Что доказывает нам шкала электромагнитных излучений. Обобщённый план изучения излучения

💖 Нравится? Поделись с друзьями ссылкой

Длины электромагнитных волн, которые могут быть зарегистрированы приборами, лежат в очень широком диапазоне. Все эти волны обладают общими свойствами: поглощение, отражение, интерференция, дифракция, дисперсия. Свойства эти могут, однако, проявляться по-разному. Различными являются источники и приемники волн.

Радиоволны

ν =10 5 - 10 11 Гц, λ =10 -3 -10 3 м.

Получают с помощью коле­бательных контуров и макро­скопических вибраторов. Свойства. Радиоволны различных ча­стот и с различными длинами волн по-разному поглощаются и отражаются средами. Применение Радиосвязь, телевидение, радиолокация. В природе радиоволны излучаются различными внеземными источниками (ядра галактик, квазары).

Инфракрасное излучение (тепловое)

ν =3-10 11 - 4 . 10 14 Гц, λ =8 . 10 -7 - 2 . 10 -3 м.

Излучается атомами и мо­лекулами вещества.

Инфракрасное излучение дают все тела при любой тем­пературе.

Человек излучает электро­магнитные волны λ≈9 . 10 -6 м.

Свойства

  1. Проходит через некото­рые непрозрачные тела, а так­же сквозь дождь, дымку, снег.
  2. Производит химическое действие на фотопластинки.
  3. Поглощаясь веществом, нагревает его.
  4. Вызывает внутренний фотоэффект у германия.
  5. Невидимо.

Регистрируют тепловыми методами, фотоэлектрическими и фотографическими.

Применение . Получают изображения предметов в темноте, приборах ночного видения (ночные бинокли), тумане. Используют в криминалистике, в физиотерапии, в промышленности для сушки окрашенных изделий, стен зданий, древесины, фруктов.

Часть электромагнитного излучения, воспринимаемая глазом (от красного до фиолетового):

Свойства . В оздействует на глаз.

(меньше, чем у фиолетового света)

Источники: газоразрядные лампы с трубками из кварца (кварцевые лампы).

Излучается всеми твердыми телами, у которых T>1000°С, а также светящимися парами ртути.

Свойства . Высокая химическая активность (разложение хлорида сереб­ра, свечение кристаллов сульфида цинка), невидимо, большая проникающая способность, убивает микроорганизмы, в неболь­ших дозах благотворно влияет на организм человека (загар), но в больших дозах оказывает отрицательное биологическое воздей­ствие: изменения в развитии клеток и обмене веществ, действие на глаза.

Рентгеновские лучи

Излучаются при большом ускорении электронов, например их торможение в металлах. Получают при помощи рентгеновской трубки: электроны в вакуумной трубке (р= 10 -3 -10 -5 Па) ускоряются электриче­ским полем при высоком напряжении, достигая анода, при со­ударении резко тормозятся. При торможении электроны движут­ся с ускорением и излучают электромагнитные волны с малой длиной (от 100 до 0,01 им). Свойства Интерференция, дифракция рентгеновских лучей на кристаллической решетке, большая проникающая способность. Облуче­ние в больших дозах вызывает лучевую болезнь. Применение . В медицине (диагностика заболеваний внутренних органов), в промышленности (контроль внутренней структуры различных изделий, сварных швов).

γ-излучение

Источники : атомное ядро (ядерные реакции). Свойства . Имеет огромную проникающую способность, оказывает силь­ное биологическое воздействие. Применение . В медицине, производстве (γ -дефектоскопия). Применение . В медицине, в промышленности.

Общим свойством электромагнитных волн является также то, что все излучения обладают одновременно квантовыми и волновыми свойствами. Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга. Волновые свой­ства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства.

Шкала электромагнитных волн представляет собой непрерывную последовательность частот и длин электромагнитных излучений, которые являются распространяющимся в пространстве переменным магнитным полем. Теория электромагнитных явлений Джеймса Максвелла позволила установить, что в природе существуют электромагнитные волны разных длин.

Длина волны или связанная с ней частота волны характеризуют не только волновые, но и квантовые свойства электромагнитного поля. Соответственно в первом случае электромагнитная волна описывается классическими законами, изучаемыми в этом курсе.

