Что содержится в прививках для детей. Прививки уничтожают иммунитет

💖 Нравится? Поделись с друзьями ссылкой
Неотложные лечебные мероприятия при развитии поствакцинальных осложнений Словарь терминов
Список литературы
3.4. Состав отечественных и зарубежных вакцин, используемых для проведения рутинной иммунизации

На сегодняшний день в России зарегистрировано или находится в стадии регистрации достаточно большое количество вакцин импортного производства. Во многом состав их подобен отечественным аналогам, однако целый ряд вакцин в России не производится. Знание состава этих вакцин необходимо для того, чтобы иметь представление о возможных нежелательных реакциях и мерах предосторожности при их введении.

Прежде всего приведем перечень вакцин, которые можно использовать для профилактики основных "управляемых" инфекций .


Таблица 17. Перечень отечественных и зарубежных вакцин, используемых для профилактики некоторых инфекционных заболеваний.

Заболевания Название вакцин
Отечественные Зарубежные, зарегистрированные на территории России
Туберкулез Вакцина туберкулезная (БЦЖ) сухая для в/к введения
(Vaccinum tuberculosis BCG criodesiccatum) БЦЖ-м
Нет
Полиомиелит Вакцина полиомиелитная пероральная 1, 2, 3 типов
(Vac. Poliomyelitidis perorale types 1, 2, 3) из аттенуированных штаммов Сэбина
Imovax Polio (Имовакс полио) - инактивированная вакцина
Polio Sabin Vero (Полио Сэбин Веро)
Tetracoq 0,5 (Тетракок 0,5) - комбинированная 4-х компонентная вакцина против полиомиелита, дифтерии, коклюша и столбняка
Коклюш АКДС- адсорбированная коклюшно-дифтерийно-столбнячная вакцина Tetracoq 0,5 (Тетракок 0,5)
Дифтерия АКДС
АДС-анатоксин
АДС-м-анатоксин
АД-м-анатоксин
Tetracoq 0,5 (Тетракок 0,5)

Столбняк АС-анатоксин (анатоксин столбнячный очищенный адсорбированный жидкий)
АКДС
АДС-анатоксин
АДС-м-анатоксин
Tetracoq 0,5 (Тетракок 0,5)
D.T.Vax (Д.Т. Вакс - дифтерия, столбняк)
Imovax D.T.Adult (Имовакс Д.Т.Адюльт - дифтерия, столбняк)
Корь Вакцина коревая культуральная живая сухая Rouvax (Рувакс)
MMR-11(вакцина живая против кори, краснухи, паротита)
Паротит Вакцина паротитная культуральная живая сухая MMR-11 (вакцина живая против кори, краснухи, паротита)
Краснуха Вакцина живая культуральная лиофилизированная Rudivax (Рудивакс)
Гепатит В Вакцина против гепатита В ДНК рекомбинантная (vaccinum hepatitidies B DNA recombinant) H-B-Vax11
Engerix-B (Энджерикс-В)
Rec-HBsAg (республика Куба)
Комбинированные вакцины, содержащие HBsAg: Тританрикс, Инфанрикс
Гепатит А Геп-А-инВак (Hep-A-enVac) Avaxim
Havrix-A
Грипп Живые аллантоисные вакцины (использовались только в СССР)
Инактивированная вакцина для лиц старше 18 лет (НИИЭМ им. Л.Пастера, г.Санкт-Петербург)
Искусственная вакцина - гриппол - проходит испытания (Институт Иммунологии МЗ РФ)
xxx
Пневмококковая инфекция Нет Pneumo-23
Гемофильная палочка Нет Act-Hib
Менингококковая инфекция Полисахаридная вакцина против менингококка группы А Meningo A+C

Как видно из представленного перечня, практикующий врач может иметь дело с довольно большой группой вакцин, причем для профилактики ряда инфекций (например, гепатит В) наряду с отечественной предлагается 3-4 импортных вакцины.

С одной стороны, такое многообразие дает возможность врачу подобрать оптимальные варианты иммунизации, а с другой - заставляет подробно изучать характеристики разных вакцин, сравнивая при этом не только качество антигена, используемого в вакцине и метод его получения, но также другие компоненты вакцины.

С этой целью считаем необходимым привести краткие сведения о составе как отечественных, так и импортных вакцин.

3.4.1. Состав вакцин, входящих в прививочный календарь
Отечественные вакцины

Прежде всего приведем характеристику отечественных вакцин, используемых как у детей, так и у взрослых. Кроме того, приводим рекомендации по способу введения вакцин, считая это достаточно важным моментом в правильной организации вакцинации.


Таблица 18. Состав отечественных вакцин, входящих в прививочный календарь.

Название Состав
БЦЖ Живые микобактерии вакцинного штамма БЦЖ-1, лиофилизированные в 1,5% растворе глутамината натрия. 1 ампула содержит 1 мг вакцины БЦЖ, что составляет 20 доз (по 0,05 мг). Хранить при температуре до 4 o С. Перед употреблением развести стерильным 0,9% раствором хлорида натрия
БЦЖ-М Содержит уменьшенное число микробных тел
АКДС 1 ампула (1 мл - 2 дозы) содержит 20 млрд убитых коклюшных микробных клеток, 30 флокулирующих единиц (ЛФ) дифтерийного анатоксина, 10 антитоксинсвязывающих единиц (ЕС) столбнячного анатоксина. В одной прививочной дозе 0,5 мл содержится не менее 30 международных иммунизирующих единиц (МИЕ) дифтерийного анатоксина и не менее 60 МИЕ столбнячного анатоксина, 4 МИЕ - коклюшной вакцины. Консервант - мертиолят в концентрации 0,01%. Адсорбент - гидроокись алюминия. Хранить при температуре 4-6 o С. Не замораживать!
АДС В 1 ампуле (1 мл - 2 дозы) содержится 60 флокулирующих единиц (ЛФ) дифтерийного анатоксина, 20 антитоксинсвязывающих единиц (ЕС) очищенного столбнячного анатоксина. В 1 прививочной дозе 0,5 мл содержится не менее 30 МИЕ дифтерийного анатоксина и не менее 40 МИЕ столбнячного анатоксина. Консервант - мертиолят в концентрации 0,01%. Хранить при температуре 4-6 o С. Не замораживать!
АДС-М В 1 ампуле (1 мл - 2 дозы) содержится 5 ЛФ дифтерийного анатоксина, 5 ЕС столбнячного анатоксина. Консервант - мертиолят в концентрации 0,01%
АД-М В 1 ампуле (1,0 мл) содержится 10 ЛФ дифтерийного анатоксина. Консервант - мертиолят в концентрации 0,01%. Не замораживать!
ОПВ (живая полиомиелитная оральная вакцина) Вакцина содержит аттенуированные (ослабленные) штаммы Сэбина вируса полиомиелита типов 1, 2, 3, полученных на первичной культуре клеток почек африканских зеленых мартышек. Стабилизатор - раствор хлористого магния. Соотношение типов 71,4%-7,2%-21,4%. Срок хранения при температуре - 20 o С - 2 года, при температуре 4-8 o С - 6 мес.
ЖКВ (живая коревая вакцина) Культуральная живая сухая вакцина, получаемая методом культивирования в первичной культуре клеток эмбрионов японских перепелов или перепелов линии "фараон" аттенуированного штамма вируса кори Ленинград-16 (Л-16) или его клонированного варианта штамма Москва-5. Хранить при температуре 4-8 o С
ЖПВ (живая паротитная вакцина) Из аттенуированного штамма вируса паротита - вакцинный штамм Ленинград-3 (Л-3), выращенного на культуре клеток эмбрионов японских перепелов или перепелов линии "Фараон". Содержит следовое количество неомицина или канамицина. Хранить при температуре 4-8 o С
Вакцина против краснухи Живой аттенуированный вирус, выращенный на культуре диплоидных клеток человека. Вакцина лиофилизированная. Перед введением разводят в 0,5 мл растворителя. Хранению не подлежит
Вакцина против гепатита В Рекомбинантная вакцина (субъединица гена вируса гепатита В встраивается в дрожжевые клетки, после цикла культивирования из дрожжевых клеток выделяется антиген НВs-Аg. Выделенный НВs-Аg подвергается очистке от дрожжевых грибов). Адсорбент - гидроокись алюминия. Консервант - мертиолят 1:20000

Анализ причин нежелательных реакций на вакцины показывает, что нельзя упускать из виду строгое соблюдение указаний по технике введения вакцин. Более того, формирование иммунитета так же напрямую зависит от соблюдения способа введения вакцин. Учитывая важность этого вопроса для практического врача остановимся подробнее на его рассмотрении .


Таблица 19. Способы и дозы введения отечественных вакцин, входящих в прививочный календарь.

Название Разовая доза, способ введения
БЦЖ
БЦЖ-М Строго в/к, доза 0,05 мг в объеме 0,1 мл, на границе верхней и средней трети наружной поверхности левого плеча
АКДС В/м, объем - 0,5 мл (предпочтительно введение в передне-наружную часть бедра, возможно в верхне-наружный квадрант ягодицы)
АДС
АДС-М В/м, объем - 0,5 мл (в верхне-наружный квадрант ягодицы или передне-наружную часть бедра)
АД-М В/м, объем - 0,5 мл (в верхне-наружный квадрант ягодицы или передне-наружную часть бедра). Детям старшего возраста и взрослым можно вводить п/к в подлопаточную область
ОПВ 1 доза - 2 капли (из флакона, содержащего в 5 мл 50 доз), 1 доза - 4 капли (из флакона, содержащего в 5 мл 25 доз). Запивать водой не разрешается. В течение часа после прививки ребенка не кормить
ЖКВ
ЖПВ П/к, 0,5 мл под лопатку или в область плеча (между нижней и средней третью плеча с наружной стороны)
Вакцина против краснухи П/к или в/м, объем - 0,5 мл (в соответствиии с избранным способом введения)
Вакцина против гепатита В В/м, 1 доза - 20 мкг. Детям и подросткам в область бедра, взрослым - в дельтовидную мышцу
Импортные вакцины

В России используется целый ряд вакцин, производимых крупными иностранными фирмами. Для того, чтобы познакомить врачей с составом этих вакцин, приводим их перечень .


Таблица 20. Состав некоторых импортных вакцин.

