Биохимические методы исследования. Методы генетики Биохимический метод изучения человека сообщение

💖 Нравится? Поделись с друзьями ссылкой

Биохимический метод считают основным способом качественной диагностики разнообразных заболеваний. Проанализируем особенности данной диагностики, области применения.

Объекты диагностирования

В настоящее время биохимический метод диагностики связан с изучением пота, мочи, иных биологических жидкостей. С его помощью можно выявить активность ферментов, выяснить количественное содержание продуктов метаболизма в разных биологических жидкостях.

Биохимический метод позволяет определять нарушения, возникающие в обмене веществ, обусловленные наследственными факторами.

История открытия

В начале двадцатого века английский врач А. Гаррод занимался изучением алкаптонурии. Ему удалось установить, что по отсутствию некоторых ферментов можно установить нарушения в обмене веществ, а также определить врожденный метаболизм.

Разные наследственные болезни обусловливаются различными мутациями в генах, приводящими к изменению скорость синтеза белковых молекул, изменению их структуры. В результате таких изменений наблюдается нарушение липидного, белкового, углеводного обмена.

Биохимический метод позволяет анализировать химический состав тканей и материалов.

В случае патологии могут возникать изменения концентрации, а также появляться какие-то дополнительные компоненты. Данный метод дает возможность определять ферменты, изучать гормональный баланс.

Классификация

Биохимический метод подразделяют на качественный и количественный варианты. Для качественного определения применяют свойства, которые характерны для применяемого вещества, могут проявляться при химических реакциях: нагревании, добавлении некоторых реагентов.

Количественный биохимический метод предполагает первоначальное обнаружение вещества, затем его количественное вычисление.

Медиаторы, гормоны, содержащиеся в человеческом организме в небольшом количестве, выявляют с помощью тест-объектов.

Биохимический метод исследования постоянно совершенствуется, что дает возможность получать результат максимальной точности о процессах обмена веществ, происходящих в клетках и органах. В настоящее время такие методики диагностики объединяют с иными способами исследования, например, гистологическими, иммунными, цитологическими анализами.

Чтобы использовать сложные методики, применяют специализированное оборудование.

Биохимические методы анализа дают возможность разрабатывать и применять быстрый и упрощенный метод, позволяющий за считаные минуты определить оценку конкретных биохимических показателей.

В настоящее время аналитические лаборатории располагают современным оборудованием, автоматическими приборами и системами, позволяющими с максимальной точностью выявить необходимый показатель.

Способы проведения

Биохимический метод исследования позволяет определять различными способами какое-либо вещество в биологических жидкостях. К примеру, можно выявить такой показатель, как холестеринэстеразу, используя современное оборудование. При выборе конкретной методики учитывают характер анализируемых биологических жидкостей.

Биохимический метод изучения применяют для выявления конкретного вещества в однократном варианте, а также для изучения динамики изменений. Данный показатель анализируют при определенной нагрузке, временном показателе, в процессе приема некоторых химических препаратов.

Специфика метода

Биохимический метод генетики гарантирует быстрое выполнение анализа биологического материала. Он подходит для многократного применения, дает возможность анализировать хромосомные структуры, выявлять их кариотип. Благодаря такой методике специалисты выявляют моногенные и наследственные заболевания, связанные с полиморфизмами и мутациями генов, а также их структур.

Современные биохимические методы применяют для нахождения новых форм мутантных аллелей в ДНК. Благодаря этой методике выявили тысячу заболеваний, связанных с обменными процессами. Многие из них являются проблемами, связанными с дефектами ферментов, а также с изменениями структурных белков.

Для диагностики нарушений в обмене веществ используют две стадии. Сначала производят отбор возможных случаев болезни. Затем уточняют первоначальный диагноз, вооружившись сложными и точными методиками и оборудованием.

Например, в пренатальный период осуществляют у новорожденных детей с помощью биохимического метода анализа диагностику наследственных болезней. Это дает возможность обнаруживать патологические изменения своевременно и незамедлительно начинать лечение.

Виды биохимического анализа

Как подразделяется биохимический метод? Определение различных химических веществ осуществляется различными способами. Суть методики заключается в выявлении определенных биохимических продуктов. Причина в том, что происходит изменение действия разных аллелей. Принцип определения заключается в выявлении измененных нуклеиновых кислот и белков с помощью гель-электрофореза вместе с иными методиками: авторадиографией, блот-гибридизацией.

Биохимический анализ дает возможность выявлять гетерозиготные носители разных заболеваний. Из-за мутационных процессов, происходящих в организме человека, появляются хромосомные перестройки, негативно влияющие на здоровье человека.

Кроме того, современные биохимические методики диагностики дают возможность определять разные полиморфизмы, а также вызывают мутации различных генов.

Среди распространенных методов современной биохимии выделим центрифугирование, диализ и хроматографию.