Рассмотрим понятие спектра электромагнитных волн. Спектром электромагнитных волн называется полоса частот электромагнитных волн, существующих в природе.

Спектр электромагнитного излучения в порядке увеличения частоты составляют:


Антена

1) Низкочастотные волны(λ>);

2) Радиоволны();


Атом
3) Инфракрасное излучение(м);

4) Световое излучение();

5) Рентгеновское излучение();


Атомные ядра

6) Гамма излучение(λ).

Различные участки электромагнитного спектра отличаются по способу излучения и приёма волн, принадлежащих тому или иному участку спектра. По этой причине, между различными участками электромагнитного спектра нет резких границ, но каждый диапазон обусловлен своими особенностями и превалированием своих законов, определяемых соотношениями линейных масштабов.

Радиоволны изучает классическая электродинамика. Инфракрасное световое и ультрафиолетовое излучение изучает как классическая оптика, так и квантовая физика. Рентгеновское и гамма излучение изучается в квантовой и ядерной физике.

Инфракрасное излучение

Инфракрасное излучение – это часть спектра излучения Солнца, которая непосредственно примыкает к красной части видимой области спектра и которая обладает способностью нагревать большинство предметов. Человеческий глаз не в состоянии видеть в этой части спектра, но мы можем чувствовать тепло. Как известно, любой объект, чья температура превышает (– 273) градусов Цельсия излучает, а спектр его излучения определяется только его температурой и излучательной способностью. Инфракрасное излучение имеет две важные характеристики: длину волны (частоту) излучения и интенсивность. Эта часть электромагнитного спектра включает излучение с длиной волны от 1 миллиметра до восьми тысяч атомных диаметров (около 800 нм).

Инфракрасные лучи абсолютно безопасны для организма человека в отличие от рентгеновских, ультрафиолетовых или СВЧ. У некоторых животных (например, у норных гадюк) есть даже органы чувств, позволяющие им определять местонахождение теплокровной жертвы по инфракрасному излучению ее тела.

Открытие

Инфракрасное излучение было открыто в 1800 английским учёным В. Гершелем, который обнаружил, что в полученном с помощью призмы спектре Солнца за границей красного света (т. е. в невидимой части спектра) температура термометра повышается (рис. 1). В 19 в. было доказано, что Инфракрасное излучение подчиняется законам оптики и, следовательно, имеет ту же природу, что и видимый свет.

Применение

Инфракрасные лучи для лечения болезней начали использоваться с античных времен, когда врачи применяли горящие угли, очаги, нагретое железо, песок, соль, глину и т.п. для излечения обмораживания, язв, карбункулов, ушибов, кровоподтеков и т.д. Гиппократ описывал способ их применения для обработки ран, язв, повреждений от холода и т.д. В 1894 г. Келлог ввел в терапию электрические лампы накаливания, после чего инфракрасные лучи были с успехом применены при заболеваниях лимфатической системы, суставов, грудной клетки (плевриты), органов брюшной полости (энтериты, рези и т.п.), печени и желчного пузыря.

В инфракрасном спектре есть область с длинами волн примерно от 7 до 14 мкм(так называемая длинноволновая часть инфракрасного диапазона), оказывающая на организм человека по - настоящему уникальное полезное действие. Эта часть инфракрасного излучения соответствует излучению самого человеческого тела с максимумом на длине волны около 10 мкм. Поэтому любое внешнее излучение с такими длинами волн наш организм воспринимает как «своё».Самый известный естественный источник инфракрасных лучей на нашей Земле - это Солнце, а самый известный на Руси искусственный источник длинноволновых инфракрасных лучей - это русская печь, и каждый человек обязательно испытывал на себе их благотворное влияние.

Инфракрасные диоды и фотодиоды повсеместно применяются в пультах дистанционного управления, системах автоматики, охранных системах, некоторых мобильных телефонах и т. п. Инфракрасные лучи не отвлекают внимание человека в силу своей невидимости.

Инфракрасные излучатели применяют в промышленности для сушки лакокрасочных поверхностей. Инфракрасный метод сушки имеет существенные преимущества перед традиционным, конвекционным методом. В первую очередь это, безусловно, экономический эффект. Скорость и затрачиваемая энергия при инфракрасной сушке меньше тех же показателей при традиционных методах.

Детекторы инфракрасных лучей широко используются спасательными службами, например, для обнаружения живых людей под завалами после землетрясений или иных стихийных бедствий и техногенных катастроф.