Название вакцины Состав
Имовакс Полио Инактивированная, из вирусов полиомиелита 3-х типов (1, 2, 3), культивируемых на клеточной линии ВЕРО. Консервант - формальдегид (0,005 мл), 2-феноксиэтанол (0,1 мг). Хранить при температуре +2-+8 o С
Полио Сэбин ВЕРО Из 3-х типов аттенуированного живого вируса полиомиелита, культивируемых на клеточной линии ВЕРО. Соотношение типов вируса устанавливается в зависимости от требований официальных органов.
Содержит человеческий альбумин - 5,0 мг. Для обеспечения окраски - фенол красный. Стабилизатор - хлорид магния
Рувакс Живой гиператтенуированный вирус кори (штамм Schwarz), культивируемый на куриных эмбрионах. Человеческий альбумин (стабилизатор для лиофилизации), следы неомицина. Вакцина лиофилизированная. Растворитель - вода для инъекций.
Хранить при температуре 2-8 o С
Рудивакс Аттенуированный вирус краснухи (штамм Wistar RA 27/3М), культивируемый на диплоидных клетках человека. Следы неомицина. Вакцина лиофилизированная. Растворитель - вода для инъекций. Хранить при температуре 4-8 o С
Тетракок 05 Содержит: дифтерийный анатоксин - 30 международных единиц (МЕ), столбнячный анатоксин - 60 МЕ, коклюшную палочку - 4 МЕ, инактивированный вирус полиомиелита 3 типов.
Дифтерийный и столбнячный токсины инактивированы формалином; коклюшные палочки инактивируют путем тепловой обработки; вирус полиомиелита, культивируемый на клеточной линии ВЕРО, инактивируют формалином. Хранить при температуре 2-8 o С. Не замораживать!
Д.Т.Вакс Содержит: очищенный дифтерийный анатоксин - 30 МЕ, столбнячный анатоксин - 40 МЕ, анатоксины инактивированы формалином, адсорбент - гидроокись алюминия (1,25 мг), консервант - меркуротиолят (0,05 мг); раствор хлорида натрия 0,5 мг. Хранить при температуре 2-8 o С. Не замораживать!
Имовакс
Д.Т.Адюльт
Содержит: очищенный столбнячный анатоксин - 40 МЕ, дифтерийный анатоксин - 2 флоккулирующие единицы, консервант - меркуротиолят (до 0,05 мг), адсорбент - гидроокись алюминия; раствор натрия хлорида до 0,5 мл. Хранить при температуре 2-8 o С. Не замораживать!
М-М-R II Содержит: живые аттенуированные вирусы краснухи - штамм Wistar RA 27/3, выращенные в культуре диплоидных клеток человека (W1-38); паротита - штамм Jeryl Lynn, выращенные в культуре клеток куриного эмбриона; кори - штамм Edmonston, выращенные в культуре клеток куриного эмбриона; следы неомицина; стабилизаторы (сорбитол и гидролизированный желатин)
АКТ-ХИБ Содержит полисахарид Haemophilus influenzae типа В, конъюгированный со столбнячным протеином - 10 мкг, гидроксиметил аминометан - 0,6 мг, сахарозу - 42,5 мг, растворитель - NaCl 2,0 мг, вода для инъекций до 0,5 мл. Лекарственная форма - лиофилизат
Ваксигрип Содержит инактивированный, очищенный вирус гриппа различных штаммов, состав которых изменяется ежегодно, в соответствии с рекомендациями ВОЗ. Вирусы гриппа культивируют на куриных эмбрионах и инактивируют формалином
Энджерикс В Рекомбинантная (с использованием дрожжевых клеток). Препарат содержит: поверхностные антигены вируса гепатита В. Адсорбент - гидроокись алюминия. Хранить при температуре 2-8 o С. Не замораживать!
Н-В-Vax II Содержит рекомбинантный поверхностный антиген вируса гепатита В продуцируемый дрожжевыми клетками, менее 1% дрожжевого белка. Не замораживать!
Тританрикс геп В Hib Комбинированная вакцина - содержит дифтерийный и столбнячный анатоксины, цельноклеточную инактивированную коклюшную палочку, HbsAg
Инфанрикс Геп В Содержит дифтерийный и столбнячный анатоксины, бесклеточную коклюшную вакцину и HBsAg. Эта вакцина обладает меньшей реактогенностью и постепенно вытесняет тританрикс
Хаврикс А Поступила на рынок с 1992 года. Выпускается в 2-х вариантах: "Хаврикс 1440" для взрослых и "Хаврикс 720" для детей. Обеспечивает образование специфических антител к вирусу гепатита А после введения одной дозы (показатель сероконверсии более 98% через 1 мес. после вакцинации). Бустерная доза - спустя 6-12 мес. Для "Хаврикс-1440" - показания разрабатываются. Первичная иммунизация взрослых однократная. У 88% вакцинированных специфические антитела обнаруживаются на 15 сутки, а через 1 мес. у 91%. хаврикс 720 - у детей 1-го года до 18 лет. Спустя 15 дней антитела обнаруживают у 93,5, а спустя 1 мес. у 99% вакцинируемых. Бустерная иммунизация - спустя 6-12 мес.
Аваксим В стадии регистрации
Твинрикс В результате введения формируется иммунитет к вирусам А и В. Безопасна. Используется в ряде европейских стран

Если с отечественными вакцинами медицинским работникам приходится встречаться ежедневно и, следовательно, знание техники введения вакцин должно быть достаточно полным, то, что касается импортных препаратов - это пока малознакомая область. Это требует от врачей и средних медработников освоения навыков работы с импортными препаратами.

Отклонения от техники вакцинации

Не допускается отклонений от правильной техники вакцинации, так как это может привести к целому ряду нежелательных явлений:

– Снижению иммуногенности (например, когда вакцина против гепатита В вводится в ягодицу, а не дельтовидную мышцу, или если вакцина вводится в/к, а рекомендуется в/м).
– Опасности нежелательных реакций (например, если АКДС вводится п/к, а не в/м.).
– Нарушению формирования протективного иммунитета из-за введение доз меньшего объема. Не допустимо также введение увеличенных доз вакцины из-за усиления местных или системных концентраций антигенов или других составляющих вакцин. Не рекомендуется использование нескольких малых доз, которые в сумме составили бы одну нужную.

Наши уважаемые читатели долго ждали и наконец дождались. Сегодня мы начинаем подробно разбирать состав вакцин. Нас часто упрекали в том, что мы говорим о теории, а практика она штука суровая и якобы с этой самой теорией не бьется.

Чтобы не быть теоретиками в столь важно вопросе мы проанализировали составы 27 наиболее распространенных вакцин из национального календаря РФ. Мы не стали включать вакцины от энцефалита, туляремии и прочие эндемичные заболевания, и, возможно, если порыться, можно найти еще другие варианты вакцин, зарегистрированные в РФ от тех же болезней. Но мы не ставили целью полный обзор рынка, и для целей анализа достаточно было взять самые ходовые.

27 вакцин, составы которых мы проанализировали (по производителям)

  1. Импортные

ABBOTT BIOLOGICALS, B.V.:

- «Инфлювак»;

GlaxoSmithKline Biologicals:

- «Инфанрикс»,

- «Инфанрикс-гекса»,

- «Полиорикс»,

- «Приорикс»,

- «Варилрикс»;

MERCK SHARP & DOHME, Corp.:

- «Ротатек»;

- «Превенар-13»;

SANOFI PASTEUR, Inc.:

- «Пентаксим»,

- «Ваксигрипп»,

- «Менактра».

2. Отечественные :

НПО «Микроген»:

Вакцина туберкулезная БЦЖ,

- «Совигрипп»,

- «Гриппол»,

Краснушная вакцина (2 разных состава с разных заводов),

Дивакцина корь+паротит,

Коревая моновакцина (2 разных состава с разных заводов).

«Форт» (СПбНИИВС):

- «Ультрикс».

НПО «Петровакс Фарм»:

- «Гриппол Плюс».

Комбиотех НПК:

Вакцина от вируса гепатита В (ВГВ).

«Биннофарм»:

- «Регевак В».

ФНЦИРИП им. М. П. Чумакова РАН:

- «БиВак полио» (ОПВ).

«Нанолек»:

- «ПОЛИМИЛЕКС» (ИПВ).

В своем повествовании мы будем придерживаться следующего плана:

Сначала рассмотрим составы вакцин, группируя вещества по их функциям.

Потом подсчитаем, в скольких вакцинах из указанных есть эти компоненты.

И, наконец, разберем в деталях наиболее устрашающие мифы по поводу разных компонентов.

Но прежде мы рассмотрим основные понятия токсикологии. Ведь важно иметь представление, как яды действуют на организм, чтобы понять, действительно ли в вакцинах содержится что-то, способное отравить.

Токсикология

Токсикология (от греч. toxicon - яд и logos - учение) - область медицины, изучающая законы взаимодействия живого организма и яда.

В роли последнего может оказаться практически любое химическое соединение, попавшее в организм в количестве, способном вызвать нарушения жизненно важных функций и создать опасность для жизни. Чем меньшее количество вещества (доза) вызывает расстройства жизнедеятельности организма, тем токсичнее считается вещество. Вещество, вызывающее отравление или смерть при попадании в организм в малом количестве, называется ядом.

Яд - чужеродное (экзогенное) химическое соединение, нарушающее нормальное течение биохимических процессов в организме.

Токсичность - свойство вещества вызывать отравление.

Минимальная смертельная доза - доза яда, вызвавшая гибель хотя бы одного человека.

Минимальная токсическая доза - наименьшее количество яда, способное вызвать клиническую картину отравления без летального исхода.

Отравление - патологическое состояние, обусловленное нарушением физиологических биохимических процессов, протекающих в организме, в результате воздействия яда, проявляющееся комплексом клинических синдромов, физиологическими и морфологическими изменениями. В соответствии с принятой терминологией отравлением обычно называют только те интоксикации, которые вызваны «экзогенными» ядами, поступившими в организм извне.

Летальный синтез – образование метаболитов ядовитого вещества обладающих большей токсичностью чем первичное вещество .

Даже яд в дозе, многократно меньшей, чем токсическая, может быть безопасен. Смертельная доза воды в сутки индивидуальна для каждого человека, но в среднем составляет 6 - 7 литров. Для детей эта цифра в 2 раза ниже.

Смертельная доза поваренной соли рассчитывается, исходя из веса человека, 3 грамма соли на 1 кг веса. Например, для человека весом 60 кг, смертельная доза соли составляет 180 грамм.

Задачи токсикологии

В основе общей токсикологии лежит учение о движении токсичных веществ в организме: пути их поступления, распределения, метаболического превращения (биотрансформация) и выведения.

Первой задачей токсикологии является обнаружение и характеристика токсических свойств химических веществ, которые способны вызвать в организме животных или человека патологические изменения, а также изучение условий, при которых эти свойства возникают, наиболее ярко проявляются и исчезают.

Взаимодействие яда с организмом изучается в двух аспектах:

Как влияет вещество на организм (токсикодинамика),

Что происходит с веществом в организме (токсикокинетика).

Второй задачей токсикологии является определение зоны токсического действия изучаемого химического вещества (токсикометрия). Порог однократного (острого) действия токсического вещества - минимальная пороговая доза , вызывающая изменения показателей жизнедеятельности организма, выходящие за пределы приспособительных физиологических реакций.

Среднесмертельная (смертельная) доза (LD50) - количество яда, вызывающее гибель 50 % (100 %) подопытных животных при определенном способе введения (внутрь, на кожу и т.д.) в течение 2 недель последующего наблюдения. Выражается в миллиграммах вещества на 1 кг массы тела животного (мг/кг), при ингаляционном воздействии - в миллиграммах на 1 куб. метр воздуха (мг/м?).

Зона острого токсического действия - отношение среднесмертельной дозы к порогу однократного действия. Величина, которая характеризует токсическую опасность химического вещества. Чем больше эта величина, тем безопаснее данное вещество .

Токсический эффект может быть оценен при помощи определения функциональных или структурных изменений органов и систем. Поэтому третьей задачей общей токсикологии является изучение клинических и патоморфологических признаков отравления при различных путях поступления яда в организм. Отравление можно рассматривать как химическую травму организма, и задача токсиколога установить ее непосредственную локализацию и общую реакцию организма.

