Антидоты противоядия механизмы действия. Стронций

💖 Нравится? Поделись с друзьями ссылкой

Антидотом называется лекарство, применяемое при лечении отравлений и способствующее обезвреживанию яда или предупреждению и устранению вызываемого ими токсического эффекта.

Антидоты бывают прямого и непрямого действия.

(I)Прямого действия – осуществляется непосредственное химическое или физико – химическое взаимодействие яда и противоядия. Основные варианты – сорбентные препараты и химические реагенты. Сорбентные препараты – защитное действие осуществляется за счет неспецифической фиксации (сорбции) молекул на сорбенте. Результат – снижение концентрации яда, взаимодействующего с биоструктурами, что приводит к ослаблению токсичного эффекта. Сорбция происходит за счет неспецифических межмолекулярных взаимодействий – водородных и Ван – дер – Ваальсовых связей (не ковалентных!). Сорбцию возможно осуществлять с кожных покровов, слизистых оболочек, из пищеварительного тракта (энтеросорбция), из крови (гемосорбция, плазмосорбция). Если яд уже проник в ткани, то применение сорбентов не эффективно. Примеры сорбентов: активированный уголь, каолин (белая глина), окись Zn, ионообменные смолы.

При отравлении цианидами (солями синильной кислоты HCN) применяются глюкоза и тиосульфат натрия, которые связывают HCN. Ниже приведена реакция с глюкозой:

Очень опасна интоксикация тиоловыми ядами (соединениями ртути, мышьяка, кадмия, сурьмы и и др. тяжелых металлов- Ме2+ ). Тиоловыми такие яды называют по механизму их действия - связыванию с тиоловыми (-SH) группами белков:

Связывание металла с тиоловыми группами белков приводит к разрушению структуры белка, что вызывает прекращение его функций. Результат - нарушение работы всех ферментных систем организма.
Для нейтрализации тиоловых ядов применяются дитиоловые антидоты (доноры SH-групп). Механизм их действия представлен на нижней схеме. Образовавшийся комплекс яд-антидот выводится из организма, не причиняя ему вреда.

Еще один класс антидотов прямого действия - антидоты – комплексоны (комплексообразователи ).Они образуют прочные комплексные соединения с токсичными катионами Hg, Co, Cd, Pb . Такие комплексные соединения выводятся из организма, не причиняя ему вреда. Среди комплексонов наиболее распространены соли этилендиаминтетрауксусной кислоты (ЭДТА), прежде всего этилендиаминтетраацетат натрия.

II)Антидоты непрямого действия .
Антидоты непрямого действия - это вещества, которые сами не реагируют с ядами, но устраняют или предупреждают нарушения в организме, возникающие при интоксикациях (отравлениях).
1) Защита рецепторов от токсичного воздействия.
Отравление мускарином (ядом мухомора) и фосфорорганическими соединениями происходит по механизму блокирования фермента холинэстеразы. Этот фермент отвечает за разрушение ацетилхолина, вещества, принимающего участие в передаче нервного импульса от нерва к мышечным волокнам. При избытке ацетилхолина происходит беспорядочное сокращение мышц – судороги, которые часто приводят к смерти. Противоядием является атропин. Атропин применяется в медицине для расслабления мышц. Антропин связывается с рецептором, т.е. защищает его от действия ацетилхолина.
2) Восстановление или замещение поврежденной ядом биоструктуры.
При отравлениях фторидами и HF, при отравлениях щавелевой кислотой H2C2O4 происходит связывание ионов Са2+ в организме. Противоядие – CaCl2.
3) Антиоксиданты. Отравление четыреххлористым углеродом CCl4 приводит к образованию в организме свободных радикалов. Избыток свободных радикалов очень опасен, он вызывает повреждение липидов и нарушение структуры клеточных мембран. Антидоты – вещества, связывающие свободные радикалы (антиоксиданты), например альфа -токоферол (витамин Е).



4) Конкуренция с ядом за связывание с ферментом. При отравлении метанолом в организме образуются очень токсичные соединения - формальдегид и муравьиная кислота. Они более токсичны, чем сам метанол. Это пример летального синтеза. Летальный синтез – превращение в орг-ме в процессе метаболизма менее токсичных соед-ний в более токсичные.

Этиловый спирт C2H5OH лучше связывается с ферментом алкоголь-дегидрогеназой. Это тормозит превращение метанола в формальдегид и муравьиную кислоту. CH3OH выводится в неизменном виде. Поэтому прием этилового спирта сразу вслед за отравлением метанолом значительно снижает тяжесть отравления.

Антидот - (1) применяемое при лечении острого отравления лекарственное средство, способное обезвреживать токсичное вещество, предупреждать или устранять вызываемый им токсический эффект. Условно можно выделить следующие механизмы действия антидотов (по С.А. Куценко, 2004): 1) химический, 2) биохимический, 3) физиологический, 4) модификация процессов метаболизма токсичного вещества (ксенобиотика).

Химический механизм действия антидотов основан на способности антидота «нейтрализовать» токсикант в биосредах. Антидоты непосредственно связываясь с токсикантом, образуют нетоксичные или малотоксичные соединения, которые достаточно быстро выводятся из организма. Антидоты связываются не только со «свободно» расположенным в биосредах токсикантом (например, циркулирующим в крови) или находящемся в депо, но могут вытеснять токсикант из его связи со структурой-мишенью. К числу таких антидотов относятся, например, комплексообразователи, используемые при отравлениях солями тяжелых металлов, с которыми они образуют водорастворимые малотоксичные комплексы. Антидотный эффект унитиола при отравлении люизитом также основан на химическом механизме.