Положительным побочным эффектом так же является стерилизация пищевых продуктов, увеличение стойкости к коррозии покрываемых красками поверхностей.

Особенностью применения ИК-излучения в пищевой промышленности является возможность проникновения электромагнитной волны в такие капиллярно-пористые продукты, как зерно, крупа, мука и т. п. на глубину до 7 мм. Эта величина зависит от характера поверхности, структуры, свойств материала и частотной характеристики излучения. Электромагнитная волна определённого частотного диапазона оказывает не только термическое, но и биологическое воздействие на продукт, способствует ускорению биохимических превращений в биологических полимерах (крахмал, белок, липиды)

Ультрафиолетовые лучи

К ультрафиолетовым лучам относят электромагнитное излучение с длиной волны от нескольких тысяч до нескольких атомных диаметров (400-10 нм). В этой части спектра излучение начинает оказывать влияние на жизнедеятельность живых организмов. Мягкие ультрафиолетовые лучи в солнечном спектре (с длинами волн, приближающимися к видимой части спектра), например, вызывают в умеренных дозах загар, а в избыточных -- тяжелые ожоги. Жесткий (коротковолновой) ультрафиолет губителен для биологических клеток и поэтому используется в медицине для стерилизации хирургических инструментов и медицинского оборудования, убивая все микроорганизмы на их поверхности.

Всё живое на Земле защищено от губительного влияния жесткого ультрафиолетового излучения озоновым слоем земной атмосферы, поглощающим большую часть жестких ультрафиолетовых лучей в спектре солнечной радиации. Если бы не этот естественный щит, жизнь на Земле едва ли бы вышла на сушу из вод Мирового океана. Однако, несмотря на защитный озоновый слой, какая-то часть жестких ультрафиолетовых лучей достигает поверхности Земли и способна вызвать рак кожи, особенно у людей, от рождения склонных к бледности и плохо загорающих на солнце.

История открытия

Вскоре после того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и в противоположном конце спектра, с длиной волны короче, чем у фиолетового цвета. В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Тогда, многие ученые, включая Риттера, пришли к соглашению, что свет состоит из трех отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента. В то время ультрафиолетовое излучение называли также «актиническим излучением».

Применение

Энергии ультрафиолетовых квантов достаточно для разрушения биологических молекул, в частности ДНК и белков. На этом основан один из методов уничтожения микробов.

Он вызывает на коже загар и необходим для выработки витамина D. Но чрезмерное облучение чревато развитием рака кожи. УФ излучение вредно для глаз. Поэтому на воде и особенно на снегу в горах обязательно нужно носить защитные очки.

Для защиты документов от подделки их часто снабжают ультрафиолетовыми метками, которые видны только в условиях ультрафиолетового освещения. Большинство паспортов, а также банкноты различных стран содержат защитные элементы в виде краски или нитей, светящихся в ультрафиолете.

Многие минералы содержат вещества, которые при освещении ультрафиолетовым излучением начинают испускать видимый свет. Каждая примесь светится по-своему, что позволяет по характеру свечения определять состав данного минерала.

Рентгеновское излучение

Рентгеновское излучение - электромагнитные волны, энергия фотонов которых лежит на энергетической шкале между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от до м).

Получение

Рентгеновские лучи возникают при сильном ускорении заряженных частиц (в основном электронов) либо же при высокоэнергетичных переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках, в которых электроны, испущенные раскалённым катодом, ускоряются (при этом рентгеновские лучи не испускаются, т. к. ускорение слишком мало) и ударяются об анод, где они резко тормозятся (при этом испускаются рентгеновские лучи: т. н. тормозное излучение ) и в то же время выбивают электроны из внутренних электронных оболочек атомов металла, из которого сделан анод. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с определённой, характерной для материала анода, энергией (характеристическое излучение )

В процессе ускорения-торможения лишь 1% кинетической энергии электрона идёт на рентгеновское излучение, 99% энергии превращается в тепло.

Открытие

Открытие рентгеновского излучения приписывается Вильгельму Конраду Рентгену. Он был первым, кто опубликовал статью о рентгеновских лучах, которые он назвал икс-лучами (x-ray). Статья Рентгена под названием «О новом типе лучей» была опубликована 28-го декабря 1895 года.