Оптические методы исследования

Абсорбционная спектроскопия основывается на принципе определения поглощенного света, который проходит через раствор анализируемого вещества в результате абсорбции.

Для измерения спектров применяют специальные спектральные аппараты. В них помещают пробу анализируемого препарата между фотоэлементом и источником света. У каждого биологического вещества есть определенный свет поглощения.

Для проведения аналитических исследований применяют длину волны, которая соответствует максимуму поглощения анализируемого вещества.

Фотоэлектроколориметрия представляет собой определение окрашенными растворами видимого фрагмента спектра.

Спектрофотомерия, востребованная в современном анализе, представляет собой определение пропускания (поглощения) прозрачными жидкостями видимой, ультрафиолетовой и инфракрасной зон спектра.

Среди основных приборов, применяемых для измерения, выделим спектрофотометры и фотоэлектроколориметры. Эти технические приспособления позволяют проводить точные измерения в огромном диапазоне длин волн, начиная с ультрафиолета, заканчивая инфракрасной зоной спектра.

Электрофорез в современной медицине

Данное явление предполагает перемещение в электрическом поле заряженных частиц. Их поведение можно описать тремя базовыми характеристиками: скоростью движения частицы, электрофоретической подвижностью, электрокинетическим потенциалом.

Среди многочисленных методов, которые применяют для проведения аналитических исследований, именно электрофорез позволяет разделять смеси веществ на отдельные фракции, осуществлять их количественное и качественное определение. Например, подобной методикой можно провести разделение белка сыворотки крови на альбумин и четыре фракции глобулинов. Такая задача часто решается в клинической биохимии, поскольку от соотношения фракций зависит определение патологических процессов, протекающих в организме больного.

В настоящее время проводят свободный (фронтальный) электрофорез, связанный с жидкой средой, а также зональный вариант в поддерживающих средах. Ими могут выступать пористые инертные синтетические либо натуральные материалы: крахмал, ацетилцеллюлоза, бумага, синтетический полиакриламидный гель.

Задача такой среды заключается в стабилизации жидкости, снижении диффузии, создании дополнительного механизма разделения.

В последнее время стали использовать разделение по молекулярному весу совместно с электрофоретической подвижностью.

Разновидность современного анализа

Диск-электрофорез является высокоразрешающей разновидностью данного метода. Суть его заключается в том, что сначала движение молекул производится через крупнопористый концентрирующий гель, где осуществляется разделение смеси посредством движения между разными сортами ионов. Разрешающая способность метода достигается путем концентрации перед разложением пробы в небольшой стартовой зоне, разделяя при этом вещества, которые незначительно отличаются между собой по свойствам.

Хроматографические методы базируются на динамическом делении смеси биологических веществ. Суть их в том, что поток подвижной фазы, которая содержит анализируемое вещество, проходит через стационарную фазу, что сопровождается взаимодействием с компонентами образца. Фазы для данного анализа подбирают так, чтобы отличались коэффициенты распределения у компонентов смеси.

В зависимости от агрегатного состояния подвижной фазы существует подразделение хроматографических методов на жидкостный и газообразный виды. С учетом геометрической формы стационарной фазы выделяют плоскостную и колоночную хроматографию.

По механизму разделения биологических препаратов в настоящее время выделяют адсорбционную хроматографию, базирующуюся на разной адсорбционной способности компонентов разделяемой жидкости на границе раздела двух фаз.

Распределительная, или адсорбционная хроматография, базируется на разной способности поглощать объемом жидкой фазы компонентов анализируемой смеси.

Заключение

Биохимический анализ необходим для ранней диагностики серьезных заболеваний. Например, при аффинной хроматографии можно выделить определенный компонент из любой биологической смеси.

Подобная методика применяется для очистки антител и антигенов, рецепторов, ферментов, гормонов. Особая роль в биохимии принадлежит центрифугированию. Исследование и разделение веществ на основе данного метода базируется на различной скорости седиментации (оседания) в центробежном поле частичек, которые имеют различную плотность, размеры, форму. При правильном подборе скорости проведения центрифугирования можно осаждать митохондрии, рибосомы, лизосомы.

Радиоизотопные методы базируются на возможности нестабильных изотопов испускать электромагнитное излучение либо частицы, фиксируемые специальными электронными приборами.

Среди явных преимуществ всех современных методов, применяемых в медицине, выделим возможность анализировать метаболические превращения, выявлять возраст биологических препаратов. Такие исследования помогают своевременно лечить пациентов.

Причиной многих врожденных нарушений метаболизма являются различные дефекты ферментов, возникающие вследствие изменяющих их структуру мутаций.Биохимические показатели более точно отражают сущность болезни по сравнению с показателями клиническими, поэтому их значение в диагностике наследственных болезней постоянно возрастает. Использование современных биохимических методов позволяют определять любые метаболиты, специфические для конкретной наследственной болезни.

Предметом современной биохимической диагностики являются специфические метаболиты, энзимопатии, различные белки. Объектами биохимического анализа могут служить моча, пот, плазма и сыворотка крови.