Биохимический механизм антидотного действия можно условно раз¬делить на следующие виды: I) вытеснение токсиканта из его связи с биомолекулами-мишенями, что приводит к восстановлению поврежденных биохимических процессов (например, реактиваторы холинэстеразы, используемы при острых отравлениях фосфорорганическими соединениями); 2) поставка ложной мишени (субстрата) для токсиканта (например, использование мет- гемоглобинобразовагелей для создания больших количеств Fe при остром отравлении цианидами); 3) компенсация нарушенного токсикантом количества и качества биосубстрата.

Физиологический механизм подразумевает способность антидота нормализовать функциональное состояние организма. Эти препараты не вступают с ядом в химическое взаимодействие и не вытесняют его из связи с ферментами. Основными видами физиологического действия антидотов являются: 1) стимуляция противоположной (уравновешивающей) функции (например, применение холиномимтетиков при отравлений холинолитиками и наоборот); 2) «протезирование» утраченной функции (например, при отравлении угарным газом проведение оксигенобарогерапии для восстановления доставки кислорода тканям за счет резкого увеличения кислорода, растворенного в плазме.

Модификаторы метаболизма либо 1) препятствуют процессу токсификации ксенобиотика - превращению в организме индифферентного ксенобиотика в высокотоксичное соединение («летальный синтез»); либо наоборот - 2) резко ускоряют биодетоксикацию вещества. Так, с целью блокирования процесса токсификации используется этанол при остром отравлении метанолом. Примером антидота, способного ускорять процессы детоксикации, может выступать тиосульфат натрия при отравлении цианидами.

Следует помнить, что любой антидот - это химическое веществ, обладающее кроме антидотного и другими эффектами. Поэтому использование антидота должно быть обоснованным и адекватным как по времени назначения с момента отравления, так и по дозе. Использование антидотов при отсутствии в организме специфического токсиканта может привести, по сути, к отравлению антидотом. С другой стороны, наибольшую эффективность антидоты проявляют в ближайшее время с момента острого отравления (поражения). Для максимально быстрого введения антидотов в условиях массовых поражений созданы антидоты первой помощи (само и взаимопомощи). Такие антидоты обладают не только высокой эффективностью, но прекрасной переносимостью, в том числе они не вызывают тяжелой интоксикации при ошибочном их использовании (при отсутствии поражения). Для использования на этапах медицинской эвакуации разработаны врачебные антидоты - более мощные препараты, требующие специальных профессиональных знаний для их применения. Так, например, антидотом первой помощи при поражении фосфорорганическими соединениями является афин, а врачебным антидотом - атропин.

Для некоторых высокотоксичных и опасных веществ разработаны профилактические антидоты. Такие антидоты используют для заблаговременной защиты при высокой степени вероятности химического поражения. Например, для защиты от поражений фосфорорганическими соединениями существует профилактический антидот П-10. Основу защитного действия этого препарата составляет обратимый ингибитор холинэстеразы, который «экранирует» фермент от атаки фосфорорганическим соединением. Препарат П-10 должен применяться персоналом лечебного учреждения (этапа эвакуации) при массовом поступлении пораженных фосфорорганическими соединениями, например ФОВ

29. Медицинская радиобиология как наука: предмет, цели и задачи. Источники контакта человека с ионизирующими излучениями. Возможные причины экстремальных (сверхнормативных) воздействий ионизирующих излучений на население.

Предметом мед. Радиобиологии как науки является изучение общих механизмов билогического действия ионизирующих излучений на организм человека, т.е. предметом медицинской радиобиологии выступает система «радиационный фактор- здоровье человека» . Целью медицинской радиобиологии как науки является обоснование системы медицинских противорадиационных мероприятий, обеспечивающих сохранение жизни, здоровья и профессиональной работоспособности отдельного человека и населения в целом в условиях неизбежно необходимого (производственного, медицинского и проч.) контакта с ионизирующими излучениями и при чрезвычайных ситуациях, сопровождающихся сверхнормативным воздействием факторов радиационной природы.

Достижение цели радиобиологических исследований осуществляется решением следующих задач:

Познанием закономерностей биологического действия ионизирующих излучений на организм человека;

Прогнозирование последствий для человека и популяции радиационных воздействий;

Нормированием радиационных воздействий;

Обоснованием и разработкой противорадиационных защитных мероприятий при вынужденном сверхнормативном воздействием ионизирующих излучений;

Разработкой средств и методов медикаментозной профилактики радиационных поражений (средств медицинской противорадиационной защиты);

Обоснованием неотложных мероприятий первой помощи и последующего лечения при радиационных поражениях;

Обоснованием и разработкой рациональных режимов диагностического и терапевтического использования облучения и др.

По происхождению источники ИИ подразделяются на естественные и искусственные.

Искусственные (техногенные) источники ИИ включают в себя рентгеновские трубки, ускорители заряженных частиц, а также устройства, содержащие радионуклиды, которые подразделяются на скрытые (имеющие непосредственный контакт с атмосферой) и закрытые (заключённые в герметичную оболочку) источники ИИ.

Совокупность потоков ИИ, происходящих из естественных источников, называется природным радиационным фоном Земли. На организм воздействует, преимущественно, γ-излучение, источником которогоявляются радиоактивные вещества, присутствующие в земной коре. В каменных зданиях интенсивность внешнего γ-облучения в несколько раз ниже, чем на открытой местности, что объясняется экранирующими свойствами конструкционных материалов. Используя специальные приёмы экранирования, удаётся практически полностью устранить внешнее γ-облучение организма. По мере увеличения высоты над поверхностью моря роль земных источников внешнего облучения уменьшается. При этом возрастает космическая составляющая природного радиационного фона.