Тщательное исследование показало Рентгену, «что черный картон, не прозрачный ни для видимых и ультрафиолетовых лучей солнца, ни для лучей электрической дуги, пронизывается каким-то агентом, вызывающим энергичную флюоресценцию». Рентген исследовал проникающую способность этого «агента», который он для краткости назвал «Х-лучи», для различных веществ. Он обнаружил, что лучи свободно проходят через бумагу, дерево, эбонит, тонкие слои металла, но сильно задерживаются свинцом.

Рисунок Опыт Крукса с катодым лучом

Затем он описывает сенсационный опыт: «Если держать между разрядной трубкой и экраном руку, то видны темные тени костей в слабых очертаниях тени самой руки». Это было первое рентгеноскопическое исследование человеческого тела. Рентген получил и первые рентгеновские снимки, приложив их к своей брошюре. Эти снимки произвели огромное впечатление; открытие еще не было завершено, а уже начала свой путь рентгенодиагностика. «Моя лаборатория была наводнена врачами, приводившими пациентов, подозревавших, что они имеют иголки в разных частях тела», - писал английский физик Шустер.

Уже после первых опытов Рентген твердо установил, что Х-лучи отличаются от катодных, они не несут заряда и не отклоняются магнитным полем, однако возбуждаются катодными лучами. «...Х-лучи не идентичны с катодными лучами, но возбуждаются ими в стеклянных стенках разрядной трубки»,- писал Рентген.

Рисунок Опыт с первой рентгеновской трубкой

Он установил также, что они возбуждаются не только в стекле, но и в металлах.

Упомянув о гипотезе Герца - Ленарда, что катодные лучи «есть явление, происходящее в эфире», Рентген указывает, что «нечто подобное мы можем сказать и о наших лучах». Однако ему не удалось обнаружить волновые свойства лучей, они «ведут себя иначе, чем известные до сих пор ультрафиолетовые, видимые, инфракрасные лучи». По своим химическим и люминесцентным действиям они, по мнению Рентгена, сходны с ультрафиолетовыми лучами. В первом сообщении он высказал оставленное потом предположение, что они могут быть продольными волнами в эфире.

Применение

При помощи рентгеновских лучей можно «просветить» человеческое тело, в результате чего можно получить изображение костей, а в современных приборах и внутренних органов.

Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.) с помощью рентгеновского излучения называется рентгеновской дефектоскопией.

Используются для технологического контроля микроэлектронных изделий и позволяют выявлять основные виды дефектов и изменения в конструкции электронных блоков.

В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения.

При помощи рентгеновских лучей может быть определён химический состав вещества. В аэропортах активно применяются рентгенотелевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа в целях визуального обнаружения на экране монитора предметов, представляющих опасность.

Рентгенотерапия - раздел лучевой терапии, охватывающий теорию и практику лечебного применения. Рентгенотерапию проводят преимущественно при поверхностно расположенных опухолях и при некоторых других заболеваниях, в том числе заболеваниях кожи.

Биологическое воздействие

Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов и может быть причиной лучевой болезни, лучевых ожогов и злокачественных опухолей. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты. Считается, что поражение прямо пропорционально поглощённой дозе излучения. Рентгеновское излучение является мутагенным фактором.

Вывод:

Электромагнитным излучением называется изменение состояния электромагнитного поля (возмущение), способное распространяться в пространстве.

С помощью квантовой электродинамики можно рассматривать электромагнитное излучение не только как электромагнитные волны, но и как поток фотонов, то есть частиц, представляющих собой элементарное квантовое возбуждение электромагнитного поля. Сами же волны характеризуются такими признаками как длина (или частота), поляризация и амплитуда. Причем свойства частиц тем сильнее, чем короче длина волны. Особенно ярко эти свойства проявляются в явлении фотоэффекта (выбивания электронов из поверхности металла под действием света), открытого в 1887 Г.Герцем.

Такой дуализм подтверждается формулой Планка ε = hν. Эта формула связывает энергию фотона, которая является квантовой характеристикой, и частоту колебаний, являющуюся волновой характеристикой.

В зависимости от диапазона частоты выделяется несколько видов электромагнитного излучения. Хотя границы между этими типами достаточно условны, ведь скорость распространения волн в вакууме одинакова (равна 299 792 458 м/с), следовательно, частота колебания обратно пропорциональна длине электромагнитной волны.

