, кроме того, в стенках кожуха предусматривают вентиляционные каналы для отвода теплоты, поверхность, которых облицовывают звукопоглощающим материалом (рис. 11.4).

Требуемую звукоизоляцию воздушного шума (дБ) стенками кожуха в октавных полосах определяют по формуле

R тр =L-L доп -10lg α обл +5

где L - октавный уровень звукового давления (получен по результатам измерений), дБ; L доп - допустимый октавный уровень звукового давления на рабочих местах (по ГОСТ 12.1.003- 83), дБ; α - реверберационный коэффициент звукопоглощения внутренней облицовки кожуха, определяемый по СНиП II-12-77. Рассчитанная по данному СНиПу звукоизолирующая способность металлического кожуха толщиной 1,5 мм представлена на рис. 11.5.

Для защиты от шума операторов бетоносмесительных узлов, дозаторных установок пульт управления располагают в звукоизолирующей кабине, снабженной смотровым окном с 2- и 3-слойным остеклением, герметичными дверями и специальной системой вентиляции.

От воздействия прямого звука операторы машин защищаются при помощи экранов, которые располагаются между источником шума и рабочим местом. Ослабление шума зависит от геометрических размеров экрана и длин волн звука. Когда размеры экрана больше длины звуковой волны, то за экраном образуется звуковая тень, где звук значительно ослаблен. Применение экранов оправдано для защиты от высоко и среднечастотных шумов

Рис 11,5 График звукоизоляции кожуха на стандартных частотах

Многослойные звукоизолирующие ограждения. Для уменьшения массы ограждений и повышения их звукоизолирующей способности часто применяют многослойные ограждения. Пространство между слоями заполняется пористо-волокнистыми материалами или оставляется воздушный промежуток шириной 40...60 мм. Стенки ограждения не должны иметь жестких связей, а их изгибная жесткость должна быть различной, что достигается применением стенок неодинаковой толщины с оптимальным отношением 2/4. На звукоизоляционные качества многослойного ограждения влияют масса слоя ограждения т 1 и m 2 , жесткость связей K, толщина воздушного промежутка или слоя пористого материала (рис. 11.6).

Под действием переменного звукового давления первый слой многослойной преграды начинает колебаться и эти колебания передаются упругому материалу, заполняющему промежуток между слоями. Благодаря виброизолирующим свойствам заполнителя колебания второго слоя ограждения будут значительно ослаблены, а следовательно, и шум, возбуждаемый колебаниями второго слоя преграды, будет существенно снижен. Чем больше жесткость материала, заполняющего промежуток между слоями, тем ниже звукоизоляция многослойного ограждения.

W

Щ//////////////А

щ к
m 2

У//////////Ш////,

Рис. 11.6. Принципы звукоизоляции многослойными ограждениями

Теоретически звукоизоляция двухслойного ограждения может составлять 70...80 дБ, но за счет косвенных путей распространения звука (через примыкающие конструкции) практическая звукоизоляция двойного ограждения не превышает 60 дБ. Для уменьшения косвенной передачи звука необходимо стремиться к предотвращению распространения изгибных волн по примыкающим конструкциям. С этой целью ограждение целесообразно виброизолировать с помощью упругих элементов.

Отверстия и щели в ограждениях значительно уменьшают звукоизолирующий эффект. Величина снижения звукоизоляции зависит от отношения размеров отверстий к длине падающей звуковой волны, от взаимного расположения отверстий. При размере отверстия d, большем длины волны λ, звуковая энергия, прошедшая через отверстие, пропорциональна его площади. Отверстия оказывают тем большее влияние на снижение звукоизоляции, чем выше собственная звукоизоляция ограждения. Небольшие отверстия d≤λ в случае диффузного звукового поля оказывают значительное влияние на снижение звукоизоляции. Отверстия в виде узкой щели приводят к большему снижению звукоизоляции (на несколько децибел), чем круглые отверстия равной площади.

11.6. ЗВУКОПОГЛОЩЕНИЕ

Звукопоглощение - это свойство строительных материалов и конструкций поглощать энергию звуковых колебаний. Поглощение звука связано с преобразованием энергии звуковых колебаний в теплоту вследствие потерь на трение в каналах звукопоглощающего материала. Звукопоглощение материала характеризуется коэффициентом звукопоглощения α, который равен отношению звуковой энергии, поглощенной материалом, к падающей звуковой энергии. К звукопоглощающим относятся материалы с α> 0,2.Облицовка внутренних поверхностей производственных помещений звукопоглощающими материалами обеспечивает снижение шума на 6...8 дБ в зоне отраженного звука и на 2...3 дБ в зоне прямого шума. В дополнение к облицовке помещений используют штучные звукопоглотители, представляющие собой объемные звукопоглощающие тела различной формы, свободно и равномерно подвешиваемые в объеме помещения. Звукопоглощающие облицовки размещают на потолке и верхних частях стен. Максимальное звукопоглощение можно получить при облицовке не менее 60 % общей площади ограждающих поверхностей помещения, причем наибольшая эффективность достигается в помещениях высотой 4...6 м. Снижение уровня звукового давления в акустически обработанном помещении в зоне отраженного звука рассчитывают по формуле