Большое теоретическое и практическое значение имеет определение «избирательной токсичности» яда, то есть его способности в большей степени повреждать определенные клетки или ткани, не затрагивая при этом другие, с которыми он находится в непосредственном контакте. Получение такой информации необходимо для изыскания эффективных противоядий (антидотов) и других средств лечения, а также способов предупреждения отравлений.

Четвертой задачей токсикологии является разработка основ экстраполяции на человека полученных в эксперименте данных, так как показатели токсичности зависят не только от свойств яда, но и от видовой, половой, возрастной и индивидуальной чувствительности к нему организма. .

В клинической токсикологии традиционно используется понятие условной смертельной дозы , которое соответствует минимальной дозе, вызывающей смерть человека при однократном воздействии данного вещества. Экспериментальное определение смертельной дозы невозможно. Эта величина, как правило, может быть определена приблизительно, так как регистрируется по анамнестическим или другим, обычно косвенным, данным при случайных или преднамеренных острых отравлениях.

Более информативны объективные данные о токсической концентрации химических соединений в крови больных (мкг/мл, или мэкв/л), полученные при специальных исследованиях в химико-токсикологических лабораториях центров по лечению отравлений. Основными параметрами клинической токсикометрии являются:

Пороговая концентрация ядов в крови, при которой обнаруживаются первые симптомы отравления;

Критическая концентрация, соответствующая развернутой клинической картине отравлений;

Смертельная концентрация, при которой обычно наблюдается смертельный исход .

Антигены

Антигены - это основное действующее вещество в вакцинах. Как правило, это белки и/или полисахариды, характерные для того или иного патогена, не токсичные для организма человека.

В зависимости от вида вакцин (подробно рассматривали в блоке «Иммунитет» , раздел «Такие разные вакцины» ), антигены могут быть представлены по разному:

В качестве структурных компонентов живых возбудителей инфекции (вакцины БЦЖ, краснушная, коревая, паротитная вакцина, ОПВ);

В качестве структурных компонентов убитых возбудителей инфекции (ИПВ, коклюшная цельноклеточная вакцина);

Антигены, выделенные из убитых возбудителей («Инфлювак», коклюшная ацеллюлярная вакцина);

Антигены, выделенные из убитых возбудителей, конъюгированные с белком-носителем («Менактра»);

Антигены, синтезированные в генно-модифицированной клеточной культуре, без участия возбудителя (вакцина от гепатита В).

Итого: в состав вакцин входят либо отдельные антигены возбудителей болезни, либо сами возбудители со всеми своими рогами и копытами антигенами в полном объеме, и иммунная система запоминает «портрет» или «особые приметы» этих преступников, чтобы при встрече с ними лично узнать их и обезвредить.

Важно! Точно такие же особые приметы (антигены) есть у диких видов вакциноуправляемых инфекции. При вакцинации мы знакомим нашу иммунную систему с информацией об антигенах у той или иной инфекции в контролируемых условиях. Именно за счет этого вакцинация эффективна.

Большинство антигенов – вещества со сложной структурой. Для обеспечения эффективности вакцинации важно, чтобы антигены сохраняли свою структуру и оставались похожими на антигены диких штаммов. Это необходимо для формирования правильного иммунного ответа.

Если структура антигенов в составе вакцин будет нарушена, то иммунная система распознает измененный антиген, непохожий на антиген дикого патогена. Нужного эффекта от вакцинации не получится, а при встрече с дикой инфекцией антитела, полученные к вакцине, не узнают «в лицо» лазутчиков. Именно поэтому в вакцины добавляют различные компоненты, обеспечивающие неизменность и сохранность антигенов. Основные - это буферы, консерванты, стабилизаторы.

Антигены в составе вакцин не являются токсичными. Вот природные «натуральные» антигены вполне могут быть очень даже токсичны. Например, столбнячный или дифтерийный токсины. Это белки, малой концентрации которых достаточно для нарушения функций организма. То есть это яды в полном смысле этого слова. В состав вакцин от дифтерии и столбняка входят обезвреженные токсины, не способные вызывать отравление, но достаточные для выработки иммунного ответа.

Буферы

Для сохранения стабильности структуры антигенов очень важен такой параметр как рН (кислотность раствора). Необходимо поддерживать рН на заданном уровне в течение всего срока годности вакцины. Для стабилизации рН используют буферы. Это водные растворы солей, которые поддерживают определенный (оптимальный для данной вакцины, обычно физиологический) рН. Избыток или недостаток соли тоже может изменить структуру антигена и снизить эффективность вакцинации.

Также буферные растворы используют практически на всех этапах производства вакцин, так что их следовые количества могут содержаться в финальном продукте. Во многих вакцинах соли либо прописаны в основном составе, либо указано, что вакцина содержит «компоненты буфера». В любом водном растворе (и в организме тоже) соли существуют в виде ионов и совершенно не отличимы от других ионов того же наименования стороннего происхождения.

Соли могут быть неорганическими или органическими. Кроме того, буфер может содержать незначительное количество щелочей и органических кислот, которые применяют для титрования (точной корректировки значений рН).

Важно! Натрий, калий, магний, кальций, фосфат и хлорид - ключевые ионы большинства реакций в организме. Без них невозможен:

Энергетический обмен (фосфат и магний),

Проведение нервного импульса,

Мышечное сокращение (калий, кальций, натрий),

Поддержание внутреннего постоянства организма (натрий и хлорид) .

То, что в некоторых инструкциях не указан состав буфера, не означает, что Минздраву наплевать. Производитель подает в других частях досье полное описание производства, и там состав еще не раз будет упоминаться. То, что в инструкциях написано просто «буфер» отражает тот факт, что натрий, калий, фосфаты, хлориды даже упоминать не стоит в контексте безопасности, так как это самые обычные ионы для организма человека.

Статистика по упоминанию компонентов буферов в изученных нами вакцинах (в скобках количество упоминаний):

Натрия хлорид (11),

Натрия фосфат дигидрогидрат (8),

Калия дигидрофосфат (5),

Калия хлорид (4),

Магния хлорид (1),

Кальция хлорид (1),

Магния сульфат (1).

Также можно увидеть в составе вакцин (в скобках количество упоминаний в нашем списке):

Гидроксид натрия (2) - щелочь. Напомним, что его применяют для корректировки рН буферных растворов. В концентрированном виде - мощный окислитель, и работать с ним опасно, но для титрования используют безопасную концентрацию. В финальном растворе после титрования гидроксида натрия уже нет: он распадается на ионы и перестает существовать как отдельное соединение.

Уксусная кислота (1). Безводная уксусная кислота - крайне опасное, едкое вещество. При разбавлении менее 30 % она уже не опасна, а в концентрации 5 - 8 % используется как приправа (столовый уксус). При изготовлении водных растворов ее также можно использовать для корректировки рН раствора с обратным гидроксиду натрия эффектом, так что они обычно идут в паре.

Янтарная кислота (1) и цитрат натрия (натриевая соль лимонной кислоты) (1). Также применяются в производстве вакцин для корректировки рН буферных растворов.

Все эти соединения в растворе диссоциируют («распадаются») ионы, которые являются нормальными участниками метаболизма в организме человека, а именно цикла Кребса - одного из фундаментальных процессов, происходящих в живых клетках .

Любопытно, что противники вакцинации, когда составляют свои страшные списки, пишут не о том, что ионы, образующиеся при растворении этих соединений - самые обычные для человеческого организма, а о том что вакцины, содержат стеклоочиститель! Да, цитрат натрия может входить состав стеклоочистителя, но еще это приправа, а еще типичный компонент лекарственных средств (например, от обезвоживания) или антикоогулянт для донорской крови. Уже не так страшно?

Сахара, многоатомные спирты, белки

Сахара, многоатомные спирты, белки или микс из вышеперечисленного добавляют в качестве стабилизаторов в вакцины, которые выпускают в виде лиофилизата, чтобы не нарушилась структура антигенов. В вакцинах, выпускаемых в виде раствора или суспензии, эти вещества не встречаются.

В нашем списке это:

Лактоза (6), молочный сахар. Не токсичен. Входит в состав грудного молока, большинства лекарств, фуфломицинов, гомеопатии.

Сахароза (5), тростниковый/свекловичный сахар. Не токсична, источник глюкозы и фруктозы. В организме человека синтезируется поджелудочной железой и слизистой тонкого кишечника. В одной дозе краснушной вакцины 25 мг сахарозы, что в 240 раз меньше, чем в чайной ложке сахара.

Мальтоза (1) - еще один сахар, есть в солоде и некоторых плодах. Не токсичен. Усваивается организмом.

Желатин (5) - белок животного происхождения, его жестко контролируют, включая источник (из какого региона происходят те животные, из которых получен белок).

Альбумин (3) - основной белок сыворотки человека, и его качество тоже обязательно контролируют. Об этом есть статьи в фармакопее. Его получают из донорской человеческой плазмы. Может быть процессирован, и в таком виде входить в состав вакцин в виде гидролизата .

Сорбит, он же сорбитол (4) и маннит (2). Многоатомные спирты. Не токсичны. При пероральном приеме 40 - 50 граммов сорбит вызывает слабительный эффект. Из ЖКТ он попадает в клетки печени, где превращается в фруктозу, далее в глюкозу, после в гликоген. Вырабатывается организмом. Искусственные сорбитол и маннит применяют как подсластители. По химической структуре они очень похожи на простые сахара, поэтому и могут обмануть рецепторы, отвечающие за сладкое . Входят в состав растворов для инфузий («Сорбилакт», «Реосорбилакт», «Реоглюман» - плазмозамещающие средства) вместе с калия хлорид, кальция хлорид, магния хлорид, натрия лактат, натрия хлорид. Все эти соединения ранее были перечислены в разделе про буферные растворы. Обратите внимание, эти растворы вводят прямо в кровь! В «Сорбилакте» содержится 200 мг сорбита в 1 мл! В одной дозе вакцины от ветряной оспы («Варилрикс») содержится 6 мг сорбита и 8 мг маннита.

Лиофилизация - процесс удаления воды, основанный на ее вымораживании из раствора. Продукт этого процесса - порошок, содержащий «сухой остаток» тго, что содержалось в исходном растворе, который перед применением нужно развести. В высушенном виде вакцины дольше хранятся, более устойчивы к нарушениям условий хранения, что повышает безопасность их применения.

Среды, аминокислоты, клетки

Вспомним, что для генно-инженерных вакцин необходимо вырастить культуру генно-модифицированных клеток, в ДНК которых была встроена информация о «рецепте» производства нужного антигена. Например, для производства вакцины от вируса гепатита В нужно вырастить много дрожжевых клеток, которые будут «по заданию» производителя синтезировать HBsAg - один из вирусных белков возбудителя этого вируса.

Кроме того, для производства вирусных вакцин необходимо вырастить много клеток, которые потом заразят ослабленными вирусами. Клетки служат субстратом для размножения вакцинных вирусов, которые потом выделят из раствора и добавят в вакцину в живом или инактивированном («убитом») виде.

Для бактериальных вакцин нужно размножить в большом количестве сами бактерии. В случае БЦЖ бактерии останутся живыми, а в случае цельноклеточной коклюшной вакцины - убиты перед тем, как попадут в финальный продукт.