Виды электромагнитного излучения различаются способом получения:

Несмотря на физические различия, во всех источниках электромагнитного излучения, будь то радиоактивное вещество, лампа накаливания или телевизионный передатчик, это излучение возбуждается движущимися с ускорением электрическими зарядами. Различают два основных типа источников. В «микроскопических» источниках заряженные частицы скачками переходят с одного энергетического уровня на другой внутри атомов или молекул. Излучатели такого типа испускают гамма-, рентгеновское, ультрафиолетовое, видимое и инфракрасное, а в некоторых случаях и еще более длинноволновое излучение (примером последнего может служить линия в спектре водорода, соответствующая длине волны 21 см, играющая важную роль в радиоастрономии). Источники второго типа можно назвать макроскопическими . В них свободные электроны проводников совершают синхронные периодические колебания.

Различаются методами регистрации:

Видимый свет воспринимается глазом. Инфракрасное излучение является преимущественно тепловым излучением. Его регистрируют тепловыми методами, а также частично фотоэлектрическими и фотографическими методами. Ультрафиолетовое излучение химически и биологически активно. Оно вызывает явление фотоэффекта, флуоресценцию и фосфоресценцию (свечение) ряда веществ. Его регистрируют фотографическими и фотоэлектрическими методами.

Также они по-разному поглощаются и отражаются одинаковыми средами:

Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом. Коротковолновые излучения (рентгеновское и особенно g-лучи) поглощаются слабо. Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений. Коэффициент отражения электромагнитных волн также зависит от длины волн.

Оказывают разное воздействие на биологические объекты при одинаковой интенсивности излучения:

Воздействия разных видов излучения на организм человека различны: гамма- и рентгеновское излучения пронизывают его, вызывая повреждение тканей, видимый свет вызывает зрительное ощущение в глазу, инфракрасное излучение, падая на тело человека, нагревает его, а радиоволны и электромагнитные колебания низких частот человеческим организмом и вовсе не ощущаются. Несмотря на эти явные различия, все названные виды излучений – в сущности разные стороны одного явления.

По мере развития науки и техники были обнаружены различные виды излучений: радиоволны, видимый свет, рентгеновские лучи, гамма- излучение. Все эти излучения имеют одну и ту же природу. Они являются электромагнитными волнами . Разнообразие свойств этих излучений обусловлено их частотой (или длиной волны). Между отдельными видами излучений нет резкой границы, один вид излучения плавно переходит в другой. Различие свойств становится заметным только в том случае, когда длины волн различаются на несколько порядков.

Для систематизации всех видов излучений составлена единая шкала электромагнитных волн:

Шкала электромаг­нитных волн это непрерывная после­довательность частот (длин волн) электромагнитных излучений. Разбиение шкалы ЭМВ на диапазоны весьма условное.


Известные электромагнитные волны охватывают огромный диапазон длин волн от 10 4 до 10 -10 м . По способу получения можно выделить следующие области длин волн:

1. Низкочастотные волны более 100 км (10 5 м). Источник излучения - генераторы переменного тока

2. Радиоволны от 10 5 м до 1 мм. Источник излучения - открытый колебательный контур (антенна) Выделяются области радиоволн:

ДВ длинные волны - более 10 3 м,

СВ средние - от 10 3 до 100 м,

КВ короткие - от 100 м до 10 м,

УКВ ультракороткие - от 10 м до 1 мм;

3 Инфракрасное излучении (ИК) 10 –3 -10 –6 м. Область ультракоротких радиоволн смыкается с участком инфракрасных лучей. Граница между ними условная и определяется способом их получения: ультракороткие радиоволны получают с помощью генераторов (радиотехнические методы), а инфракрасные лучи излучаются нагретыми телами в результате атомных переходов с одного энергетического уровня на другой.

4. Видимый свет 770-390 нм Источник излучения – электронные переходы в атомах. Порядок цветов в видимой части спектра, начиная с длинноволновой области КОЖЗГСФ. Излучаются в результате атомных переходов с одного энергетического уровня на другой.

5 . Ультрафиолетовое излучение (УФ) от 400 нм до 1 нм. Ультрафиолетовые лучи получают с помощью тлеющего разряда, обычно в парах ртути. Излучаются в результате атомных переходов с одного энергетического уровня на другой.