Атомная энергетика составляет основу промышленного потенциала развитых стран. Ядерно-энергетический комплекс представляетсобой производственный цикл, который включает добычу и обогащение природного материала до “ядерного топлива”, производство технологических элементов для ядерных энергетических установок (ЯЭУ), сбор и хранение отработанного ядерного топлива и других радиоактивных технологических конструкций (твердых и жидких радиоактивных отходов). На сегодня промышленность не может отказаться от ядерной энергетики, тем не менее следует признать, что радиационный фактор стал фактором, во многом определяющим качество среды обитания человека. Во-первых, радиоактивные отходы имеют длительный (порой - многовековой) период своего распада, что требует размещения их в специальных хранилищах- “могильниках”, - которые в некоторых регионах (например, сейсмooпacныx) представляют постоянную угрозу. Во-вторых, как показал более чем полувековой опыт эксплуатации объектов ядерно-энергетического комплекса, к сожалению, исключить полностью аварии на энергетических установках не представляется возможным. В разных странах возникали радиационные аварии, при которых персонал получал высокие, порой смертельные дозы облучения, а обширные территории подвергались загрязнению радиоактивными продуктами в опасных для здоровья человека количествах.

Широко используются ионизирующие излучения в медицинской практике. Это и рентгенодиагностические, и радиоизотопные виды исследований. Активно применяются различные виды лучевой терапии в онкологической практике.

Люди подвергаются облучению в процессе профессиональной деятельности, при применении радиоактивных источников в промышленном производстве и научных исследованиях.

К сожалению, до тех пор, пока существуют запасы ядерного оружия, полностью исключить вероятность его применения не представляется возможным. Человечество получило наглядный урок последствий применения ядерного оружия: 6 и 9 августа 1945 г. США произвели ядерную бомбардировку японских городов Хиросима и Нагасаки.

В современном мире характер угроз насилия изменился. Появился новый вид гуманитарного насилия - международный терроризм. В части касающейся радиационного фактора нельзя исключить попытки террористических организаций применить с целью устрашения или насилия радиоактивные вещества или другие источники ионизирующего излучения.

Таким образом, в настоящее время основными источниками радиоактивного загрязнения окружающей среды являются:

Урановая промышленность, которая занимается добычей, переработкой, обогащением и приготовлением ядерного топлива. Основным сырьём для этого топлива является уран - 235. Аварийные ситуации могут возникнуть при изготовлении, хранении и транспортировке тепловыделяющих элементов. Однако вероятность их незначительная;

Ядерные реакторы разных типов, в активной зоне которых сосредоточены большие количества радиоактивных веществ;

Радиохимическая промышленность, на предприятиях которой производится регенерация (переработка и восстановление) отработанного ядерного топлива. Они периодически сбрасывают сточные радиоактивные воды, хотя и пределах допустимых концентраций, но, тем не менее, в окружающей среде неизбежно могут накапливаться радиоактивные загрязнения. Кроме того, некоторое количество радиоактивного газообразного йода (йод-131) всё-таки попадает в атмосферу;

Места переработки и захоронения радиоактивных отходов из-за случайных аварий, связанных с разрушением хранилищ, также могут явиться источниками загрязнения окружающей среды;

Использование радионуклидов в народном хозяйстве в виде закрытых радиоактивных источников в промышленности, медицине, геологии, сельском хозяйстве и других отраслях. При нормальном хранении и транспортировке этих источников загрязнения окружающей среды маловероятно. Однако в последнее время появилась определённая опасность в связи с использованием радиоактивных источников в космических исследованиях и астронавтике. При запуске ракет-носителей, а также при посадке спутников и космических кораблей возможны аварийные ситуации. Так при аварии Челенджера (США) сгорели радионуклидные источники тока, работающие на стронции-90. Также произошло загрязнение атмосферы над Индийским океаном в июне 1969 г., когда сгорел американский спутник, на котором генератор тока работал на плутонии-238. Тогда в атмосферу попали радионуклиды с активностью 17 тыс. кюри.

Вместе с тем, наибольшее загрязнение окружающей среды всё же создаёт сеть радиоизотопных лабораторий (которые имеются в очень многих странах мира), занимающихся использованием радионуклидов в открытом виде для научных и производственных целей. Сбросы радиоактивных отходов в сточные воды даже при концентрациях, меньше допустимых, с течением времени приведут к постепенному накоплению радионуклидов во внешней среде;

Ядерные взрывы и возникающее после взрыва радиоактивное загрязнение местности (могут быть как локальные, так и глобальные выпадения радиоактивных осадков). Масштабы и уровни радиоактивных загрязнений при этом зависят от типа ядерных боеприпасов, вида взрывов, мощности заряда, топографических и метеорологических условий.

Расстановка ударений: АНТИДО`ТЫ ОВ

АНТИДОТЫ ОВ (греч. antidoton даваемое против, противоядие) - лекарственные средства, предупреждающие или устраняющие токсическое действие ОВ. Современные ОВ могут вызывать массовые поражения с бурно протекающей интоксикацией, поэтому применение антидотов имеет решающее значение в системе помощи пораженным. В зависимости от условий они могут применяться с профилактическими или леч. целями.

По способу действия антидоты ОВ могут быть разделены на две группы: антидоты местного действия, обезвреживающие ОВ довсасывания их в кровь и поступления в органы и ткани, и антидоты резорбтивного действия, обезвреживающие ОВ в крови и органах или действующие на функции органов противоположно соответствующим ОВ.

Эффективность антидотов местного действия определяется физ.-хим. (адсорбция) или хим. (нейтрализация, окисление и др.) процессами. К антидотам ОВ местного действия относятся растворы щелочей, хлорсодержащих соединений (хлорамина, гексахлормеламина), специальные дегазирующие растворы, применяемые для обработки открытых участков тела, и активированный уголь, используемый для связывания ОВ, попавшегов желудок.

Эффективность антидотов резорбтивного действия обусловливается различными процессами.

1. Хим. взаимодействием антидотов и ОВ. На этом основано применение тиосульфата натрия при отравлении синильной к-той.