В каждом из этих случаев необходимо добиться активного размножения клеточной или бактериальной культуры. Для этого клетки-основатели («посевной материал») помещают в комфортные для размножения условия, оптимально подобранные для каждого вида продуцента.

Культуральная среда - это питательная смесь, которая нужна клеткам для активного размножения. Она должна быть исходно стерильной, чтобы ничего лишнего в процессе производства не выросло. В случае производства вирусных вакцин необходимо также исключить попадание сторонних вирусов, для этого среду пропускают через фильтры с порами 20 нанометров, через которые не проходит ни один известный науке вирус. Итого к началу производства у нас есть питательный раствор свободный от контаминации.

Исходную культуру клеток, прежде чем использовать в работе, проверят и несколько раз перепроверят, что это именно та культура, которая нужна, что в ней нет посторонних микроорганизмов. Процесс такой проверки не произвольный, он утвержден и зафиксирован правилам, согласно фармакопее.

Некоторые вакцины производят не в клеточной культуре, а «на яйцах» (вирусные частицы вводят внутрь оплодотворенных куриных яиц, и они там размножаются). Примерами таких вакцин могут быть противогриппозная или от клещевого энцефалита. Здоровье куриц, эмбрионы которых планируют использовать для производства вакцин, контролируют минимум три поколения подряд и только после третьего поколения безоговорочно хороших результатов их можно использовать .

Питательная культуральная среда (ПКС) - это стерильный водный раствор стандартизованной смеси глюкозы, аминокислот, витаминов, прочих питательных веществ. Она используется на самом первом этапе производства и удаляется в процессе очистки. Остаются лишь незначительные следы в мизерных концентрациях.

Если в составе вакцины написано «среда», то это не значит, что в ней плавают куски чужеродных организму клеток. Клетки - это то, что живет в питательной культуральной среде. А в ее состав не входит ничего токсичного, так как иначе клетки, которые в ней живут, будут погибать! А этого-то как раз производители хотят меньше всего. Итого, в финальный продукт могут попасть только следы низкомолекулярных составляющих исходной питательной культуральной среды, которые не до конца удалили в процессе производства.

Риска заражения человека от вакцины сторонними микроорганизмами нет, поскольку сторонние микроорганизмы - злейший враг производителя вакцины, так как любая контаминация (внесение потенциально опасных микроорганизмов) может привести к гибели партии, и это будет понятно сразу по датчикам процесса. Все растворы, используемые для производства тщательно фильтруются до стерильного состояния. В итоге, в культуральной среде размножается только то, что предусмотрено технологией.

А после того, как этап наработки продукта завершен, все лишнее удаляют. Крупные (размера клеток) частицы отфильтровывают в несколько этапов, так что в итоговом растворе остаются только нужные составляющие, например, вирусные частицы и то, в чем они растворены.

Фильтры для фармакологической промышленности

Всего питательная культуральная среда упоминается в 5 инструкциях трех разных (европейских) производителей.

Кроме того, некоторые производители указывают в составе аминокислоты (6) и отдельно глутамат натрия (4). Аминокислотами обогащают культуральную среду, чтобы клетки росли быстрее (и так как аминокислоты растворимы, их нельзя выделить из раствора). После съеденного куска мяса белок в ЖКТ распадается до аминокислот, которые в таком виде всасываются в кровоток и служат строительным материалом для белков в организме человека. Глутамат натрия - это тоже аминокислота, он встречается у всех живых организмов в составе белков. Поскольку данную аминокислоту сильно демонизируют мы обсудим ее позднее подробнее.

Антибиотики и антисептики

Просто напомним, что «при использовании антимикробного консерванта отсутствие его влияния на безопасность или эффективность вакцины должно быть доказано » . Никто не выпустит опасный продукт на рынок.

В целом антибиотики и антисептики нужны главным образом для вакцин, в которых флакон рассчитан на несколько доз для предотвращения порчи после вскрытия, когда нарушается стерильность раствора (это происходит непосредственно в момент вскрытия). Есть тенденция на переход к однодозной упаковке и отказу от применения антибиотиков и антисептиков, а пока при необходимости их добавляют в низких, не токсичных, но эффективных концентрациях.

Кроме того, антибиотики могут использовать на промежуточных стадиях производства, например, в среде, в которой растут клетки, продуцирующие рекомбинантный белок - антиген. В этом случае, производитель будет проверять наличие остаточных антибиотиков, а в инструкции может содержаться предупреждающая надпись, например, такая «Антибиотики (стрептомицин, неомицин и полимиксин B) используются при производстве вакцины, но не присутствуют в определяемых количествах в конечном продукте ». Эта фраза говорит о том, что чувствительности существующих методов не достаточно, чтобы уловить следовые количества, которые неуловимо малы.

Среди антисептиков чаще других мы встретили мертиолят , он же тимеросал, он же тиомерсал (от 2 до 6) и феноксиэтанол (3). Уточним, что для 4 вакцин с мертиолятом составы зарегистрированы так, что производитель может добавлять этот компонент или нет (актуальный состав должен быть отражен в документации на серию и упаковке). Ранее данный компонент использовался повсеместно, но сегодня от него уходят. Поскольку «ртуть» волнует всех, в следующих блоках мы остановимся на ней подробнее.

Феноксиэтанол используется широко и в косметике, и в химической промышленности, поскольку эффективен в отношении широкого спектра микроорганизмов. Он не токсичен в применяемых концентрациях .

Из антибиотиков в нашей подборке встретились лишь неомицина сульфат (4), гентамина сульфат (3) и канамицин (1). Не будем отрицать, что на эти компоненты, как и на любые антибиотики, может возникнуть аллергическая реакция. Однако, она может возникнуть и на яблоки, так что этот риск мы далее обсуждать не будем. Лучше напомним, что неомицин широко применяется в ветеринарии, и тот же FDA позволяет использовать молоко, если в нем менее 0,15 мг/л неомицина, и телятину, если в ней менее 0,25 мг/кг неомицина . Гентамицины - большая группа антибиотиков с общим механизмом действия, и они широко применяются, хотя на сегодня считаются устаревшими.

Чистая субстанция антибиотиков опасная для человека, именно поэтому на производствах, которые выпускают лекарственные средства, и есть риск контакта с этими субстанциями, предприняты меры повышенной безопасности для охраны здоровья сотрудников, вовлеченных в технологический процесс.

Да и принимать антибиотики без прямых показаний и назначения врача нельзя. Но те концентрации, в которых они используются в вакцинах, не оказывают терапевтического действия (не работают) и тем более не токсичны.

Формальдегид и фенол

На зубах навязло, что организм сам вырабатывает формальдегид , и в еде он есть, но все равно он - главный герой фильмов ужасов.

  • Итак, в груше - самое меньшее 38 мг/кг формальдегида.
  • В средней груше (около 200 грамм) - 7,6 мг формальдегида.
  • В вакцине АКДС - самое большее 50 мкг формальдегида (это 0,05 мг).
  • То есть в вакцине АКДС в 152 раза меньше формальдегида, чем в среднего размера груше.

Предположим, вы пропустили

Открытие метода вакцинации дало старт новой эре борьбы с болезнями.

В состав прививочного материала входят убитые или сильно ослабленные микроорганизмы либо их компоненты (части). Они служат своеобразным муляжом, обучающим иммунную систему давать правильный ответ инфекционным атакам. Вещества, входящие в состав вакцины (прививки), не способны вызвать полноценное заболевание, но могут дать возможность иммунитету запомнить характерные признаки микробов и при встрече с настоящим возбудителем быстро его определить и уничтожить.

Производство вакцин получило массовые масштабы в начале ХХ века, после того как фармацевты научились обезвреживать токсины бактерий. Процесс ослабления потенциальных возбудителей инфекций получил название аттенуации.

Сегодня медицина располагает более, чем 100 видами вакцин от десятков инфекций.

Препараты для иммунизации по основным характеристикам делятся на три основных класса.

  1. Живые вакцины. Защищают от полиомиелита, кори, краснухи, гриппа, эпидемического паротита, ветряной оспы, туберкулеза, ротавирусной инфекции. Основу препарата составляют ослабленные микроорганизмы - возбудители болезней. Их сил недостаточно для развития значительного недомогания у пациента, но хватает, чтобы выработать адекватный иммунный ответ.
  2. Инактивированные вакцины. Прививки против гриппа, брюшного тифа, клещевого энцефалита, бешенства, гепатита А, менингококковой инфекции и др. В составе мертвые (убитые) бактерии или их фрагменты.
  3. Анатоксины (токсоиды). Особым образом обработанные токсины бактерий. На их основе делают прививочный материал от коклюша, столбняка, дифтерии.

В последние годы появился еще один вид вакцин - молекулярные. Материалом для них становятся рекомбинантные белки или их фрагменты, синтезированные в лабораториях путем применения методов генной инженерии (рекомбининтная вакцина против вирусного гепатита В).

Схемы изготовления некоторых видов вакцин

Живые бактериальные

Схема подходит для вакцины БЦЖ, БЦЖ-М.

Живые противовирусные

Схема подходит для производства вакцин от гриппа, ротавируса, герпеса I и II степеней, краснухи, ветряной оспы.

Субстратами для выращивания вирусных штаммов при производстве вакцин могут становиться:

  • куриные эмбрионы;
  • перепелиные эмбриональные фибробласты;
  • первичные клеточные культуры (куриные эмбриональные фибробласты, клетки почек сирийских хомячков);
  • перевиваемые клеточные культуры (MDCK, Vero, MRC-5, BHK, 293).

Первичный сырьевой материал очищают от клеточного дебриса в центрифугах и с помощью сложных фильтров.

Инактивированные антибактериальные вакцины

  • Культивация и очистка штаммов бактерий.
  • Инактивация биомассы.
  • Для расщепленных вакцин клетки микробов дезинтегрируют и осаждают антигены с последующим их хроматографическим выделением.
  • Для конъюгированных вакцин полученные при предыдущей обработке антигены (как правило, полисахаридные) сближают с белком-носителем (конъюгация).

Инактивированные противовирусные вакцины

  • Субстратами для выращивания вирусных штаммов при производстве вакцин могут становиться куриные эмбрионы, перепелиные эмбриональные фибробласты, первичные клеточные культуры (куриные эмбриональные фибробласты, клетки почек сирийских хомячков), перевиваемые клеточные культуры (MDCK, Vero, MRC-5, BHK, 293). Первичная очистка для удаления клеточного дебриса проводится методами ультрацентрифугирования и диафильтрации.
  • Для инактивации используются ультрафиолет, формалин, бета-пропиолактон.
  • В случае приготовления расщепленных или субъединичных вакцин полупродукт подвергают действию детергента с целью разрушить вирусные частицы, а затем выделяют специфические антигены тонкой хроматографией.
  • Человеческий сывороточный альбумин применяется для стабилизации полученного вещества.
  • Криопротекторы (в лиофилизатах): сахароза, поливинилпирролидон, желатин.

Схема подходит для производства прививочного материала против гепатита А, желтой лихорадки, бешенства, гриппа, полиомиелита, клещевого и японского энцефалитов.

Анатоксины

Для дезактивации вредного воздействия токсинов используют методы:

  • химический (обработка спиртом, ацетоном или формальдегидом);
  • физический (подогрев).