Для биохимической диагностики используются как простые качественные реакции, так и более точные методы. Например, с помощью тонкослойной хроматографии мочи и крови можно диагностировать нарушение обмена аминокислот, олигосахаридов, мукополисахаридов. Газовая хроматография применяется для выявления нарушений обмена органических кислот.

Биохимические методы применяются и для диагностики гетерозиготных состояний у взрослых. Известно, что среди здоровых людей всегда имеется большое число носителей патологического гена. Хотя такие люди внешне здоровы, вероятность появления заболевания у их ребенка всегда существует. В связи с этим, выявление гетерозиготного носительства – важная задача медицинской генетики.

Если в брак вступают гетерозиготные носители какого-либо заболевания, то риск рождения больного ребенка в такой семье составит 25%.Шансы на встречу двух носителей одинакового патологического гена выше, если в брак вступают родственники, т.е. они могут унаследовать один и тот же рецессивный ген от своего общего предка.

Выявление гетерозиготных носителей того или иного заболевания возможно путем использования биохимических тестов, микроскопического исследования клеток крови и тканей, определения; активности фермента, измененного в результате мутации.

Известно, что заболевания, в основе которых лежит нарушение обмена веществ, составляют значительную часть наследственной патологии. Так, гетерозиготные носители фенилкетонурин реагируют на введение фенилаланина более сильным повышением содержания аминокислоты в плазме, чем нормальные гомозиготы.

Биохимический метод широко применяется в медико-генетическом консультировании для определения риска рождения больного ребенка. Успехи в области биохимической генетики способствуют более широкому внедрению диагностики гетерозиготного носительства в практику. Еще недавно можно было диагностировать не более 10-15 гетерозиготных состояний, в настоящее время – более200. Однако следует отметить, что до сих пор имеется немало наследственных заболеваний, для которых методы гетерозиготной диагностики еще не разработаны.

Биохимический метод

Биохимические методы исследования применяют при подозрении на врожденные дефекты обмена. Они достаточно сложные и дорогостоящие, поэтому исследование проводится в два этапа. На первом этапе используют более дешевые и быстрые исследования. Это так называемые скринирующие (просеивающие) экспресс-методы, позволяющие обследовать большие группы населения. Сюда относится, например, микробиологический тест Гатри для обследования всех новорожденных на фенилкетонурию. Экспресс - методом диагностики фенилкетонурии можно считать также тест Феллинга. Таким тестом на галактоземию и фруктоземию является проба Бенедикта. Для проведения подобных тестов используют кровь и мочу.

На втором этапе диагностики пользуются более сложными методами биохимии и молекулярной биологии: методами фракционирования и количественного анализа, жидкостной и газовой хроматографией, иммунохимическими методами, изучают электрофоретическую подвижность белков. Возможно прямое измерение ферментативной активности. Применяются исследования мутантных белков с помощью меченых субстратов.

Популяционно-генетический метод

Данные, полученные при клинико-генеалогическом и близнецовом методах исследования, сравниваются с данными о частоте встречаемости признака (заболевания) в общей популяции. Частота того или иного гена в конкретной популяции определяет и особенности накопления больных в семьях.

Изучение генетической структуры популяции является необходимым этапом изучения распределения наследственных болезней в семьях.

Под популяцией в генетике понимается часть населения, занимающая одну территорию на протяжении многих поколений и свободно вступающая в брак между собой. В этой группе выполняется условие панмиксии, и нет изоляционных барьеров, препятствующих свободным бракам. В такой популяции соотношение частот доминантных и рецессивных аллелей при достаточно большом размере популяции сохраняется в ряду поколений без изменений. Закон генетической стабильности выражается формулой Харди-Вайнберга:

р 2АА: 2pqAa: q2aa, или + q)2 =1, тогда (p+q)=1,

т.е. частоты доминантного А и рецессивного гена а в сумме составляют единицу и являются постоянной величиной, а соотношение доминантных гомозигот, гетерозигот и рецессивных гомозигот определяется как квадрат встречаемости доминантного аллеля, произведение доминантного и рецессивного аллелей и квадрат встречаемости рецессивного аллеля соответственно.

Популяций, полностью отвечающих требованиям идеальной генетической стабильности по Харди - Вайнбергу, в природе не существует, т.к. для выполнения выше указанных условий должны отсутствовать мутационный процесс, естественный отбор и миграция. Однако как рабочая формула закон Харди - Вайнберга с успехом используется в популяционно-генетических исследованиях, ибо в больших популяциях перечисленные процессы протекают достаточно медленно (в отсутствие войн и гуманитарных катастроф) и не вызывают сколько-нибудь значительных изменений соотношения частот аллелей.

Популяционно-генетический метод позволяет установить частоты генов болезней в популяции и частоту гетерозиготного носительства. Встречаемость гетерозиготного носительства при некоторых врожденных нарушениях обмена с аутосомно-рецессивным типом наследования показана в табл. 3.