2. Конкурентными отношениями между антидотами и активными группами белков с ОВ, в результате чего активные группы белков освобождаются от ОВ. На этом принципе основано применение унитиола при отравлении мышьяксодержащими ОВ и реактиваторов холинэстеразы при отравлении фосфорорганическими ОВ (ФОВ).

3. Способностью антидотов проявлять в физиологическом отношении действие, противоположное действию ОВ.

На этом свойстве основано применение атропина и других холинолитических препаратов при отравлениях антихолинэстеразными и фосфорорганическими ОВ.

В соответствии со специфичностью действия антидоты классифицируют по группам или по отношению к определенным видам ОВ: антидоты фосфорорганнческих ОВ, синильной к-ты, мышьяксодержащих ОВ, окиси углерода и др.

К антидотам ФОВ относятся холинолитические препараты и реактиваторы холинэстеразы. ФОВ, попав в организм, блокируют холинэстеразу и нарушают медиаторную функцию ацетилхолина, что приводит к возбуждению и перевозбуждению холинергических систем и возникновению типичной картины отравления. В этих случаях обосновано применение веществ, блокирующих мускарино- и никотиночувствительные холинорецепторы. Большое практическое значение как антидот ФОВ имеет атропин. Кроме него, в качестве антидотов ФОВ рекомендуется применять и другие холинолитики: тарен, циклозил, амизил, амеднн, апрофен. Реактпваторами холинэстеразы являются препараты группы оксимов. Установлено, что под влиянием оксимов восстанавливается активность холинэстеразы и нормализуется ацетилхолиновый обмен. При этом большое значение приобретает их способность устранять нервно-мышечный блок дыхательной мускулатуры. Другие свойства оксимов (нейтрализация ФОВ, холинолитическое действие, дефосфорилирование холинорецепторов) имеют также значение в антидотном действии препаратов. К реактиваторам холинэстеразы относятся 2-ПАМ-хлорид, дипироксим (ТМБ-4), токсогонин (lüH-6), изоннтрозин. Наиболее полный антидотный эффект достигается при применении холинолитиков в сочетании с реактиваторами холинэстеразы.

Антидоты ФОВ являются основным средством первой медпомощи пораженным, особенно эффективным в начальном периоде интоксикации. При дальнейшем лечении наряду с антидотами используют средства симптоматической терапии.

К антидотам синильной к-ты относятся метгемоглобинобразователи, серосодержащие соединения и вещества, в состав к-рых входят углеводы.

В основе токсического действия синильной к-ты лежит ее способность легкОВзаимодействовать с окисной формой железа цитохрома а3 (цитохромоксидазы), что приводит к блокаде тканевого дыхания и развитию гипоксии. Антидотное действие метгемоглобинобразователей основано на сродстве синильной к-ты к геминовым пигментам, содержащим трехвалентное железо, в т. ч. и к метгемоглобину. Синильная к-та связывается с метгемоглобином, образуя цианметгемоглобин, чтОВ свою очередь ведет к задержке в крови синильной к-ты и предотвращает блокаду цитохромоксидазы. При ингаляционном введении антидотов в качестве метгемоглобинобразователей рекомендуется амилнитрит, при внутривенном введении - раствор нитрита натрия. При действии нитритов происходит быстрое образование цианметгемоглобина, однаков дальнейшем по мере диссоциации цианметгемоглобина синильная к-та освобождается вновь. При этом необходимо использовать антидоты с другим механизмом действия. Наиболее эффективны в этом отношении серосодержащие антидоты, напр. тиосульфат натрия.

Антидотное действие серосодержащих соединений основано на их способности обезвреживать синильную к-ту путем превращения ее в роданистые соединения. Обезвреживание происходит с участием фермента роданезы в течение нескольких часов.

Поскольку серосодержащие препараты являются медленно действующими антидотами, они применяются в комплексе с другими антидотами.

В качестве антидота также применяется метиленовый синий. Являясь акцептором водорода, метиленовый синий частичнОВосстанавливает функцию дегидраз, т. е. активирует процесс окисления. Предполагается, что антидотное действие связано гл. обр. с этим свойством препарата.

Антидотное действие углеводов (альдегидов и кетонов) основано на образовании нетоксичных хим. соединений - циангидринов. Наибольшее распространение в качестве подобного антидота получил 25% раствор глюкозы. Обезвреживающее действие глюкозы наступает относительно медленно, поэтому для лечения ее следует применять в комбинации с другими антидотами. Глюкоза также входит в состав антидота хромосмона (1% раствор метиленового синегов 25% растворе глюкозы).

К антидотам мышьяксодержащих ОВ (люизит) относятся дитиоловые соединения - унитиол, БАЛ, дикаптол, димекаптол, дитиоглицерин. Эти антидоты, кроме ОВ, обезвреживают в организме соединения ртути, хрома и других тяжелых металлов (кроме свинца). Токсическое действие мышьяксодержащих соединений обусловлено блокадой тиоловых группировок белковых компонентов нек-рых ферментных систем. Механизм действия антидотов объясняется их способностью конкурировать с молекулами белка за соединение с мышьяксодержащими ОВ и тяжелыми металлами вследствие структурной близости с SH-группами нек-рых ферментов. Происходит хим. реакция нейтрализации ОВ и образование растворимых соединений, быстро удаляемых из организма. Наиболее эффективно применение унитиола в начальном периоде интоксикации, однако и через 4-5 час. после отравления достигается положительный результат.

Специфическим антидотом окиси углерода является кислород. Под влиянием кислорода ускоряется диссоциация карбоксигемоглобина, образовавшегося в результате соединения окиси углерода с двухвалентным железом гемоглобина, ускоряется выведение окиси углерода из организма. С повышением парциального давления кислорода его эффективность возрастает.