Схема подходит для производства вакцин против столбняка и дифтерии.

По данным Всемирной Организации Здравоохранения (ВОЗ), на долю инфекционных заболеваний приходится 25 % от общего количества смертей на планете ежегодно. То есть инфекции до сих пор остаются в списке главных причин, обрывающих жизнь человека.

Одним из факторов, способствующих распространению инфекционных и вирусных заболеваний, являются миграция потоков населения и туризм. Перемещение человеческих масс по планете влияет на уровень здоровья нации даже в таких высокоразвитых странах, как США, ОАЭ и государства Евросоюза.

По материалам: «Наука и жизнь» № 3, 2006, «Вакцины: от Дженнера и Пастера до наших дней», академик РАМН В. В. Зверев, директор НИИ вакцин и сывороток им. И. И. Мечникова РАМН.

Задать вопрос специалисту

Вопрос экспертам вакцинопрофилактики

ФИО *

Email/телефон *

Вопрос *

Вопросы и ответы

Вакцина "Менюгейт" зарегистрирована в России? С какого возраста разрешена к применению?

Да, зарегистрирована, вакцина – от менингококка С, сейчас также есть вакцина конъюгированная, но уже против 4 типов менингококков – А, С, Y, W135 – Менактра. Прививки проводят с 9 мес.жизни.

Муж транспортировал вакцину РотаТек в другой город.Покупая ее в аптеке мужу посоветовали купить охлаждающий контейнер,и перед поездкой его заморозить в морозильной камере,потом привязать вакцину и так ее транспортировать. Время в пути заняло 5 часов. Можно ли вводить такую вакцину ребенку? Мне кажется,что если привязать вакцину к замороженному контейнеру, то вакцина замерзнет!

Отвечает Харит Сусанна Михайловна

Вы абсолютно правы, если в контейнере был лед. Но если там была смесь воды и льда- вакцина не должна замерзать. Однако живые вакцины, к которым относится ротавирусная, не увеличивают реактогенность при температуре менее 0, в отличие от неживых, а, например, для живой полиомиелитной допускается замораживание до -20 град С.

Моему сыну сейчас 7 месяцев.

В 3 месяца у него случился отек Квинке на молочную смесь Малютка.

Прививку от гепатита сделали в роддоме, вторую в два месяца и третью вчера в семь месяцев. Реакция нормальная, даже без температуры.

Но вот на прививку АКДС нам устно дали медотвод.

Я за прививки!! И хочу сделать прививку АКДС. Но хочу сделать ИНФАНРИКС ГЕКСА. Живем в Крыму!!! В крыму ее нигде нет. Посоветуйте как поступить в такой ситуации. Может есть зарубежный аналог? Бесплатную делать категорически не хочу. Хочу качественную очищеную, что бы как монжно меньше риска!!!

В Инфанрикс Гекса содержится компонент против гепатита В. Ребенок полностью привит против гепатита. Поэтому в качестве зарубежного аналога АКДС можно сделать вакцину Пентаксим. Кроме того, следует сказать, что отек Квинке на молочную смесь не является противопоказанием к вакцине АКДС.

Подскажите, пожалуйста, на ком и как тестируют вакцины?

Отвечает Полибин Роман Владимирович

Как и все лекарственные препараты вакцины проходят доклинические исследования (в лаборатории, на животных), а затем клинические на добровольцах (на взрослых, а далее на подростках, детях с разрешения и согласия их родителей). Прежде чем разрешить применение в национальном календаре прививок исследования проводят на большом числе добровольцев, например вакцина против ротавирусной инфекции испытывалась почти на 70 000 в разных странах мира.

Почему на сайте не представлен состав вакцин? Почему до сих пор проводится ежегодная реакция Манту (зачастую не информативна), а не делается анализ по крови, например, квантифероновый тест? Как можно утверждать реакции иммунитета на введенную вакцину, если еще ни кому не известно в принципе, что такое иммунитет и как он работает, особенно если рассматривать каждого отдельно взятого человека?

Отвечает Полибин Роман Владимирович

Состав вакцин изложен в инструкциях к препаратам.

Реакция Манту. По Приказу № 109 «О совершенствовании противотуберкулезных мероприятий в Российской Федерациии» и Санитарным правилам СП 3.1.2.3114-13 "Профилактика туберкулеза", несмотря на наличие новых тестов, детям необходимо ежегодно делать реакцию Манту, но так как этот тест может давать ложноположительные результаты, то при подозрении на тубинфицирование и активную туберкулезную инфекцию проводят Диаскин-тест. Диаскин-тест является высоко чувствительным (эффективным) для выявления активной туберкулезной инфекции (когда идет размножение микобактерий). Однако полностью перейти на Диаскин-тест и не делать реакцию Манту фтизиатры не рекомендуют, так как, он не "улавливает" раннее инфицирование, а это важно, особенно для детей, поскольку профилактика развития локальных форм туберкулеза эффективна именно в раннем периоде инфицирования. Кроме того, инфицирование микобактерией туберкулеза необходимо определять для решения вопроса о ревакцинации БЦЖ. К сожалению, нет ни одного теста, который бы со 100% точностью ответил на вопрос, есть инфицирование микобактерией или заболевание. Квантифероновый тест также выявляет только активные формы туберкулеза. Поэтому при подозрении на инфицирование или заболевание (положительная реакция Манту, контакт с больным, наличие жалоб и пр.) используются комплексные методы (диаскин-тест, квантифероновый тест, рентгенография и др.).

Что касается «иммунитета и как он работает», в настоящее время иммунология - это высокоразвитая наука и многое, в частности, что касается процессов на фоне вакцинации – открыто и хорошо изучено.

Ребёнку 1 год и 8 месяцев, все прививки ставились в соответствии с календарем прививок. В том числе 3 пентаксима и ревакцинация в полтора года тоже пентаксим. В 20 месяцев надо ставить от полиомиелита. Очень всегда переживаю и отношусь тщательно к выбору нужных прививок, вот и сейчас перерыла весь интернет, но так и не могу решить. Мы ставили всегда инъекцию (в пентаксиме). А теперь говорят капли. Но капли-живая вакцина, я боюсь различных побочек и считаю, что лучше перестраховаться. Но вот читала, что капли от полиомиелита вырабатывают больше антител, в том числе и в желудке, то есть более эффективные, чем инъекция. Я запуталась. Поясните, инъекция менее эффективна (имовакс-полио, например)? Отчего ведутся такие разговоры? У каплей боюсь хоть и минимальный, но риск осложнения в виде болезни.

Отвечает Полибин Роман Владимирович

В настоящее время Национальный календарь прививок России предполагает комбинированную схему вакцинации против полиомиелита, т.е. только 2 первых введения инактивированной вакциной и остальные – оральной полиовакциной. Это связано с тем, чтобы полностью исключить риск развития вакциноассоциированного полиомиелита, который возможен только на первое и в минимальном проценте случаев на второе введение. Соответственно, при наличии 2-х и более прививок от полиомиелита инактивированной вакциной, осложнения на живую полиовакцину исключены. Действительно, считалось и признается некоторыми специалистами, что оральная вакцина имеет преимущества, так как формирует местный иммунитет на слизистых кишечника в отличие от ИПВ. Однако сейчас стало известно, что инактивированная вакцина в меньшей степени, но также формирует местный иммунитет. Кроме того, 5 введений вакцины против полиомиелита как оральной живой, так и инактивированной вне зависимости от уровня местного иммунитета на слизистых оболочках кишечника, полностью защищают ребенка от паралитических форм полиомиелита. В связи с вышесказанным вашему ребенку необходимо сделать пятую прививку ОПВ или ИПВ.

Следует также сказать, что на сегодняшний день идет реализация глобального плана Всемирной организации здравоохранения по ликвидации полиомиелита в мире, которая предполагает полный переход всех стран к 2019 году на инактивированную вакцину.

В нашей стране уже очень долгая история использования многих вакцин – ведутся ли долгосрочные исследования их безопасности и можно ли ознакомиться с результатами воздействия вакцин на поколения людей?

Отвечает Шамшева Ольга Васильевна

За прошлый век продолжительность жизни людей возросла на 30 лет, из них 25 дополнительных лет жизни люди получили за счет вакцинации. Больше людей выживают, они живут дольше и качественнее за счет того, что снизилось инвалидность из-за инфекционных заболеваний. Это общий ответ на то, как влияют вакцины на поколения людей.

На сайте Всемирной Организации Здравоохранения (ВОЗ) есть обширный фактический материал о благотворном влиянии вакцинации на здоровье отдельных людей и человечества в целом. Отмечу, что вакцинация –это не система верований, это - область деятельности, опирающаяся на систему научных фактов и данных.

На основании чего мы можем судить о безопасности вакцинации? Во-первых, ведется учет и регистрация побочных действий и нежелательных явлений и выяснение их причинно-следственной связи с применением вакцин (фармаконадзор). Во-вторых, важную роль в отслеживании нежелательных реакций играют постмаркетинговые исследования (возможного отсроченного неблагоприятного действия вакцин на организм), которые проводят компании - владельцы регистрационных свидетельств. И, наконец, проводится оценка эпидемиологической, клинической и социально-экономической эффективности вакцинации в ходе эпидемиологических исследований.

Что качается фармаконадзора, то у нас в России система фармаконадзора только формируется, но демонстрирует очень высокие темпы развития. Только за 5 лет число зарегистрированных сообщений о нежелательных реакциях на лекарственные средства в подсистему «Фармаконадзор» АИС Росздравнадзора выросло в 159 раз. 17 033 жалобы в 2013 году против 107 в 2008. Для сравнения – в США в год обрабатываются данные около 1 млн случаев. Система фармаконадзора позволяет отслеживать безопасность препаратов, накапливаются статистические данные, на основании которых может измениться инструкция по медицинскому применению препарата, препарат может быть отозван с рынка и т.п. Таким образом, обеспечивается безопасность пациентов.

И по закону «Об обращении лекарственных средств» от 2010 года врачи обязаны сообщать федеральным органам контроля обо всех случаях побочного действия лекарственных средств.

В качестве вакцин используются антигены разного происхождения, это могут быть живые и убитые бактерии, вирусы, анатоксины, а также антигены, полученные с помощью генной инженерии и синтетические.

От состава вакцин во многом зависят их иммунобиологические свойства, способность индуцировать специфический иммунный ответ. Однако некоторые составные части вакцин могут вызвать и нежелательные реакции, что следует учитывать при проведении иммунизации.

Существующее многообразие вакцин можно подразделить на две основные группы: на живые и убитые (инактивированные) вакцины. В свою очередь какждая из этих групп может быть разделена на подгруппы

1. Живые вакцины - из аттенуированных штаммов возбудителя (штаммы с ослабленной патогенностью).

2. Убитые вакцины
- Молекулярные, полученные путем:
а) биологического синтеза;
б) химического синтеза.
- Корпускулярные:
а) из цельных микробов;
б) из субклеточных надмолекулярных структур.

В последние годы созданы синтетические молекулярные вакцины, а так же плазмидные (генные) вакцины.

Постановка вопроса о предпочтительном выборе либо живых, либо убитых вакцин нам кажется неоправданной, так как в каждом конкретном случае эти принципиально разные препараты имеют свои преимущества и свои недостатки.