6 . Рентгеновские лучи от 1 нм до 0,01 нм . Излучаются в результате атомных переходов с одного внутреннего энергетического уровня на другой.

7. За рентгеновскими лучами идет область гамма-лучей (γ) с длинами волн менее 0,1 нм. Излучаются при ядерных реакциях.

Область рентгеновских и гамма-лучей частично перекрывается, и различать эти волны можно не по свойствам, а по методу получения: рентгеновские лучи возникают в специальных трубках, а гамма-лучи испускаются при радиоактивном распаде ядер некоторых элементов.



По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям. Излучения различной длины волны очень сильно отличаются друг от друга по поглощению веществом. Коэффициент отражения веществом электромагнитных волн также зависит от длины волны.

Электромагнитные волны отражаются и преломляются согласно законам отражения и преломления.

Для электромагнитных волн можно наблюдать волновые явления - интерференции, дифракции, поляризации, дисперсии.

Цель урока : обеспечить в ходе урока повторение основных законов, свойств электромагнитных волн;

Образовательная: Систематизировать материал по теме, осуществить коррекцию знаний, некоторое ее углубление;

Развивающая : Развитие устной речи учащихся, творческих навыков учащихся, логики, памяти; познавательных способностей;

Воспитательная : Формировать интерес учащихся к изучению физики. воспитывать аккуратность и навыки рационального использования своего времени;

Тип урока : урок повторения и коррекции знаний;

Оборудование : компьютер, проектор, презентация «Шкала электромагнитных излучений», диск « Физика. Библиотека наглядных пособий».

Ход урока:

1. Объяснение нового материала.

1. Мы знаем, что длина электромагнитных волн бывает самой различной: от значений порядка 1013 м (низкочастотные колебания) до 10 -10 м (g- лучи). Свет составляет ничтожную часть широкого спектра электромагнитных волн. Тем не менее, именно при изучении этой малой части спектра были открыты другие излучения с необычными свойствами.
2. Принято выделять низкочастотное излучение, радиоизлучение, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и g-излучение. Со всеми этими излучениями, кроме g -излучения, вы уже знакомы. Самое коротковолновое g -излучение испускают атомные ядра.
3. Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые заряженными частицами. Обнаруживаются электромагнитные волны, в конечном счете, по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяется со скоростью 300 000 км/с. Границы между отдельными областями шкалы излучений весьма условны.
4. Излучения различной длины волны отличаются друг от друга по способу их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.
5. Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей. В первую очередь это относится к рентгеновскому и g -излучениям, сильно поглощаемом атмосферой.
6. По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям.
7. Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом. Коротковолновые излучения (рентгеновское и особенно g -лучи) поглощаются слабо. Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений. Коэффициент отражения электромагнитных волн также зависит от длины волны. Но главное различие между длинноволновым и коротковолновым излучениями в том, что коротковолновое излучение обнаруживает свойства частиц.

Обобщим знания о волнах и запишем все виде таблиц.

1. Низкочастотные колебания

Низкочастотные колебания
Длина волны(м) 10 13 - 10 5
Частота(Гц) 3· 10 -3 - 3 ·10 3
Энергия(ЭВ) 1 – 1,24 ·10 -10
Источник Реостатный альтернатор, динамомашина,
Вибратор Герца,
Генераторы в электрических сетях (50 Гц)
Машинные генераторы повышенной (промышленной) частоты (200 Гц)
Телефонные сети (5000Гц)
Звуковые генераторы (микрофоны, громкоговорители)
Приемник Электрические приборы и двигатели
История открытия Лодж (1893 г.), Тесла (1983)
Применение Кино, радиовещание(микрофоны, громкоговорители)

2. Радиоволны


Радиоволны
Длина волны(м) 10 5 - 10 -3
Частота(Гц) 3 ·10 3 - 3 ·10 11
Энергия(ЭВ) 1,24 ·10-10 - 1,24 · 10 -2
Источник Колебательный контур
Макроскопические вибраторы
Приемник Искры в зазоре приемного вибратора
Свечение газоразрядной трубки, когерера
История открытия Феддерсен (1862 г.), Герц (1887 г.), Попов, Лебедев, Риги
Применение Сверхдлинные - Радионавигация, радиотелеграфная связь, передача метеосводок
Длинные – Радиотелеграфная и радиотелефонная связь, радиовещание, радионавигация
Средние - Радиотелеграфия и радиотелефонная связь радиовещание, радионавигация
Короткие - радиолюбительская связь
УКВ - космическая радио связь
ДМВ - телевидение, радиолокация, радиорелейная связь, сотовая телефонная связь
СМВ- радиолокация, радиорелейная связь, астронавигация, спутниковое телевидение
ММВ - радиолокация