Характеристика основных антидотов и лекарственных средств, применяемых для профилактики и лечения отравлений фосфорорганическими соединениями, цианидами, окисью углерода и другими ядами, - см. таблицу (ст. 27-29).

См. также Противоядия .

Антидоты и основные лекарственные средства, применяемые для профилактики и лечения отравлений фосфорорганическими соединениями, цианидами, окисью углерода и другими ядами
Группа, наименование и формы выпуска препарата Фармакологическое действие Дозы и способы применения в зависимости от степени отравления
При отравлении фосфороганическими соединениями
А. Антидоты холинолитического действия
Атропина сульфат
0,1% раствор в ампулах по 1 мл и в шприц-тюбиках
Блокирует м-холинореактивные системы организма, уменьшая их чувствительность к ацетилхолину; на н-холинореактивные системы действует слабо При легком отравлении вводят внутримышечно 2 мл . Атропинизацию производят повторно по 1-2 мл с интервалами 30 мин.
При отравлении средней степени вначале вводят 2-4 мл , затем по 2 мл через каждые 10 мин. до появления симптомов переатропинизации. Состояние атропннизацни поддерживают в течение нескольких суток путем введения 1-2 мл препарата.
При тяжелом отравлении препарат вводят вначале внутривенно (4-6 мл ), затем внутримышечно по 2 мл каждые 3-8 мин. до полного устранения мускариноподобных симптомов.
Состояние атропиннзации поддерживают повторными инъекциями через 30-60 мин. Общая суточная доза 25-50 мл . В течение последующих 2-3 суток вводят по 1-2 мл через 3-6 часов. Атропин можно применять также в сочетании с реактиваторами холинэстеразы (дипироксим, токсогонин, 2-ПАМ-хлорид и др.)
Тарен
таблетки по 0,2 г , раствор в ампулах по 1 мл
Оказывает периферическое и центральное м- и н-холинолитическое действие Для профилактики отравлений назначают по 1 таблетке на прием; можно применять повторно через 15-30 мин. При легком отравлении назначают 1-2 таблетки на прием или вводят внутримышечно 0,5-1 мл
Циклозил
0,2% раствор в ампулах по 1 мл
По механизму действия сходен с атропином; обладает более выраженной холинолитической активностью При легком отравлении вводят 1 мл 0,2% раствора, при тяжелом отравлении - 4-5 мл 0,2% раствора внутримышечно. Если судороги не прекращаются, через 15-30 мин. препарат вводят повторно (3 мл ). Общая доза не более 15 мл (5-6 инъекций или капельно)
Б. Реактиваторы холинэстеразы
2-ПАМ-хлорид
(2-пиридинальдоксим-метил-хлорид)
порошок, 30% раствор в ампулах по 1 мл
Дефосфорилирует и реактивирует угнетенную ФОС холинэстеразу. Восстанавливает нервно-мышечную передачу, особенно в мускулатуре дыхательных органов. Способствует уменьшению выделения ацетилхолина. Нейтрализует яд путем прямогОВзаимодействия. Плохо проникает через гемато-энцефалический барьер Применяют в сочетании с холинолитиками, Вводят внутривенно (в 40% растворе глюкозы или 20-30 мл физиологического раствора) со скоростью не более 0,5 г в минуту или капельно. внутримышечно, внутриязычно. подкожно и внутрь. Разовая доза 1 г , суточная - 3 г
2-ПАМ-йодид
порошок, 1% и 2% раствор (готовят перед применением)
См. 2-ПАМ-хлорид Применяют в сочетании с холинолитиками. Вводят тольковнутривенно (медленно или капельно), однократно 50 мл 2% раствора или 100 мл 1% раствора
2-ПАС
(пиридин-2-альдоксим-метансульфонат; P2S)
порошок в ампулах (водные растворы готовятнепосредственно перед применением), желатиновые капсулы, содержащие 1 г препарата
См. 2-ПАМ-хлорид. Препарат наименее стойкий из всех оксимов пиридинового ряда. В водных растворах при хранении и нагревании образуются цианиды При отравлении различной степени применяют в сочетании с холинолитическими препаратами. Вводят внутривеннов изотоническом растворе хлорида натрия (0,2 г препарата на 5 мл раствора) со скоростью 1 мл в минуту. При тяжелом отравлении указанную дозу вводят повторно через 15-20 мин. (до 3-4 инъекций за 1 час). После первой инъекции обычно переходят на капельные вливания (суточная доза 2-3 г ). При легком отравлении препарат можно назначать внутрь по 3 капсулы на прием
Дипироксим
1-1′-триметилен-бис-(4-пиридиналь-доксим)-дибромид; ТМБ-4, 15% раствор в ампулах по 1 мл
См. 2-ПАМ-хлорид. Обладает выраженной реактивирующей активностью по сравнению с 2-ПАМ-хлоридом, но несколько токсичнее. Оказывает умеренное холинолитическое действие. более выраженное по сравнению с другими оксимами Применяют в сочетании с холинолитическими препаратами. При появлении признаков отравления (возбуждение, миоз, потливость, слюноотделение, явления бронхореи) вводят подкожно 1 мл 15% раствора дипироксима и 2-3 мл 0,1% раствора атропина сульфата. Если симптомы отравления не исчезают, препараты вводят повторнОВ той же дозе.
При тяжелом отравлении вводят внутривенно 3 мл 0,1% раствора атропина сульфата и внутримышечно (или внутривенно) 1 мл дипироксима. Введение атропина повторяют через каждые 5-6 мин. до купирования бронхореи и появления признаков атропинизации. При необходимости дипироксим вводят повторно через 1-2 часа; средняя доза 3-4 мл 15% раствора (0,45-0,6 г ). В особо тяжелых случаях, сопровождающихся остановкой дыхания, вводят до 7-10 мл дипироксима
Токсогонин
Бис-4-оксимннопиридиний
(1)-метиловый эфир-дихлорид
порошок в ампулах по г (растворяют перед применением в 1 мл воды для инъекций)
См. 2-ПАМ-хлорид Применяют самостоятельно и в сочетании с холинолитиками. Вводят внутривенно 0,25 г ; в тяжелых случаях через 1-2 часа введение повторяют. Суточная доза до 1 г
Изонитрозин
(1-диметнламино-2-изонитрозобутанон-3-гидрохлорид)
порошок, 40% раствор в ампулах по 3 мл
Хорошо проникает через гемато-энцефалический барьер Применяют в сочетании с другими реактиваторами и холинолитиками. Вводят внутримышечно по 3 мл 40% раствора через каждые 30-40 мин. до прекращения фибрилляции мышц и прояснения сознания. Общая доза 3-4 г (8-10 мл 40% раствора)