Традиционные вакцины

а) инактивированные

Инактивированные вакцины получают путем воздействия на микроорганизмы химическим путем или нагреванием. Такие вакцины являются достаточно стабильными и безопасными, так как не могут вызвать реверсию вирулентности. Они часто не трубуют хранения на холоде, что удобно в практическом использовании. Однако у этих вакцин имеется и ряд недостатков, в частности, они стимулируют более слабый иммунный ответ и требуют применения нескольких доз (бустерные иммунизации).

б) живые аттенуированнные

Хотя живые вакцины требуют специальных условий хранения, они продуцируют достаточно эффективный клеточный и гуморальный иммунитет и обычно требуют лишь одно бустерное введение. Большинство живых вакцин вводится парентерально (за исключением полиомиелитной вакцины).

На фоне преимуществ живых вакцин имеется и одно предостережение, а именно: возможность реверсии вирулентных форм, что может стать причиной заболевания вакцинируемого. По этой причине живые вакцины должны быть тщательно протестированы. Пациенты с иммунодефицитами (получающие иммуносупрессивную терапию, при СПИДе и опухолях) не должны получать такие вакцины.

в) анатоксины

Многие микроорганизмы, вызывающие заболевания у человека, опасны тем, что выделяют экзотоксины, которые являются основными патогенетическими факторами заболевания (например, дифтерия, столбник). Анатоксины, используемые в качестве вакцин, индуцируют специфический иммунный ответ. Для получения вакцин токсины чаще всего обезвреживают с помощью формалина.

Ниже (табл. 15) приведена сравнительная характеристика вакцин , из которой следует, что инактивированные вакцины более стабильны, менее реактогенны, на их основе можно конструировать многокомпонентные вакцины, хотя в то же время по иммуногенности они уступают живым вакцинам.

Таблица 15. Факторы, влияющие на иммунный ответ на антиген


Характеристика Убитые (химические) Живые

Иммуногенность ++ +++

Реактогенность +(+) ++(+)

Опасность поствакцинальных осложнений:
онкогенная

заражение микробами-контаминантами

0
0

+(-)
++

Стандартность ++ +

Возможность применения стимуляторов (адъювантов) +++ 0

Возможность применения в ассоциированных препаратах +++ +(+)

Стабильность при хранении +++ +

Возможность применения массовых методов иммунизации ++ ++(+)

Возможность массового производства +(+) ++


Примечания: 0> - признак не выражен, +> - слабо выражен, ++ - выражен, +++ - сильно выражен, (+) - тенденция в сторону усиления признака.

Новое поколение вакцин

Использование новых технологий позволило создать вакцины второй генерации.

Рассмотрим подробнее некоторые из них:

а) конъюгированные

Некоторые бактерии, вызывающие такие опасные заболевания, как менингиты или пневмонию (гемофилюс инфлюэнце, пневмококки), имеют антигены, трудно распознаваемые незрелой иммунной системой новорожденных и грудных детей. В конъюгированных вакцинах используется принцип связывания таких антигенов с протеинами или анатоксинами другого типа микроорганизмов, хорошо распознаваемых иммунной системой ребенка. Протективный иммунитет вырабатывается против конъюгированных антигенов.

На примере вакцины против гемофилюс инфлюэнце (Hib-b) показана эффективность в снижении заболеваемости Hib-менингитами детей до 5-ти лет в США за период с 1989 по 1994 г.г. с 35 до 5 случаев.

б) субъединичные вакцины

Субъединичные вакцины состоят из фрагментов антигена, способных обеспечить адекватный иммунный ответ. Эти вакцины могут быть представлены как частицами микробов, так и получены в лабораторных условиях с использованием генно-инженерной технологии.

Примерами субъедиинчных вакцин, в которых используются фрагменты микроорганизмов, являются вакцины против Streptococcus pneumoniae и вакцина против менингококка типа А.

Рекомбинантные субъединичные вакцины (например, против гепатита B) получают путем введения части генетического материала вируса гепатита B в клетки пекарских дрожжей. В результате экспрессии вирусного гена происходит наработка антигенного материала, который затем очищается и связывается с адъювантом. В результате получается эффективная и безопасная вакцина.

в) рекомбинантные векторные вакцины

Вектор, или носитель, - это ослабленные вирусы или бактерии, внутрь которых может быть вставлен генетический материал от другого микроорганизма, являющегося причинно-значимым для развития заболевания, к которому необходимо создание протективного иммунитета. Вирус коровьей оспы используется для создания рекомбинантных векторных вакцин, в частности, против ВИЧ-инфекции. Подобные исследования проводятся с ослабленными бактериями, в частности, сальмонеллами, как носителями частиц вируса гепатита B. В настоящее время широкого применения векторные вакцины не нашли.


3.1. Компоненты вакцин

Как известно, основу каждой вакцины составляют протективные антигены, представляющие собой лишь небольшую часть бактериальной клетки или вируса и обеспечивающие развитие специфического иммунного ответа. Протективные антигены могут являться белками, гликопротеидами, липополисахаридобелковыми комплексами. Они могут быть связаны с микробными клетками (коклюшная палочка, стрептококки и др.), секретироваться ими (бактериальные токсины), а у вирусов располагаются преимущественно в поверхностных слоях суперкапсида вириона

Поскольку для создания вакцин необходимо получение протективного антигена в достаточных количествах, то, прежде всего, нарабатываются большие объемы биомассы (культивируемые бактерии, вирусы). Далее производится выделение и очистка протективного антигена, причем в зависимости от условий это может быть как живая биомасса, так и инактивированная. Для инактивации используют формалин, фенол, перекись водорода, тепло, УФО-облучение и т.д.

Выделение и очистка протективного антигена также сопряжены с физическими или химическими методами воздействия, что определяется в основном свойствами антигена. Это могут быть методы изоэлектрического осаждения кислотами и щелочами, высаливание нейтральными солями, осаждение спиртом, сорбция и элюция, ультрафильтрация, колоночная хроматография и т.д.

Важно, что при всех указанных действиях должна максимально сохраняться первоначальная структура протективного антигена и в то же время должна быть получена максимальная степень чистоты препарата

Несмотря на постоянное совершенствование вакцин, существует целый ряд обстоятельств, изменение которых в настоящий момент невозможно. К ним относятся следующие: добавление к вакцине стабилизаторов, наличие остатков питательных сред, добавление антибиотиков и т.д. Известно, что вакцины могут быть разными и тогда, когда они выпускаются разными фирмами. Кроме того, активные и инертные ингредиенты в разных вакцинах могут быть не всегда идентичными (для одинаковых вакцин).

Консерванты, стабилизаторы, антибиотики

Эти компоненты вакцин, анатоксинов и иммуноглобулинов используются для ингибиции и предотвращения роста бактерий в вирусных культурах, для стабилизации антигенов. Для лиофилизации используют лактозу, сахарозу, человеческий альбумин, мальтозу и др. В качестве консервантов наиболее часто в отечественных вакцинах используют меркуротиолят (мертиолят или тимеросал), стабилизатора - раствор хлористого магния. Наряду с этим в зарубежных вакцинах используют формальдегид, гидрометиламинометан, фенол, феноксиэтанол и др.

Аллергические реакции могут иметь место, если реципиент чувствителен к одной из этих добавок (тимеросал или мертиолят, фенолы, альбумин, глицин, неомицин).

Растворители вакцин

В качестве растворителей могут использоваться стерильная вода, физиологический раствор, раствор, содержащий протеин или другие составляющие, происходящие из биологических жидкостей - сывороточные протеины.

Адъюванты

Многие антигены вызывают субоптимальный иммунологический ответ. Усиление иммуногенности включает связывание антигенов с различными субстанциями или адъювантами (например, фосфат алюминия или гидроокись алюминия).

При создании вакцин учитывается способ их введения. Так, в препаратах для парентерального введения целесообразно использование адъювантов и консервантов, а для энтерального применения - кислотоустойчивое покрытие.

В технологии создания вакцин предусматривается стерилизация растворов антигенов. С этой целью используются термическая обработка, облучение, фильтрация и т.п. Безусловно все эти воздействия не должны повлиять на сохранность протективного антигена и его количество

Таким образом, создание современных вакцин - это высокотехнологичный процесс, использующий достижения во многих отраслях знаний.


3.2. Критерии эффективных вакцин

Актуальной задачей современной вакцинологии является постоянное совершенствование вакцинных препаратов. Эксперты международных организаций по контролю за вакцинацией разработали ряд критериев эффективных вакцин, которые соблюдаются всеми странами-производителями вакцин. Перечислим некоторые из них


Таблица 16. Некоторые критерии эффективных вакцин
(Janeway C.A., et al., 1996)

Безопасность Вакцины не должны быть причиной заболевания или смерти
Протективность Вакцины должны защищать против заболевания, вызываемого "диким" штаммом патогена
Поддержание протективного иммунитета Защитный эффект должен сохраняться в течение нескольких лет
Индукция нейтрализующих антител Нейтрализующие антитела необходимы для предотвращения инфицирования таких клеток
Индукция протективных
Т-клеток
Патогены, размножающиеся внутриклеточно, более эффективно контролируются с помощью Т-клеточно-опосредованного иммунитета
Практические соображения Относительно низкая цена вакцины,
легкость применения,
широкий эффект


Другой вопрос, который следует иметь ввиду при реализации любых программ массовых иммунизаций - это соотношение между безопасностью вакцин и их эффективностью . В программах иммунизации детей против инфекций имеется конфликт между интересом индивидуума (вакцина должна быть безопасна и эффективна) и интересом общества (вакцина должна вызывать достаточный протективный иммунитет). К сожалению, на сегодняшний день в большинстве случаев частота осложнений вакцинации тем выше, чем выше ее эффективность. Авторы такой концепции приводят соответствующий пример - эффективной, но довольно реактогенной паротитной вакцины, содержащей штамм Urabe Am9, и менее эффективной, содержащей штамм Jeryl Lynn В результате эксперты по практике иммунизации в США пришли к заключению, что нет "вакцин совершенно безопасных или совершенно эффективных" ("Рекомендации по иммунизации" - ACIP., 1994).

В настоящее время существуют определенные требования к вакцинам:

1. Вакцина должна быть безопасной.
2. Вакцина должна индуцировать протективный иммунитет с минимальными побочными эффектами для большинства получивших ее.
3. Вакцина должна быть иммуногенной, т.е. должна вызывать достаточно сильный иммунный ответ.
4. Вакцина должна индуцировать "правильный" (необходимый) тип иммунного ответа. Когда микроорганизмы проникают в организм человека, они могут вызвать заболевание разными путями, и разные отдела имунной системы отвечают за эффективную борьбу с ними. Вакцины должны стимулировать специфический иммунный ответ, который эффективно защитит от инфекции.
5. Вакцины должны быть стабильны в течение срока хранения. Многие инактивированные вакцины проще для хранения, особенно если они в сухом виде и растворяются перед введением. Живые аттенуированные вакцины для сохранения их стабильности требуют охлаждения на всем протяжении пути от завода-изготовителя до клиники.


3.3. Условия эффективной вакцинации

На сегодняшний день эффективной считается та вакцинация, в результате которой развивается длительная защита вакцинируемого от инфекции. Ряд требований эффективной вакцинации перечисляются ниже.