∆L = 20lgB 2 /B l

где В 1 и В 2 - постоянные помещения до и после акустической обработки его, определяемые по СНиП II-12-77

B 1 =B 1000 μ

где B 1000 - постоянная помещения, м 2 , на среднегеометрической частоте 1000 Гц, определяемая в зависимости от объема помещения V, (см. ниже); μ - частотный множитель, определяемый по табл. 1.11.

По найденной постоянной помещения В 1 для каждой октавной полосы вычисляют эквивалентную площадь звукопоглощения (м 2):

А=В 1 /(В 1 /S+1)

где S - общая суммарная площадь ограждающих поверхностей помещения, м 2 .

Зона отраженного звука определяется предельным радиусом r пр (м) - расстояния от источника шума, на котором уровень звукового давления отраженного звука равен уровню звукового давления, излучаемого данным источником.

Когда в помещении находится п одинаковых источников шума, то

B 8000 - постоянная перемещения на частоте 8000 Гц;

В 8000 =B 1000 μ 8000

Постоянная помещения В 2 (м 2) в акустически обработанном помещении определяется по зависимости

B 2 =(A′+∆A)/(1-α 1)

где A′=α{S -S обл)-эквивалентная площадь звукопоглощения поверхностями, не занятыми звукопоглощающей облицовкой, м 2 ; α - средний коэффициент звукопоглощения в помещении до его акустической обработки;


Под шумом понимают совокупность разных по силе и частоте звуков, возникающих в результате колебательного движения частиц в упругих средах (твердых, жидких, газообразных). Шум возникает при механических колебаниях в твердых, жидких и газообразных средах. Механические колебания в диапазоне частот 16…20 000 Гц воспринимаются слуховым органом человека в виде звука. Колебания с частотой ниже 16 Гц (инфразвук) и выше 20 000 Гц (ультразвук) не вызывают слуховых ощущений, но оказывают биологическое воздействие на организм человека. Звук характеризуется

частотой интенсивностью и звуковым давлением Скорость распространения звуковых волн в воздухе при t = 20°C равна 343 м/с, в стали - 5 000 м/с, в бетоне - 4 000 м/с.

Часть пространства, в котором распространяются звуковые волны, называется звуковым полем.

При звуковом колебании среды колебаться ее элементарные частички относительно начального своего положения. Во время колебаний в воздухе появляются области разряжения и области повышенного давления, которые определяют величину звукового давления как разность давлений в возмущенной и невозмущенной воздушной среде.

Слуховой аппарат человека обладает не одинаковой чувствительностью к звукам различной частоты. Минимальное звуковое давление и минимальная интенсивность звуков, воспринимаемых ухом человека определяют порог слышимости .

За эталонный принят звук с частотой 1000 Гц. При этой частоте порог слышимости по интенсивности составляет, а соответствующее ему звуковое давление -. Верхняя граница звуков, воспринимаемых человеком принимается за, так называемый, порог болевого ощущения , который составляет 120…130 дБ. При частоте 1000 Гц порог болевого ощущения возникает при и. Между порогом слышимости и болевым порогом лежит область слышимости (слухового восприятия).

Вибрация - это механические колебания и волны в твердых телах.

По способу передачи на человека вибрация подразделяется на локальную и общую.

Локальная вибрация передается через руки человека, воздействует на ноги сидящего человека, предплечья, контактирующие с вибрирующими поверхностями.

Общая вибрация передается через опорные поверхности на тело стоящего или сидящего человека.

Источниками локальной вибрации, передающейся на работающих, могут быть: ручные машины с двигателем или ручной механизированный инструмент; органы управления машинами и оборудованием; ручной инструмент и обрабатываемые детали.

Общая вибрация в зависимости от источника ее возникновения подразделяется на: общую вибрацию I категории - транспортную, воздействующую на человека на рабочем месте в самоходных и прицепных машинах, транспортных средствах при движении по местности, дорогам и агрофонам; общую вибрацию II категории - транспортно-технологическую, воздействующую на человека на рабочих местах в машинах, перемещающимися по специально подготовленным поверхностям производственных помещений, промышленных площадок, горных выработок; общую вибрацию III категории - технологическую, воздействующую на человека на рабочем месте у стационарных машин или передающуюся на рабочем месте, не имеющую источников вибрации.