При отравлении цианидами (синильная кислота и ее соединения)
Амилнитрит
ампулы, содержащие 0,5 мл препарата
Взаимодействуя с оксигемоглобином, образует метгемоглобин, к-рый легко соединяется с синильной кислотой, в результате возникает медленно диссоциирующий комплекс - цианметгемоглобин. Таким образом предотвращается инактивация цитохромоксидазы цианидами. Препарат вызывает быстрое, но непродолжительное расширение кровеносных сосудов, особенновенечных и сосудов мозга Применяют при оказании первой медпомощи. Содержание ампулы дают вдыхать отравленным. При тяжелом отравлении препарат можно применять повторно
Натрия нитрит
порошок для приготовления растворов
См. Амилнитрит. Действует более надежно и продолжительно по сравнению с амилнитритом При отравлении синильной кислотой вводят внутривенно 10-20 мл 1-2% раствора. Высшая разовая доза 0,3 г , суточная 1 г
Метиленовый синий
порошок и 1% раствор в 25% растворе глюкозы и ампулах по 20 и 50 мл (хромосмон)
Обладает окислительно-восстановительными свойствами и может играть роль акцептора водорода, образующегося в процессе окисления тканевого субстрата. При этом частично устраняется блокада тканевого дыхания, восстанавливается функция дегидраз, после чеговозможно дальнейшее отщепление водорода от субстрата (окисление). В больших дозах препарат является метгемоглобинобразователем (см. Амилнитрит ) - предотвращает нарушение функции тканевого дыхания, препятствуя инактивации цианидами цитохромоксидазы в тканях При отравлении цианидами, окисью углерода, сероводородом вводят внутривенно. Лечебная доза 50-100 мл
Глюкоза
порошок, таблетки по 0,5 и 1 г , 5%, 10%, 25% и 40% растворы в ампулах по 10, 20, 25 и 50 мл; 25% раствор глюкозы с 1% раствором метиленового синегов ампулах по 20 и 50 мл (хромосмон)
Взаимодействует с цианидами, образуя нетоксичный циангидрин; переводит метгемоглобин в гемоглобин При отравлении синильной кислотой и ее солями, окисью углерода, анилином, мышьяковистым водородом, фосгеном, наркотиками и другими веществами вводят внутривенно 25-50 мл 25% раствора глюкозы или хромосмона. При необходимости гипертонические растворы глюкозы вводят капелыю до 300 мл в сутки
Натрия тиосульфат
порошок, 30% раствор в ампулах но 5, 10 и 50 мл
Взаимодействует с цианидами в присутствии фермента роданезы, образуя нетоксичные роданистые соединения. При взаимодействии с соединениями мышьяка, ртути, свинца образуются неядовитые сульфиты При отравлении цианидами вводят внутривенно по 50 мл 30% раствора. Препарат наиболее эффективен на фоне метгемоглобинобразовател ей.
При отравлении соединениями мышьяка, ртути, свинца назначают внутривенно по 5-10 мл 30% раствора или внутрь по 2-3 г , растворив в воде или в изотоническом растворе хлорида натрия
При отравлении окисью углерода
Кислород чистый ,
смесь 40-60% с воздухом, смесь 95% кислорода с 5% углекислого газа (карбоген)
Ускоряет процесс диссоциации карбоксигемоглобина Специфическое средство против интоксикации окисью углерода. Назначают непрерывные ингаляции 40-60% кислорода в течение 30 мин. - 2 часов. Наиболее эффективно сочетание кислорода с карбогеном: вначале вдыхают карбоген (10-20 мин.), затем - чистый кислород (30-40 мин.) и снова карбоген.
При легком отравлении продолжительность карбогено-кислородной терапии 2 часа, при тяжелой и средней степени - не менее 4 часов. Эффективен метод оксибаротерапии - вдыхание кислорода под давлением до 2-3 атм в течение 15-45 мин., затем при постепенном снижении давления до атмосферного (в течение 45 мин. - 3 часов)
Антидоты, используемые при отравлениях различной этиологии
Унитиол
таблетки по 0,25 и 0,5 г , 5% раствор в ампулах по 5 мл , порошок во флаконах по 0,5 г
Комплексообразующее соединение. Механизм антидотного действия основан на способности его активных сульфгидрильных групп вступать в реакцию с тиоловыми ядами, находящимися в крови и тканях, образуя нетоксичные комплексы Применяют для лечения острых и хронических отравлений тиоловыми ядами - соединениями мышьяка, ртути, хрома, висмута и др.
При острых и хронических отравлениях вводят внутримышечно или подкожно 5-10 мл 5% раствора. При отравлении соединениями мышьяка инъекции делают вначале каждые 6-8 часов, на вторые сутки - 2-3 инъекции, затем 1-2 инъекции в сутки. При отравлении соединениями ртути - по той же схеме в течение 6-7 суток. Иногда назначают внутрь (в таблетках) по 0,5 г 2 раза в день в течение 3-4 дней (2-3 курса)
Тетацин-кальций
10% раствор в ампулах по 20 мл , таблетки по 0,5 г
Образует стойкие, малодиссоциирующие комплексы со многими двух- и трехвалентными металлами Применяют при отравлениях солями тяжелых металлов и редкоземельных элементов. При хронической интоксикации - внутрь по 0,5 г 4 раза или по 0,25 г 8 раз в день, 3-4 раза в неделю; курс лечения 20-30 дней (не более 20-30 г препарата) повторение курса - не ранее чем через год.
При остром отравлении вводят внутривенно капельнов изотоническом растворе хлорида натрия или в 5% растворе глюкозы. Разовая доза 2 г (20 мл 10% раствора), суточная - 4 г . Промежуток между введениями не менее 3 часов. Вводят ежедневно в течение 3-4 дней с последующим перерывом 3-4 дня. Курс лечения - 1 месяц
Пентацин
таблетки по 0,5 г , 5% раствор в ампулах по 5 мл
Комплексообразующее соединение. Не изменяет концентрации в крови калия и кальция При острых и хронических отравлениях плутонием, радиоактивным иттрием, церием, цинком, свинцом и др. Вводят внутривенно по 5 мл 5% раствора. При необходимости дозу можно повысить до 30 мл 5% раствора (1,5 г). Вводят медленно. Повторные инъекции - через 1-2 дня. Курс лечения - 10-20 инъекций. Внутрь назначают по 4 таблетки на прием 2 раза в сутки или однократно 3-4 г