1. Вакцины должны индуцировать протективный иммунитет в очень высокий пропорции вакцинированных людей.
2. Для поддержания протективного иммунитета необходимо производить бустерные (повторные) вакцинации.
3. Вакцины должны генерировать длительно сохраняющуюся иммунологическую память на соответствующий антиген.
4. Иммунный ответ к инфекционным агентам приводит к синтезу разнообразных антител, направленных к множеству эпитопов. Эпитоп - это часть антигена, специфически распознаваемая антителами, их называют также антигенными детерминантами. Только некоторые из этих антител обеспечивают протективный эффект.
5. Эффективные вакцины должны вести к генерации специфических антител и Т-клеток, направленных на корректные (значимые) эпитопы инфекционных агентов.

Теги: Вакцины ,состав,техника вакцинации.

Обновление: Октябрь 2018

В настоящее время в России ведется активная антипрививочная пропаганда. Это наносит огромный вред населению, к сожалению, не все это осознают, а поддаются на «утки» средств массовой информации. Эта пропаганда уже приносит свои ужасные плоды.

Начало ей было положено еще в конце 80-х годов. В результате массового отказа от вакцинации с разной периодичностью в стране возникают эпидемии дифтерии, кори, . Ведь заражаются и переносят инфекцию именно те, кто не вакцинирован.

Вакцинация – это способ профилактики тяжелых инфекционных (вирусных и бактериальных) заболеваний, с помощью введения в организм антигенного материала, в результате чего формируется иммунитет к данному заболеванию.

Вопрос делать ли прививки детям встает перед каждым родителем сразу после рождения малыша. И ответ на него один – если нет противопоказаний, если ребенок здоров, то прививки делать нужно!

Часто делается сразу несколько прививок детям (АКДС, например, сразу включает в себя 3 компонента). Это допустимо и не страшно, хотя многие бояться этого, но часто сами не знают почему. Для иммунной системы здорового ребенка это вполне нормально. Более подробно об этом будет рассказано ниже.

Для некоторых возбудителей формируется стойкий иммунитет сразу, для других требуется ревакцинация, то есть повторное введение антигена для поддержания стойкого иммунитета.

Немного истории

Еще в древние времена в Индии и Китае практиковалась инокуляция. Если инфекционное заболевание сопровождалось появлением пузырьков на теле человека, то брали жидкость из них и вводили здоровым людям. Конечно, в древние времена это не всегда было безопасно, и нередко случались заражения таким путем, так как возбудитель был не ослабленный в инокуляте. Но начало было положено.

Если говорить не о древних временах, то еще в Англии было замечено, что доярки, которые заболевали коровьей оспой, никогда впоследствии не болели натуральной оспой. Эдвард Дженнер тоже знал об этой примете и решил ее проверить. Сначала он привил ребенка от коровьей оспы, а через некоторое время ему был введен возбудитель натуральной оспы. Ребенок не заболел. Так было положено начало вакцинации. Но сам термин появился значительно позже, его предложил Луи Пастер, он же смог изготовить первые вакцины с ослабленными микроорганизмами.

В России прививки появились во времена правления Екатерины II

Виды вакцин

  1. Живая вакцина – в качестве антигена выступает живой ослабленный микроорганизм, к ним относятся вакцины против полиомиелита (в виде капель), краснухи, паротита.
  2. Инактивированная вакцина – в качестве антигена выступает либо убитый микроорганизм, либо его части, например, клеточная стенка. К ним относятся вакцины против коклюша, менингококковой инфекции, бешенства.
  3. Анатоксины — в качестве антигена выступает инактивированный (не приносит никакого вреда организму человека) токсин, который вырабатывает возбудитель. К ним относятся прививки против столбняка и дифтерии.
  4. Биосинтетические вакцины – получены в результате генно-инженерных технологий, например, вакцина от гепатита В.

Работа иммунной системы при вакцинации

Иммунная система – это страж нашего организма. На любой чужеродный агент она реагирует. При попадании такого агента (антиген) иммунная система активируется, происходит выработка массы биологически активных веществ, усиливается выработка лейкоцитов костным мозгом и вырабатываются антитела. Антитела являются специфичными для разных антигенов. Таким образом, эти антитела могут сохраняться длительное время или всю жизнь, а это позволяет защитить организм от патогенного воздействия данного антигена. При попадании этого же чужеродного агента, имеющиеся антитела уничтожат его.

Принцип действия прививки основан на этом – в организм вводится антиген (ослабленный или убитый возбудитель, или его часть). Иммунная система активируется, происходит продукция антител к этому возбудителю. Эти антитела сохраняются в организме человека длительное время, защищая его от этого заболевания. При этом человек не заболевает, так как ослабленный микроорганизм, а тем более убитый или его часть не может вызвать развитие заболевания. Если в будущем человек столкнется с возбудителем данного заболевания, то при попадании инфекционного агента в организм, имеющиеся антитела сразу атакуют эти микроорганизмы и уничтожают их. Таким образом, заболевание не развивается.

Пути введения вакцин

Внутримышечный

Наиболее часто используется при введении вакцин. Мышцы тела человека отлично кровоснабжаются, что обеспечивает отличную скорость попадания иммунных клеток в место введения антигена, а это обеспечивает наиболее быструю выработку иммунитета. Удаленность от кожных покровов снижает риск местных побочных явлений. Прививки детям до 3 лет вводятся в передне-боковую поверхность бедра. Введение в ягодичную мышцу не рекомендуется, так как на ягодицах толщина подкожно-жирового слоя велика, а иглы для вакцинации короткие, в этом случае получится подкожное введение, а не внутримышечное. Также всегда сохраняется риск попадания в седалищный нерв. В 2 года, но лучше после 3 лет, разрешается вводить вакцины в дельтовидную мышцу (в области плеча, в проекции головки плечевой кости).

Внутрикожный и накожный

Внутрикожно вводятся вакцина против туберкулеза (БЦЖ), против туляремии, ранее также вводилась вакцина против натуральной оспы. Традиционное место введения – плечо или сгибательная поверхность предплечья. При правильном введении вакцины образуется «лимонная корочка». Выглядит она как белесоватое пятно с мелкими углублениями, как на корке лимона, отсюда и такое название.

Подкожный

Таким способом вводят гангренозные или стрептококковые анатоксины, а также этот способ можно использовать при введении живых вакцин. Так как в этом случае снижается скорость выработки иммунитета, не рекомендуется вводить таким способом вакцины против бешенства и гепатита В. Также предпочтительным становится этот способ введения у пациентов с нарушениями свертываемости крови, так как риск кровотечения при подкожном введении значительно ниже, нежели при внутримышечном введении.

Пероральный (через рот)

Таким образом, согласно календарю профилактических прививок для детей в России, вводится живая вакцина против полиомиелита после 1 года. В других странах перорально вводят также вакцину против брюшного тифа. Если вакцина имеет неприятный вкус, ее предлагают на кусочке сахара.

Аэрозольный (через нос, интраназальный)

Одна из отечественных вакцин против гриппа имеет такой путь введения. Он обеспечивает появление местного иммунитета во входных воротах инфекции. Иммунитет нестойкий.

Одновременное введение вакцин

Некоторых пугает, что в ряде случаев одновременно вводится несколько вакцин. Но не следует этого бояться. Исходя из многолетнего опыта, никаких осложнений это не несет. Единственные вакцины, которые нельзя вводит одновременно – это против холеры и против желтой лихорадки.

Состав вакцин

В составе вакцины, кроме основного действующего вещества (антигена) может быть консервант, сорбент, стабилизатор, неспецифические примеси и наполнитель.

К неспецифическим примесям относятся белок субстрата, где культивировали вирусную вакцину, микроскопическое количество антибиотика и белки сыворотки животных, если они использовались при культивировании необходимых клеточных культур.

Консервант входит в состав любой вакцины. Его присутствие необходимо для обеспечения стерильности раствора. Условие их наличия выставлено экспертами ВОЗ.

Стабилизаторы и наполнители не являются обязательными компонентами, но в ряде случаев они встречаются в составе вакцин. Используются только те стабилизаторы и наполнители, которые разрешены для введения в организм человека.

Все, что касается противопоказаний к проведению вакцинации

После вопроса «какие прививки делают детям?», следующим вопросом у молодых мам появляется «какие бывают противопоказания?». Этот вопрос достоин пристального внимания, поэтому мы рассмотрим все возможные аспекты.

В настоящий момент список противопоказаний уменьшается. Этому есть логичное объяснение.

  • В результате многолетних наблюдений и исследований было установлено, что инфекции, от которых прививают детей, протекают гораздо тяжелее у лиц, кому ранее прививки были противопоказаны. Например, у детей с нарушением питания, инфицированных туберкулезом, заболевание протекает гораздо тяжелее. У , инфицированных коклюшем риск летального исхода выше. Краснуха протекает гораздо тяжелее у больных сахарным диабетом, а грипп – у больных бронхиальной астмой. Запрещать прививать таких детей, значит, подвергать их большой опасности.
  • Исследования, проводившиеся под контролем ВОЗ, показали, что поствакцинальный период у таких детей протекает так же, как и у здоровых детей. Еще было установлено, что в результате вакцинации течение фоновых хронических заболеваний не ухудшается.
  • Благодаря усовершенствованию технологии производства вакцин удалось добиться значительного уменьшения балластных веществ и белков, которые могут провоцировать побочные реакции. Например, у ряда вакцин содержание яичного белка сведено к минимуму и даже не определяется. Это позволяет делать такие вакцины детям, имеющих аллергию к яичному белку.

Существует несколько видов противопоказаний:

  • Истинные противопоказания – это те, которые перечислены в аннотациях к вакцинам и имеются в приказах и международных рекомендациях.
  • Ложные – они по сути не являются ими. Они являются выдумками родителей или из-за традиций. Например, почему-то некоторые врачи до сих пор считают перинатальную энцефалопатию противопоказанием, хотя это не так.
  • Абсолютные – при наличии их, прививка, даже если она указана среди обязательных в календаре прививок, ребенка не прививают.
  • Относительные – это противопоказания, относящиеся к истинным, но окончательное решение о проведении вакцинации принимает врач, сравнивая риски каждого из решений. Например, при аллергии на яичный белок, обычно не проводят прививку от гриппа, но в случае опасной эпидемической ситуации, риск аллергии ниже риска заражения гриппом. В других странах это даже не является противопоказанием, просто проводят подготовку, уменьшающую риск проявления аллергии.
  • Временные – например, ОРВИ у ребенка или обострение хронического заболевания, после выздоровления ребенка разрешается введение вакцины.
  • Постоянные – они не будут сняты никогда, например, первичный иммунодефицит у ребенка.
  • Общие – они касаются всех прививок, например, нельзя делать никакую прививку, если имеется температура или ребенок переносит острое заболевание.
  • Частные – это такие противопоказания, которые касаются только нескольких прививок, но при этом разрешены другие вакцины.