Инфракрасное излучение
Длина волны(м) 2 ·10 -3 - 7,6· 10 -7
Частота(Гц) 3 ·10 11 - 3 ·10 14
Энергия(ЭВ) 1,24· 10 -2 – 1,65
Источник Любое нагретое тело: свеча, печь, батарея водяного отопления, электрическая лампа накаливания
Человек излучает электромагнитные волны длиной 9 10 -6 м
Приемник Термоэлементы, болометры, фотоэлементы, фоторезисторы, фотопленки
История открытия Рубенс и Никольс (1896 г.),
Применение В криминалистике, фотографирование земных объектов в тумане и темноте, бинокль и прицелы для стрельбы в темноте, прогревание тканей живого организма (в медицине), сушка древесины и окрашенных кузовов автомобилей, сигнализация при охране помещений, инфракрасный телескоп,

4. Видимое излучение

5. Ультрафиолетовое излучение

Ультрафиолетовое излучение
Длина волны(м) 3,8 10 -7 - 3 ·10 -9
Частота(Гц) 8 ·10 14 - 10 17
Энергия(ЭВ) 3,3 – 247,5 ЭВ
Источник Входят в состав солнечного света
Газоразрядные лампы с трубкой из кварца
Излучаются всеми твердыми телами, у которых температура больше 1000 ° С, светящиеся (кроме ртути)
Приемник Фотоэлементы,
Фотоумножители,
Люминесцентные вещества
История открытия Иоганн Риттер, Лаймен
Применение Промышленная электроника и автоматика,
Люминисценнтные лампы,
Текстильное производство
Стерилизация воздуха

6. Рентгеновское излучение

Рентгеновское излучение
Длина волны(м) 10 -9 - 3 ·10 -12
Частота(Гц) 3 ·10 17 - 3 ·10 20
Энергия(ЭВ) 247,5 – 1,24 ·105 ЭВ
Источник Электронная рентгеновская трубка (напряжение на аноде – до 100 кВ. давление в баллоне – 10 -3 – 10 -5 н/м 2 , катод – накаливаемая нить. Материал анодов W,Mo, Cu, Bi, Co, Tl и др.
Η = 1-3%, излучение – кванты большой энергии)
Солнечная корона
Приемник Фотопленка,
Свечение некоторых кристаллов
История открытия В. Рентген, Милликен
Применение Диагностика и лечение заболеваний (в медицине), Дефектоскопия (контроль внутренних структур, сварных швов)

7. Гамма - излучение

Вывод
Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами. Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга. Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства. Все это служит подтверждением закона диалектики (переход количественных изменений в качественные).

Литература:

  1. « Физика- 11» Мякишев
  2. Диск «Уроки физики Кирилла и Мефодия. 11 класс»())) «Кирилл и Мефодий, 2006)
  3. Диск « Физика. Библиотека наглядных пособий. 7-11 классы»((1С: «Дрофа» и «Формоза» 2004)
  4. Ресурсы Интернета

Шкала электромагнитных излучений условно включает в себя семь диапазонов:

1. Низкочастотные колебания

2. Радиоволны

3. Инфракрасное излучение

4. Видимое излучение

5. Ультрафиолетовое излучение

6. Рентгеновское излучение

7. Гамма излучение

Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые заряженными частицами. Обнаруживаются электромагнитные волны, в конечном счете, по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяется со скоростью 300 000 км/с. Границы между отдельными областями шкалы излучений весьма условны.

Излучения различной длины волны отличаются друг от друга по способу их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.

Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей. В первую очередь это относится к рентгеновскому и g-излучениям, сильно поглощаемом атмосферой.

По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям.

Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом. Коротковолновые излучения (рентгеновское и особенно g-лучи) поглощаются слабо. Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений. Коэффициент отражения электромагнитных волн также зависит от длины волны. Но главное различие между длинноволновым и коротковолновым излучениями в том, что коротковолновое излучение обнаруживает свойства частиц.