Библиогр .: Альберт Э . Избирательная токсичность, пер. с англ., с. 281 и др., М., 1971, библиогр.: Военно-полевая терапия, под ред. Н. С. Молчанова и Е. В. Гембицкого, с. 130, Л., 1973; Голиков С. Н . и Заугольников С. Д . Реактиваторы холинэстераз, Л., 1970; Краткое руководство по токсикологии, под ред. Г. А. Степанского, М., 1966; Медико-санитарные аспекты применения химического и бактериологического (биологического) оружия, Доклад группы консультантов ВОЗ, пер. с англ., Женева, 1972; Мильштейн Г. И . и Спивак Л. И . Психотомиметики, Л., 1971; Руководство по токсикологии отравляющих веществ, под ред. С. Н. Голикова, М., 1972; Руководство по токсикологии отравляющих веществ, под ред А. И. Черкеса и др., Киев, 1964; Стройков Ю. Н . Медицинская помощь пораженным отравляющими веществами, М., 1970.

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«САМАРСКИЙ ГОСУДАСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ И СОЦИАЛЬНОГО РАЗВИТЯ РФ»

Кафедра Мобилизационной подготовки здравоохранения и медицины катастроф

Реферат на тему: «Механизм действия антидотов».
Самара 2012

I.Характеристика антидотов …………………………. 3

II.Механизмы действия антидотов ……………..….....5

1) Механизм связывания яда…………………..…….. 6

2) Механизм вытеснения яда…………………………..8

3) Механизм возмещения биологически активных веществ……………………………………………..…. 9

4) Механизм возмещения биологически активных веществ ………………………………………………………..…10

Список использованной литературы………………....11

Характеристика антидотов

Антидоты (противоядия) - применяемые при лечении отравлений лекарства, в основе механизма действия которых лежит обезвреживание яда или предупреждение и устранение вызываемого им токсического эффекта.

В качестве противоядий используют те или иные вещества или смеси, в зависимости от характера яда (токсина ):


  • этанол может быть использован при отравлении метиловым спиртом

  • атропин - используют при отравлении M-холиномиметиками (мускарин и ингибиторами ацетилхолинэстеразы (фосфорорганические яды).

  • глюкоза - вспомогательный антидот при многих видах отравлений, вводится внутривенно или перорально. Способна связывать синильную кислоту .

  • налоксон - используют при отравлении и передозировке опиоидами
Антидоты, наиболее часто используемые при острых отравлениях это:

  • Унитиол - низкомолекулярный донатор SH-групп, универсальный антидот. Обладает широким терапевтическим действием, малотоксичен. Применяется как антидот при острых отравленияхлюизитом , солями тяжелых металлов ( , медь , свинец ), при передозировке сердечныхгликозидов , отравлении хлорированными углеводородами .

  • ЭДТА -тетацин-кальций, Купренил - относится к комплексонам (хелатообразователям ). Образует легко растворимые низкомолекулярные комплексы с металлами , которые быстро выводятся из организма через почки. Применяется при острых отравлениях тяжелыми металлами (свинец , медь ).

  • Оксимы (аллоксим , дипироксим ) - реактиваторы холинэстераз . Используются при отравлениях антихолинэстеразными ядами, такими как ФОВ . Наиболее эффективны в первые 24 часа.

  • Атропина сульфат - антагонист ацетилхолина . Применяется при острых отравлениях ФОВ , когда в избытке накапливается ацетилхолин. При передозировке пилокарпина , прозерина ,гликозидов , клофелина , бета-блокаторов ; а также при отравлении ядами, вызывающимибрадикардию и бронхорею .

  • Этиловый спирт - антидот при отравлении метиловым спиртом , этиленгликолем .

  • Витамин В6 - антидот при отравлении противотуберкулезными препаратами (изониазид ,фтивазид ); гидразином .

  • Ацетилцистеин - антидот при отравлении дихлорэтаном . Ускоряет дехлорирование дихлорэтана, обезвреживает его токсичные метаболиты . Применяется также при отравлениипарацетамолом .

  • Налорфин - антидот при отравлении морфином , омнопоном , бенздиазепинами .

  • Цитохром-С - эффективен при отравлении окисью углерода .