Истинные противопоказания к проведению профилактических прививок:

Вакцина Противопоказания
Любые вакцины Сильная реакция на предыдущее введение данной вакцины (повышение температуры выше 40◦С или (и) покраснение и отек в месте введения вакцины диаметром более 8 см у ребенка после прививки). Осложнения – анафилактический шок, ангионевротический отек, артрит или другие осложнения.
Живые вакцины Первичный иммунодефицит, злокачественные новообразования, беременность.
БЦЖ Низкая масса тела при рождении (менее 2 кг), образование келоидного рубца в месте предыдущего введения, тяжелые неврологические нарушения, Генерализованная БЦЖ–инфекция (у других близких родственников), гемолитическая болезнь новорожденных, системные патологии кожи, ВИЧ у матери, иммунодефицит у ребенка (см. о прививке БЦЖ и ее последствиях — мнение к.м.н.).
АКДС Наличие судорог в анамнезе у ребенка, прогрессирующие неврологические заболевания.
КПК Тяжелая аллергия на аминогликозиды. Анафилактический шок на яичный белок в анамнезе.
Вакцина от гепатита В Аллергическая реакция на хлебопекарные дрожжи, если у новорожденного ребенка была длительная физиологическая желтушка (гипербилирубинемия) с высокими показателями билирубина.

Побочные реакции

Прививка – это иммунобиологический препарат, который вызывает желаемые изменения в организме в виде выработки иммунитета к тяжелым инфекционным заболеваниям, но при этом могут быть и побочные реакции.

Часто мамы беспокоятся, что у ребенка после прививки температура тела повышается или возникают местные реакции, но не следует переживать, если реакция не становится запредельной.

Побочная реакция является нормальной реакцией организма, это отражает процесс выработки иммунитета после попадания в организм ребенка чужеродного антигена. Если эти реакции выражены не очень сильно, то это является даже положительным моментом, говорящим о высокой активности иммунной системы. Но и их отсутствие не говорит о том, что недостаточно иммунитет вырабатывается, это лишь индивидуальная особенность реактивности иммунной системы.

При возникновении тяжелых побочных реакция, например, подъем температуры выше 40 градусов, необходимо срочно об этом сообщить врачу. Так как помимо оказания помощи ребенку, врачу необходимо будет заполнить ряд документов и передать их в специальные органы, которые занимаются контролем качества вакцин. При появлении нескольких таких случаев, партия вакцин конфискуется и тщательно проверяется.

Очень важно иметь в виду типичность этих побочных реакций. Например, если известно, что дети после прививок от краснухи могут иметь небольшую припухлость в области суставов, то обострение гастрита в этот период не будет иметь к прививке никакого отношения. Не стоит различные совпадения «списывать» на прививку.

Частота побочных явлений также известна. Например, вакцина против вирусного гепатита В в 7% случаев дает местную реакцию, а вакцина против краснухи в 5% — общую побочную реакцию организма.

Местные побочные реакции Общие побочные реакции
К ним относятся:
  • Гиперемия (покраснение)
  • Уплотнение
  • Болезненность

Причиной этого является асептическое воспаление в месте введения препарата. Это воспаление может вызвать как сам препарат, так и сам укол, травмирующий кожу, мышцу.

Во многих инактивированных вакцинах в составе имеются специальные компоненты, вызывающие местную реакцию, для того, чтобы увеличился приток крови к месту введения вакцины, что приведет к попаданию большего количества иммунных клеток в это место, а значит, иммунитет будет сильнее.

  • Повышение температуры тела
  • Беспокойство, плач
  • Снижение аппетита
  • Похолодание конечностей
  • Головная боль
  • Головокружение

Наиболее частые из них – это гипертермия и сыпь. Сыпь возникает чаще после введения противовирусных вакцин, например, против краснухи. Она обусловлена попаданием вируса в кожу, что опасности в себе не несет. Подъем температуры тела обусловлен обычной реакцией иммунитета. При контакте иммунных клеток с антигеном выделяются в кровь пирогены, вещества, вызывающие повышение температуры.

По результатам контроля Государственного Института стандартизации и контроля вакцин и сывороток, в течение 8 лет осложнений после введения любых вакцин было около 500 ! Тогда как смертность от того же коклюша составляет 4000 на 100000.

Антивакцинаторство

Антивакцинаторство – это общественное движение, представители которого оспаривают эффективность и безопасность вакцин.

Впервые об этом заговорили еще в конце 19 века. В современном мире ситуация усугубляется заказными репортажами в СМИ и множеством недостоверных статей, написанных дилетантами, в интернете. Большинство людей, не понимая, о чем идет речь, не понимая в иммунологии ничего, слишком уверенно судит о проблеме. «Заражая» и других своими неверными суждениями.

Развенчаем мифы антивакцинаторов:

«Заговор фармацевтов и врачей»

Почему-то некоторые считают, что на вакцинах пытаются делать деньги врачи и фармацевты. Но почему же крайними оказываются вакцины? Любая отрасль фармацевтики или в любой другой сфере является так или иначе прибыльной для кого-то, но почему-то «виноваты» в этом лишь прививки для некоторых людей. И главная цель производства вакцин была и остается – профилактика опасных инфекционных заболеваний, а не прибыль.

Неэффективность вакцин

Статистика же говорит об обратном. Случаи заболевания среди привитых встречаются редко, а если и происходит развитие заболевания, то протекает оно в легкой форме. А вот непривитой человек столкнувшись с носителем инфекции заболеет с вероятностью, приближающейся к 100%.

Вспомним, какие эпидемии были по всему миру, во времена натуральной оспы и сколько умирало людей. Но вакцина против нее в корне изменила ситуацию. Только благодаря поголовному вакцинированию всех уже более 30 лет случаи инфицирования возбудителем натуральной оспы не регистрируется.

Отрицание необходимости вакцинации

Не имея данных о заболеваемости, антивакцинаторы ошибочно думают, что эти инфекции встречаются достаточно редко. Но это также ошибка. Заболеваемость гепатитом В за 6 лет активного вакцинирования детей упала с 9 на 100 тыс. до 1,6 на 100 тыс. Но при этом все еще эта цифра велика, потому что количество родителей, отказывающихся от проведения вакцинации, согласно календарю прививок, детям до года или отказывающихся совсем, очень велико. А это ведет к тому, что формируется неиммунная прослойка населения, а это потенциальные переносчики этих инфекций.

Утверждение об отрицательных влияниях вакцин

Одним из самых смехотворных утверждений на этот счет, что в вакцинах содержатся соединения ртути, вызывающие аутизм. Начнем с того, что в организме человека можно найти почти все элементы таблицы Менделеева и ртуть там не на последнем месте. Мы ежедневно с пищей получаем микродозы подобных соединений. А в вакцинах это соединение имеется в еще меньшем количестве и играет роль консерванта. Не говоря уже о том, что подобные экзогенные факторы вообще не могут никак влиять на появление аутизма. Даже студент медицинского института знает больше об этиологии этого заболевания, нежели антивакцинаторы, потому что даже минимальных знаний хватило бы, чтобы не утверждать подобную глупость. Именно из-за незнания появляются и подобные слухи об эпилепсии и других заболеваниях. Вспомним о типичности побочных реакций – не стоит винить прививку в том, что произошло бы и без нее.

Прививки уничтожают иммунитет

Еще одна глупость от людей, незнающих как работает иммунная система. Мы уже говорили о том, что при вакцинации иммунная система активируется, не стоит повторяться, я думаю.

Памятка для родителей

  • В день прививки и на следующий день не рекомендуется купание и прогулка. Так как переохлаждение и контакты с большим количеством людей могут послужить причиной ОВРИ у ребенка. В первые 2 дня иммунная система активно вырабатывает иммунитет к введенным антигенам и дополнительная иммунная нагрузка ни к чему, иммунитет может попросту не справится и разовьется ОРВИ.
  • Если у ребенка поднялась температура выше 37,5, то следует дать жаропонижающее и проконсультироваться с Вашим врачом.
  • Если появилась местная реакция, то может помочь прием антигистаминных препаратов, но перед тем, как что-либо дать ребенку из лекарств, спросите у своего врача!
  • На момент введения вакцины ребенок должен быть здоров. От момента окончания последнего заболевания должно пройти не менее 2 недель. Ребенок должен быть осмотрен педиатром и должны быть нормальные показатели общего анализа крови и мочи.

Календарь профилактических прививок для детей в России

Подлежащие обязательной вакцинации Наименование профилактической прививки
Новорожденные в первые 24 часа жизни Первая вакцинация против вирусного гепатита B
Новорожденные на 3 - 7 день жизни Вакцинация против туберкулеза
Дети 1 месяц Вторая вакцинация против вирусного гепатита B
Дети 2 месяца Третья вакцинация против вирусного гепатита B (группы риска)
Первая вакцинация против пневмококковой инфекции
Дети 3 месяца Первая вакцинация против дифтерии, коклюша, столбняка
Первая вакцинация против полиомиелита
Первая вакцинация против гемофильной инфекции (группы риска)
Дети 4,5 месяцев Вторая вакцинация против дифтерии, коклюша, столбняка
Вторая вакцинация против гемофильной инфекции (группы риска)
Вторая вакцинация против полиомиелита
Вторая вакцинация против пневмококковой инфекции
Дети 6 месяцев Третья вакцинация против дифтерии, коклюша, столбняка
Третья вакцинация против вирусного гепатита B
Третья вакцинация против полиомиелита
Третья вакцинация против гемофильной инфекции (группа риска)
Дети 12 месяцев Вакцинация против кори, краснухи,
Четвертая вакцинация против вирусного гепатита B (группы риска)
Дети 15 месяцев Ревакцинация против пневмококковой инфекции
Дети 18 месяцев Первая ревакцинация против полиомиелита
Первая ревакцинация против дифтерии, коклюша, столбняка
Ревакцинация против гемофильной инфекции (группы риска)
Дети 20 месяцев Вторая ревакцинация против полиомиелита
Дети 6 лет Ревакцинация против кори, краснухи, эпидемического паротита
Дети 6 - 7 лет Вторая ревакцинация против дифтерии, столбняка
Ревакцинация против туберкулеза
Дети 14 лет Третья ревакцинация против дифтерии, столбняка
Третья ревакцинация против полиомиелита
Взрослые от 18 лет Ревакцинация против дифтерии, столбняка - каждые 10 лет от момента последней ревакцинации
Вакцинация против вирусного гепатита B

Дети от 1 года до 18 лет, взрослые от 18 до 55 лет, не привитые ранее

Вакцинация против кори

Дети от 1 года до 18 лет включительно и взрослые в возрасте до 35 лет (включительно), не болевшие, не привитые, привитые однократно, не имеющие сведений о прививках против кори

Вакцинация против краснухи

Дети от 1 года до 18 лет, женщины от 18 до 25 лет (включительно), не болевшие, не привитые, привитые однократно против краснухи, не имеющие сведений о прививках против краснухи

Вакцинация против гриппа
  • Дети с 6 месяцев, учащиеся 1 - 11 классов
  • обучающиеся в профессиональных образовательных организациях и образовательных организациях высшего образования
  • взрослые, работающие по отдельным профессиям и должностям (работники медицинских и образовательных организаций, транспорта, коммунальной сферы)
  • беременные женщины
  • взрослые старше 60 лет
  • лица, подлежащие призыву на военную службу
  • лица с хроническими заболеваниями, в том числе с заболеваниями легких, сердечно-сосудистыми заболеваниями, метаболическими нарушениями и ожирением


Рассказать друзьям