Таблuца 3.Встречаемость гетерозиготного носительства

По распространенности частот генов и связанных с ними фенотипов можно судить об адаптивной ценности отдельных генотипов.

Благодаря бракам внутри отдельных популяций определенные гены могут ограничиваться пределами конкретных популяций либо распределяться неравномерно между различными популяциями. Если вступление в брак для любых членов популяции равновероятно, то такая популяция называется панмиксной. Если имеются препятствия (этнические, социальные, религиозные), то группы населения, различающиеся по этим параметрам, могут образовывать изоляты внутри популяции. Неизбирательные по указанным признакам браки (аутбридинг) предполагают случайный подбор супругов. Отклонения от панмиксии возникают, когда браки ассортативны, т.е. супруги подбираются по какому-либо признаку, например, по общим дефектам сенсорной сферы, опорно-двигательного аппарата или по психическому недоразвитию.

В наше время браки между индивидами, страдающими нарушениями слуха или зрения, являются скорее правилом, чем исключением. Отклонения от панмиксии происходят и тогда, когда в брак вступают родственники. Такой брак называется кровнородственным (инбридинг). Близкородственные браки между родственниками 1 степени родства (между родителями и детьми и родными братьями и сестрами) называются инцестными. Примеры таких браков можно привести лишь из истории. Так, царица Египта Клеопатра родилась от инцестного брака и состояла в браках с родными братьями. Это было связано со стремлением сохранить свою "голубую" кровь. В настоящее время такие браки повсеместно, запрещены. Запрет связан с повышенным риском выявления рецессивной и полигенной патологии. Браки между родственниками П степени родства (дядя - племянница, тетя племянник) распространены, в частности, в арабских странах, что обусловлено экономическими соображениями. В России частота кровнородственных браков не превышает 1 % и в основном в такой брак вступают двоюродные сибсы либо родственники более отдаленных степеней родства. Таким образом, степень родства между индивидуумами в различных популяциях неодинакова. Для ее оценки пользуются коэффициентом инбридинга F (Райт, 1885), определяющим вероятность идентичности по происхождению двух любых аллелей данного локуса. Например, нужно установить вероятность того, что у супругов - дяди и племянницы имеется по одному рецессивному гену фенилкетонурии, полученному от общего предка. Таким общим предком для них является бабушка или дедушка племянницы. Вероятность того, что бабушка (дедушка) передали свой ген (ФКУ) одному из своих детей, составляет 1/2. Вероятность того, что оба ребенка бабушки (дедушки) получили этот ген, составляет 1/2 х 1/2 = 1/4. Вероятность двух независимых событий равна произведению их вероятностей. Вероятность того, что один из детей бабушки передал этот ген своему ребенку, составляет также 1/2. Следовательно, коэффициент инбридинга составит 1/4 х 1/2 = 1/8. Рассуждая так, можно рассчитать, что коэффициент инбридинга для браков двоюродных сибсов составит 1/16, троюродных - 1/32, четвероюродных -1/64.

В небольших популяциях в связи с ограниченностью выбора нарастает инбредность, возникает явление "инбредной депрессии": число гетерозигот по рецессивной болезни снижается, а гомозигот (больных) повышается. Коэффициент инбридинга может быть рассчитан как для популяций, так и для пары индивидов. Еще один близкий показатель, называемый коэффициентом родства (Ф), можно рассчитать только для двух индивидов. Коэффициент родства Фху - это вероятность того, что любой ген, принадлежащий индивиду Х, идентичен гену того же локуса, у индивида У. Коэффициент родства определяет долю общих генов у пары родственников. Так, у монозиготных близнецов 100% общих генов, у родственников 1 степени родства (родитель-ребенок, родные сибсы) - 50% общих генов, у родственников 11 степени родства (дяди, тети, племянники, бабушки (дедушки), внуки) - 25% общих генов у родственников 111 степени родства (двоюродные сибсы, прадедушки (прабабушки), правнуки) - 12,5% общих генов. Таким образом, долю общих генов у родственников можно определить по формуле (1j2n), где п - степень родства.

Современные методы изучения генетики человека .

В лабораторной диагностике наследственных болезней наряду с классическими методами широко используются современные, новые методы: цитогенетический, имунногенетический, биохимический, онтогенетический, молекулярно-генетические методы и т.д.

Биохимический метод.

Биохимический метод является основным в диагностике многих моногенных болезней, приводящих к нарушению обмена веществ. Объектами биохимической диагностики являются биологические жидкости: кровь, моча, пот, амниотическая жидкость и т.д. С помощью данного метода можно определить в биологических жидкостях активность ферментов или содержание некоторых продуктов метаболизма.