Инфракрасное излучение

Инфракра́сное излуче́ние - электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны λ = 0,74 мкм) и микроволновым излучением (λ ~ 1-2 мм). Это невидимое излучение с ярко выраженным тепловым действием.

Инфракрасное излучение было открыто в 1800 г. английским учёным У. Гершелем.

Сейчас весь диапазон инфракрасного излучения делят на три составляющих:

коротковолновая область: λ = 0,74-2,5 мкм;

средневолновая область: λ = 2,5-50 мкм;

длинноволновая область: λ = 50-2000 мкм;

Применение

ИК (инфракрасные) диоды и фотодиоды повсеместно применяются в пультах дистанционного управления, системах автоматики, охранных системах и т. п. Они не отвлекают внимание человека в силу своей невидимости. Инфракрасные излучатели применяют в промышленности для сушки лакокрасочных поверхностей.

Положительным побочным эффектом так же является стерилизация пищевых продуктов, увеличение стойкости к коррозии покрываемых красками поверхностей. Недостатком же является существенно большая неравномерность нагрева, что в ряде технологических процессов совершенно неприемлемо.

Электромагнитная волна определённого частотного диапазона оказывает не только термическое, но и биологическое воздействие на продукт, способствует ускорению биохимических превращений в биологических полимерах.

Кроме того, инфракрасное излучение повсеместно применяют для обогрева помещений и уличных пространств.

В приборах ночного видения: биноклях, очках, прицелах для стрелкового оружия, ночных фото- и видеокамерах. Здесь невидимое глазом инфракрасное изображение объекта преобразуется в видимое.

Тепловизоры используют в строительстве при оценке теплоизоляционных свойств конструкций. С их помощью можно определить области наибольших теплопотерь в строящемся доме и сделать вывод о качестве применяемых строительных материалов и утеплителей.

Сильное инфракрасное излучение в местах высокого нагрева может вызывать опасность для глаз. Наиболее опасно, когда излучение не сопровождается видимым светом. В таких местах необходимо надевать специальные защитные очки для глаз.

Ультрафиолетовое излучение

Ультрафиоле́товое излуче́ние (ультрафиолет, УФ, UV) - электромагнитное излучение, занимающее диапазон между фиолетовым концом видимого излучения и рентгеновским излучением (380 - 10 нм, 7,9×1014 - 3×1016 Гц). Диапазон условно делят на ближний (380-200 нм) и дальний, или вакуумный (200-10 нм) ультрафиолет, последний так назван, поскольку интенсивно поглощается атмосферой и исследуется только вакуумными приборами. Это невидимое излучение обладающее высокой биологической и химической активностью.

Понятие об ультрафиолетовых лучах впервые встречается у индийского философа 13-го века. Атмосфера описанной им местности содержала фиолетовые лучи, которые невозможно увидеть обычным глазом.

В 1801 году физик Иоганн Вильгельм Риттер обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра.

Источники ультрафиолета
Природные источники

Основной источник ультрафиолетового излучения на Земле - Солнце.

Искусственные источники

УФ ОУ типа «Искусственный солярий», в которых используются УФ ЛЛ, вызывающие достаточно быстрое образование загара.

Ультрафиолетовые лампы используются для стерилизации (обеззараживания) воды, воздуха и различных поверхностей во всех сферах жизнедеятельности человека.

Бактерицидное УФ излучение на этих длинах волн вызывает димеризацию тимина в молекулах ДНК. Накопление таких изменений в ДНК микроорганизмов приводит к замедлению темпов их размножения и вымиранию.

Ультрафиолетовая обработка воды, воздуха и поверхности не обладает пролонгированным эффектом.

Биологическое воздействие

Разрушает сетчатку глаза, вызывает ожоги кожи и рак кожи.

Полезные свойства УФ излучения

Попадая на кожу вызывает образование защитного пигмента – загара.

Способствует образованию витаминов группы Д

Вызывает гибель болезнетворных бактерий

Применение УФ излучения

Использование невидимых УФ-красок для защиты банковских карт и денежных знаков от подделки. На карту наносят невидимые в обычном свете изображения, элементы дизайна или делают светящейся в УФ-лучах всю карту.



Рассказать друзьям