Общая вибрация III категории по месту действия подразделяется на следующие типы: IIIа - на постоянных рабочих местах производственных помещений предприятий; IIIб - на рабочих местах складов, столовых, бытовых, дежурных и других вспомогательных производственных помещений, где нет машин, генерирующих вибрацию; IIIв - на рабочих местах в административных и служебных помещениях заводоуправления, конструкторских бюро, лабораториях, учебных пунктах, вычислительных центрах, здравпунктах, конторских помещениях и других помещениях работников умственного труда.

По временным характеристикам вибрация подразделяется на: а) постоянную , для которой спектральный или корректированный по частоте нормируемый параметр за время наблюдения (не менее 10 минут или время технологического цикла) изменяется не более чем в два раза (6 дБ) при изменении с постоянной времени в 1 с; б) непостоянную вибрацию , для которой спектральный или корректированный по частоте нормируемый параметр за время наблюдения (не менее 10 минут или время технологического цикла) изменяется более чем в раза (6 дБ) при изменении постоянного времени в 1 с.

Физиологическими характеристиками звука называют субъективные характеристики слухового ощущения звука слуховым аппаратом человека. К физиологическим характеристикам звука относится минимальная и максимальная частоты колебаний, воспринимаемые данным человеком, порог слышимости и порог болевого ощущения, громкость, высота, тембр звука.

    Минимальная и максимальная частоты колебаний, воспринимаемые данным человеком . Частоты звуковыхколебаний лежат в пределах 20-20000 Гц. Однако наименьшая воспринимаемая частота данным человеком обычно больше 20 Гц, а наибольшая - меньше 20000 Гц, что определяется индивидуальными особенностями строения слухового аппарата человека. Например: мин =32 Гц, макс =17900 Гц .

    Порогом слышимости называется воспринимаемая человеческим ухом минимальная интенсивность I o . Считается, что I o =10 -12 Вт/м 2 при =1000 Гц . Однако обычно для конкретного человека порог слышимости больше I o .

Порог слышимости зависит от частоты звукового колебания. На какой-то частоте (обычно 1000-3000 Гц) в зависимости от длины слухового канала слухового аппарата человека происходит резонансное усиление звука в человеческом ухе. При этом ощущение звука будет наилучшим, а порог слышимости будет минимальным. При уменьшении или увеличении частоты колебаний условие резонанса ухудшается (удаление по частоте от резонансной частоты) и порог слышимости соответственно повышается.

3. Порогом болевого ощущения называется испытываемое человеческим ухом болевое ощущение при интенсивностях звука выше некоторого значения I пор (звуковая волна при этом как звук не ощущается). Порог болевого ощущения I пор зависит от частоты (хотя и в меньшей степени, чем порог слышимости). На низких и высоких частотах порог болевого ощущения снижается, т.е. болевые ощущения наблюдаются при больших интенсивностях.

4. Громкостью звука называется уровень слухового ощущения человеком данного звука. Громкость зависит, прежде всего, от человека, воспринимающего звук. Например, при достаточной интенсивности на частоте 1000 Гц громкость может быть равна и нулю (для глухого человека).

Для данного конкретного человека, воспринимающего звук, громкость зависит от частоты, интенсивности звука. Как и для порога слышимости, громкость максимальна обычно на частоте 1-3 кГц, а с уменьшением или увеличением частоты громкость снижается.

Громкость звука зависит от интенсивности звука сложным образом. В соответствии с психофизическим законом Вебера-Фехнера громкость Е прямо пропорциональна уровню интенсивности:

E = k . lg(I/I 0 ), где k зависит от частоты и интенсивности звука.

Громкость звука измеряют в фонах . Считается, что громкость в фонах численно равна уровню интенсивности в децибелах на частоте 1000 Гц . Например, громкость звука Е=30 фон ; это означает, что данный человек по уровню восприятия ощущает указанный звук так же, как и звук, частотой 1000 Гц и уровнем силы звука 30 дБ . Графически (см. учебник) строят кривые равной громкости, которые индивидуальны для каждого конкретного человека.

С целью диагностики состояния слухового аппарата человека с помощью аудиометра снимают аудиограмму - зависимость порога слышимости от частоты.

5. Высотой звука называется ощущения человеком чистого тона. С повышением частоты увеличивается и высота тона. С повышением интенсивности высота тона незначительно снижается.

6. Тембром звука называется ощущение человеком данного сложного звукового колебания. Тембр звука - это окраска звука, по которой мы различаем голос того или иного человека. Тембр зависит от акустического спектра звука. Однако один и тот же акустический спектр воспринимается различными людьми по-разному. Так, если слуховой аппарат у двух человек поменять друг другу, а мозговой анализатор звука оставить тем же, то окраска звука от знакомых ему людей будет казаться другой, т.е. он может и не узнать голос знакомого человека или голос покажется измененным.



Рассказать друзьям