Практически во всех случаях биохимическая диагностика включает 2 уровня: первичный и уточняющий. Целью первичного уровня диагностики является исключение здоровых индивидов из дальнейшего обследования, для этого используют 2 вида программ диагностики: массовые и селективные. Массовые просеивающие программы применяют для диагностики у новорожденных таких заболеваний как фенилкетонурия, врожденный гипотериоз, муковисцедоз, галактоземия. Например, для диагностики фенилкетонурии кровь новорожденных берут на 3-5 день после рождения. Капли крови помещают на хроматографическую или фильтровальную бумагу и пересылают в лабораторию для определения фенилаланина. Для определения врожденного гипотереоза в крови ребенка на 3 день жизни определяют уровень тироксина. Просеивающая программа массовой диагностики наследственных болезней применяются не только среди новорожденных. Они могут быть организованны для выявления тех болезней которые распространены в каких либо группах населения. Например с США организована просеивающая биохимическая программа по выявлению гетерозиготнвх носителей идиотии Тей-Сакса (она чаще встречается среди евреев-ашкенази). На Кипре и в Италии организовано биохимическое исследование гетерозиготных несителей талассемии.

Селективные диагностические программы предусматривают проверку биохимических аномалий обмена у пациентов с подозрением на генные наследственные болезни.

В селективных программах могут использоваться простые качественные реакции (например, тест с хлоридом железа для выявления фенилкетонурии или тест с динитрофенилгидрозином для выявления кетокислот в моче) или более точные методы. Например, с помощью тонкослойной хроматографии мочи и крови можно диагностировать наследственные нарушения обмена аминокислот и мукополисахаридов. С помощью электрофореза гемоглобинов диагностируется вся группа гемоглобинопатий.

На сегодняшний день в нашей стране внедрена программа обязательного селективного скрининга на определение наследственных болезней обмена веществ. с проведением 14ти тестов анализов мочи и крови: на белок, кетокислоты, цистин и т.д. На втором этапе, применяя методы тонкослойной хроматографии мочи и крови, можно выявить более 140 наследственных болезней обмена веществ, такие как болезни углеводного обмена, лизосомальные болезни накопления, болезни обмена металлов, аминоацидопатии и т.д.

Широкое применение нашел биохимический метод в пренатальной диагностике врожденных пороков развития. Биохимические методы включают определение уровня альфа- фетопротеина, хорионического ганадотропина в сыворотке крови беременной. Эти методы являются просеивающими для выявления врожденных пороков развития. Например, при дефектах невральной трубки повышается уровень альфа-фетопротеина.

Цитогенетический метод.

Цитогенетический метод, основанный на изучении количества и структуры хромосом в норме и при патологии.

Основными показаниями для цитогенетического исследования являются:

1) пренатальная диагностика пола плода в семьях, отягощенных заболеваниями, сцепленными с Х-хромосомой;

2) недифференцированная олигофрения (слабоумие);

3) привычные выкидыши и мертворождения;

4) множественные врожденные пороки развития у ребенка;

5) бесплодие у мужчин;

6) нарушение менструального цикла (первичная аменорея);

7) пренатальная диагностика при возрасте матери старше 35 лет.

Этот метод стал широко применяться в медицинской практике с 1956 года, когда Тио и Леван определили, что у человека 46 хромосом. Первая классификация хромосом человека, предложенная в Денвере заложила основу для последующих номенклатур хромосом.

Наиболее современной считается Международная система цитогенетической номенклатуры хромосом человека сокращенно ISCN, принятая в Вашингтоне в 1995 году.

Согласно последней номенклатуре в хромосоме длинное плечо обозначают q , а короткое p. В каждом районе хромосомы полосы и сегменты пронумерованы последовательно от центромеры к теломере. Использование метода дифференциального окрашивания хромосом позволяет выделять индивидуальный рисунок каждой хромосомы вследствие того, что в хромосоме участки эу- и гетерохроматина по-разному окрашиваются красителями.

Объектами для цитогенетического исследования служат метафазные хромосомы, которые можно изучать с помощью прямых и непрямых методов.

Прямые – это методы получения препаратов делящихся клеток без культивирования, их используют для изучения клеток костного мозга и клеток опухолей. Непрямые методы – это методы получения препаратов хромосом из культивированных в искусственных питательных средах, например, при культивировании лимфоцитов периферической крови человека.

С помощью непрямых методов возможно проводить: кариотипирование – определение количества и качества хромосом; генетический пол организма; диагностику геномных мутаций и хромосомных аберраций. Например, синдром Дауна (трисомия по 21-й хромосоме), синдром Патау (трисомия по 13-й хромосоме), синдром Эдвардса (трисомия по 18-й хромосоме), синдром «кошачьего крика» (делеция 5-й хромосомы), синдром Вольфа-Хиршхорна (частичная моносомия 4-й хромосомы).

Для изучения половых хромосом, в частности Y-хромосомы, используют специальную окраску акрихиниприт (флюоресцирующая) и исследование проводят в ультрафиолетовом свете. Y-хроматин – это сильно светящаяся точка, обнаруживается в ядрах клеток мужского организма, и число Y-телец соответствует числу Y-хромосом в кариотипе. Окончательный диагноз хромосомной болезни выставляется только после исследования кариотипа.

Чтобы быстро определить изменения числа половых хромосом применяют экспресс-метод определения полового хроматина. Половой хроматин или тельце Барра представляет собой одну из двух X-хромосом, причем в инактивированном виде. Оно выявляется в виде сгустка треугольной или овальной формы около внутренней мембраны ядерной оболочки. В норме половой хроматин обнаруживается только у женщин. При увеличении числа Х-хромосом увеличивается и количество телец Барра. При уменьшении числа Х-хромосом (синдром Шерешевского-Тернера, кариотип 45 ХО) тельце Барра отсутствует. В норме у мужчин половой хроматин не обнаруживается, его наличие может свидетельствовать о синдроме Клайнфельтера (кариотип 47 ХХY).

Цитогенетический метод применяют для пренатальной диагностики наследственных заболеваний. Для этого проводят амниоцентез, получают амниотическую жидкость с клетками кожи плода, затем клеточный материал исследуют для дородовой диагностики хромосомных аберраций и геномных мутаций, а также пола плода. Обнаружение изменение количества и структуры хромосом дает возможность своевременного прерывания беременности с целью предупреждения потомства с грубейшими аномалиями развития.

Иммуногенетический метод.

Этот метод применяется у пациентов при подозрении на имунодефицитные заболевания (например, агаммаглобулинемии – почти полное отсутствие глобулинов в крови), при несовместимости антигенов матери и плода, для определения наследственной предрасположенности к заболеваниям при установлении отцовства.

Для диагностики имуунодефицитных состояний исследуют глобулины, Т и В-лимфоциты, нейтрофилы, макрофаги. Определяются антигены эритроцитов, лейкоцитов и сыворотки крови.

Для пренатальной диагностики можно определять HLA-антигены в лейкоцитах человека. По этим антигенам можно установить адреногенетальный синдром (или врожденная дисфункция коры надпочечников, при которой повышается синтез андрогенов в коре надпочечников). У девочек это проявляется ложным гермафродитизмом, а у мальчиков преждевременным половым созреванием.

Иммуногенетические методы достаточно дорогостоящие, но очень эффективные для определения предрасположенности к наследственным заболеваниям или для прогнозирования здоровья будущих детей.

Онтогенетический метод.

В генетике человека широко распространен онтогенетический метод. Он основан на изучении закономерности проявления какого-либо признака или заболевания в процессе индивидуального развития.

Выделяют несколько периодов развития человека: пренатальный и постнатальный. Большинство признаков формируется во время пренатального периода. После рождения заканчивается формирование коры головного мозга, постепенно формируется психика ребенка, его способность к обучению, происходит становление иммунной системы. В различные периоды развития человека происходит изменение активности генов, при чем может наблюдаться как «включение» и «выключение» генов, так и «усиление» и «ослабление» генов.

В постнатальный период, например, происходит включение генов определяющих развитие вторичных половых признаков, развитие наследственных заболеваний (сахарного диабета, близорукости, миопатии Дюшена и т.д.). В этот же период происходит выключение многих генов. Репрессируются активности генов, связанных с выработкой меланина (в результате происходит поседение волос). Не происходит синтеза эластазы (вследствие чего появляются морщины), подавляется выработка гаммаглобулинов (поэтому повышается восприимчивость к бактериальным инфекциям).

С возрастом может меняться проявление доминирования генов, находящихся в гетерозиготном состоянии, что вызывает изменение внешних признаков, особенно в период полового созревания и беременности.

В старости у человека меняется соотношение женских и мужских половых гормонов. В результате у мужчин меняется тембр голоса, форма тела, происходит отложение жира по женскому типу, меняется психика – мужчины становятся плаксивыми и впечатлительными. У женщин грубеет голос, меняется фигура.

С возрастом рецессивные гены могут оказывать большее влияние на развитие того или иного признака. У гетерозиготного по генотипу человека, например, по фенилкетонурии изменяется психика.

Наряду с «временем действия генов» выделяют и «поле действия генов». В каждой клетке человека, за исключение зрелых половых клеток содержится одинаковый диплоидный набор хромосом и одинаковый набор генов, но в процессе онтогенеза и формирования органов и тканей, одни из генов блокируются, а другие включаются в работу. Так, например, только в клетках щитовидной железы работают гены, отвечающие за синтез гормона тироксина, а в клетках поджелудочной железы – гормона инсулина. В клетках других органов тоже есть такие гены, но они блокированы.

У человека в процессе онтогенеза формируется конституция. Конституционные признаки имеют сложную генетическую основу или могут возникать в результате ранней физической нагрузки. Конституционными признаками называют такие признаки структуры, функции или поведения, которые характерны для процессов роста, созревания и старения.

Медицина стала все больше обращать внимание на конституционные болезни. Оказалось, что люди астенического телосложения более склонны к развитию туберкулеза легких, и, наоборот, у полных людей чаще наблюдается атеросклероз и гипертоническая болезнь.

Молекулярно-генетические методы.

Успехи, достигнутые в последние годы в молекулярной биологии, биохимии, медицинской генетике привели к созданию и внедрению в практическую медицину молекулярно-генетических методов. С помощью этих методов исследуется геном человека и осуществляется диагностика целого ряда наследственных и широко распространенных заболеваний. Методы ДНК-диагностики позволяют осуществлять точную и, что очень важно, доклиническую (до развития симптомов заболевания) диагностику многих заболеваний, проводить пренатальную (дородовую) диагностику наследственных болезней. Молекулярно-генетическая диагностика может быть проведена на самых ранних этапах развития эмбриона и плода независимо от биохимических или клинических проявлений болезни. Это подчас является решающим для решения вопроса о судьбе конкретной беременности.

Молекулярно-генетические методы предназначены для выявления особенностей в структуре ДНК.

У каждого человека во всех соматических клетках структура ДНК совершенно одинакова.

ДНК может быть выделена из любого типа тканей или клеток организма, содержащей ядра. Чаще всего для получения образцов ДНК используют лейкоциты периферической крови и клетки ворсин хориона.

В 70-е годы 20 века вследствие интенсивного развития молекулярной биологии и создании совершенной методической базы генетических исследований возникло направление по определению специфических нуклеотидных последовательностей ДНК и РНК – генное зондирование (гибридизационный анализ). Регистрация последовательностей небольшой длины до 30 пар нуклеотидов осуществляется с помощью синтезированных с радиоактивным мечением участков ДНК, названных зондами. Такие зонды гибридизировались с изучаемыми образцами ДНК. В этом подходе использовались универсальные свойства нуклеиновых кислот образовывать двойные нити, соединяясь между собой за счет комплиментарных нуклеотидов и образуя классические пары: аденин-тимин (АТ) и гуанин-цитозин (ГЦ). Если известна первичная структура нормального и мутантного аллелей искомого гена, то для обнаружения повреждения вводят зонд, который специфически соединяется либо с нормальным, либо с мутантным геном. Патология выявляется путем обнаружения радиоактивных импульсов на рентгеновской пленке. Этот метод широко применяется в практике диагностики наследственных болезней. В настоящее время с его помощью проводится диагностика талассемий, фенилкетонурии, недостаточности альфа-антитрипсина.

Полимеразная цепная реакция.

Полимеразная цепная реакция – это метод, имитирующий естественную репликацию ДНК и позволяющий обнаружить и копировать с помощью термостабильной ДНК-полимеразы определенный фрагмент ДНК. В основе метода лежит многоцикловый процесс, напоминающий естественную репликацию ДНК, при чем каждый цикл состоит из 3-х этапов.

На первом этапе при высокой температуре 70-80 0 С ДНК денатурируется на две отдельные цепи.

На втором этапе к определенному участку каждой цепи ДНК присоединяются праймеры. Праймеры – это последовательности нуклеотидов, специфичные для каждого гена. Они комплементарны известным нуклеотидам. Этот этап протекает при t 37 0 С.

На третьем этапе происходит синтез новых цепей ДНК при участии фермента ДНК-полимеразы, опять при высокой t. Эти этапы повторяются до получения стабильного продукта ПЦР.

Дальнейший продукт ПЦР подвергается электрофорезу и анализу.

ПЦР эффективно используют в дородовой диагностике. Достаточно небольшого количества клеток ворсин хориона или других клеток плода, чтобы исследовать их и дать через два дня заключение о наличии или отсутствии у будущего ребенка мутантного аллеля.

Сегодня молекулярно-генетические методы используются для диагностики более 300 наследственных болезней: гемофилии, гемоглобинопатий, митохондриальных болезней, муковисцедозе и т.д.

Кроме того ДНК-технологии находят свое применение для расшифровки генома человека, в судебной медицине, для определения отцовства и степени родства, для анализа клеток красного мозга донора и реципиента при трансплантации органов.

Биохимический метод - основной метод в биохимии из основных методов диагностики различных заболеваний, которые вызывают нарушение обмена веществ. Именно об этом методе анализа и пойдет речь в данной статье.

Объекты диагностики

Объектами диагностики биохимического анализа являются:

  • кровь;
  • моча;
  • пот и другие биологические жидкости;
  • ткани;
  • клетки.

Биохимический метод исследования позволяет определять активность ферментов, содержание продуктов метаболизма в различных биологических жидкостях, а также выявлять нарушения в обмене веществ, которые обусловлены наследственным фактором.

История

Открыт биохимический метод английским врачом А. Гарродом в начале ХХ века. Он изучал алкаптонурию, и в ходе изучения им было установлено, что врожденный метаболизм или заболевание обмена веществ можно определить по признаку отсутствия специфических ферментов.

Различные наследственные заболевания обуславливаются мутациями в генах, которые изменяют структуру и скорость синтеза белков в организме. При этом нарушается углеводный, белковый и липидный обмен.

Основное

В целях клинической диагностики изучается химсостав биологических материалов и тканей, так как при патологии могут проявиться изменения концентрации, отсутствие компонентов или наоборот появление какого-либо другого компонента. По определяют количество определенных веществ, гормональный баланс, ферменты.

Исследуются молекулы, белки, нуклеиновые кислоты и другие вещества, которые входят в состав живого организма.

Результаты

Результат биохимического метода исследования может быть разделен на качественный (обнаружен или не обнаружен) и количественный (каково содержание того или иного вещества в биоматериале).

В качественном методе исследования используются свойства, характерные для используемого вещества, которые проявляются при определенных химических воздействиях (при нагревании, при прибавлении реагентов).

Прямой определяется на основе этого же принципа, но сначала определяют обнаружение какого-либо вещества, а затем уже измеряют его концентрацию.

Гормоны, медиаторы содержатся в организме в очень малых количествах, поэтому их содержание измеряют при помощи биологических тест-объектов (например, отдельного органа или целого экспериментального животного). Этим повышается чувствительность и специфичность исследований.

Историческая эволюция

Биохимический метод совершенствуется, чтобы получать наиболее точный результат и информацию о состоянии обменных процессов в организме, процессов обмена веществ в определенных органах и клетках. В последнее время биологические методы диагностики сочетают с другими методами исследований, такими как иммунные, гистологические, цитологические и другие. Для использования более сложного метода или методов обычно используют специальное оборудование.

Существует другое направление биохимического метода, которое не вызывается запросом клинической диагностики. С помощью разработки и применения быстрого и максимально упрощенного метода, который может позволить за несколько минут определить оценку нужных биохимических показателей.

В наше время лаборатории оснащены новейшим усовершенствованным оборудованием и механическими и автоматическими системами и приборами (анализаторами), которые позволяют быстро и точно определить нужный показатель.

Биохимический метод изучения: способы

Измерение какого-либо вещества в биологических жидкостях и их определение осуществляется разными многочисленными способами. Например, определить такой показатель как холестеринэстераза, можно сотнями вариантов методов биохимического исследования. Выбор конкретной методики во многом зависит от характера исследуемых биологических жидкостей.

Биохимический метод исследования используется для определения одного вещества или показателя как однократно, так и в динамике. Этот показатель проверяют при определенном времени суток, под определенной нагрузкой, в процессе заболевания, при приеме каких-либо препаратов.

Особенности метода

Особенности биохимического метода:

  • минимальное количество используемого биоматериала;
  • скорость выполнения анализа;
  • возможное многократное применение данного метода;
  • точность;
  • биохимический метод можно использовать в процессе болезни;
  • прием препаратов не влияет на результат исследования.

Биохимические методы генетики

В генетике чаще всего используется цитогенетический метод исследования. Он позволяет подробно изучить хромосомные структуры и их кариотип. С помощью данного метода можно выявить наследственные и моногенные заболевания, которые связаны с мутациями и полиморфизмами генов и их структур.

Биохимический метод генетики сейчас широко используется для того, чтобы находить новые формы мутантных аллелей в ДНК. При помощи данного метода было выявлено и описано больше 1000 вариантов заболеваний обмена веществ. Большинство описанных заболеваний - это болезни, которые связаны с дефектами ферментов и других структурных белков.

Диагностика нарушений обменных процессов биохимическими методами проводится двумя этапами.

Первый этап:

  • проводится отбор предположительных случаев заболевания.

Второй этап:

  • уточняется диагноз заболевания более точной и сложной методикой.

Новорожденным детям в пренатальный период при помощи биохимического метода исследования проводится диагностика наследственных заболеваний, что позволяет своевременно обнаружить патологию и вовремя начинать лечение.

Виды метода

Биохимический метод генетики может иметь множество видов. Все они делятся на две группы:

  1. Биохимические методы, в основе которых лежит выявление определенных биохимических продуктов. Это обусловлено изменениями действий различных аллелей.
  2. Метод, который основывается на том, чтобы непосредственно выявить измененные нуклеиновые кислоты и белки при помощи гель-электрофореза в сочетании с другими методиками, такими как блот-гибридизация, авторадиография.

Биохимический метод помогает выявить гетерозиготные носители различных заболеваний. в человеческом организме ведут к появлению аллелей и к хромосомным перестройкам, которые плохо влияют на здоровье человека.

Также биохимические методы диагностики позволяют выявить различные полиморфизмы и мутации генов. Усовершенствование биохимического метода и биохимической диагностики в наше время помогает выявить и подтвердить большое количество различных нарушений обменных процессов организма.

В статье был рассмотрен биохимический метод анализа.



Рассказать друзьям