  • Липоевая кислота - применяется при отравлении бледной поганкой как антидот аманитина .

  • Протаминсульфат - антагонист гепарина .

  • Аскорбиновая кислота - антидот при отравлении перманганатом калия . Используется длядетоксикационной неспецифической терапии при всех видах отравлений.

  • Тиосульфат натрия - антидот при отравлении солями тяжелых металлов и цианидами .

  • Противозмеиная сыворотка - используется при укусах змей .

  • B 12 - антидот при отравлении цианидами и при передозировке нитропруссидом натрия.
Механизм действия антидотов

Действие антидотов может заключаться:

1) в связывании яда (путем химических и физико-химических реакций);

2) в вытеснении яда из его соединений с субстратом;

3) в возмещении биологически активных веществ, разрушенных под влиянием яда;

4) в функциональном антагонизме, противодействии токсическому эффекту яда.

Механизм связывания яда

Антидотная терапия широко применяется в комплексе лечебных мероприятий при профессиональных отравлениях. Так, для предупреждения всасывания яда и его удаления из желудочно-кишечного тракта используются антидоты физико-химического действия, например активированный уголь, адсорбирующий па своей поверхности некоторые яды (никотин, таллий и др.). Другие антидоты оказывают обезвреживающее действие, вступая с ядом в химическую реакцию, путем нейтрализации, осаждения, окисления, восстановления или связывания яда. Так, метод нейтрализации используется при отравлениях кислотами (вводят, например, раствор окиси магния - жженой магнезии) и щелочами (назначают слабый раствор уксусной кислоты).

Для осаждения некоторых металлов (при отравлениях ртутью, сулемой, мышьяком) применяют белковую воду, яичный белок, молоко, переводящие растворы соли в нерастворимые альбуминаты, или специальное противоядие против металлов (Antidotum metallorum), в состав которого входит стабилизированный сероводород, образующий практически нерастворимые сульфиды металлов.

Примером противоядия, действующего путем окисления, может служить калия перманганат, активный при отравлениях фенолом.

Принцип химического связывания яда лежит в основе антидотного действия глюкозы и тиосульфата натрия при отравлении цианидами (происходит превращение синильной кислоты соответственно в циангидрины или в роданиды).

При отравлении тяжелыми металлами для связывания уже всосавшегося яда широко используются комплексообразующие вещества, например унитиол, тетацин-кальций, пентацин, тетоксации, образующие с ионами многих металлов стойкие нетоксичные комплексные соединения, выводимые с мочой.

С лечебной целью тетацин и пентацин применяются при профессиональных интоксикациях свинцом. Комплексонотерапия (тетацин, тетоксацин) способствует также выведению из организма некоторых радиоактивных элементов и радиоактивных изотопов тяжелых металлов, например иттрия, церия.

Введение комплексонов рекомендуется и в диагностических целях, например в том случае, когда имеется подозрение на свинцовую интоксикацию, но концентрация свинца в крови и моче не увеличена. Резкое усиление выведения свинца с мочой после внутривенной инъекции комплексона указывает на наличие яда в организме.

На принципе комплексообразования основан антидотный эффект дитиолов при отравлениях некоторыми органическими и неорганическими соединениями тяжелых металлов и другими веществами (иприт и его азотистые аналоги, йодацетат и др.), относящимися к группе так называемых тиоловых ядов. Из числа изученных в настоящее время дитиолов наибольшее практическое применение нашли унитиол и сукцимер. Эти средства являются эффективными антидотами мышьяка, ртути, кадмия, никеля, сурьмы, хрома. В результате взаимодействия дитиолов с солями тяжелых металлов образуются прочные водорастворимые циклические комплексы, легко выводимые почками.

Антидотом при отравлении мышьяковистым водородом служит мекаптид. В последнее время показан высокий антидотный эффект комплексообразователя а-пеницилламина при отравлении соединениями свинца, ртути, мышьяка и некоторыми тяжелыми металлами. Тетацинкальций включают в состав мазей и паст, применяемых для защиты кожных покровов рабочих, имеющих контакт с хромом, никелем, кобальтом.

С целью уменьшения всасывания из желудочно-кишечного тракта свинца, марганца и некоторых других металлов, которые попадают в кишечник с заглатываемой пылью, а также в результате выведения с желчью, эффективно использование пектина.

Для профилактики и лечения отравлений сероуглеродом рекомендуется глутаминовая кислота, вступающая в реакцию с ядом и усиливающая его выведение с мочой. В качестве антидотного лечения рассматривается применение средств, которые тормозят превращение яда в высокотоксичные метаболиты.

Механизм вытеснения яда

Примером противоядия, действие которого сводится к вытеснению яда из его соединения с биологическим субстратом, может быть кислород при отравлениях окисью углерода. При повышении концентрации кислорода в крови окись углерода вытесняется. При отравлениях нитритами, нитробензолом, анилином. прибегают к воздействию на биологические процессы, участвующие в восстановлении метгемоглобина в гемоглобин. Ускоряют процесс деметгемоглобинизации метиленовый синий, цистамин, никотиновая кислота, липамид. Эффективными антидотами при отравлении фосфорорганическими пестицидами является группа средств, способных реактивировать блокированную ядом холинэстеразу (например, 2-ПАМ, токсогонин, дипироксима бромид).

Роль антидотов могут играть некоторые витамины и микроэлементы, вступающие во взаимодействие с каталитическим центром ферментов, ингибированных ядом, и восстанавливающие их активность.

Механизм возмещения биологически активных веществ

Противоядием может служить средство, которое не вытесняет яд из его соединения с субстратом, а путем взаимодействия с каким-либо иным биологическим субстратом делает последний способным связывать яд, экранируя другие жизненно важные биологические системы. Так, при отравлении цианидами применяются метгемоглобинобразующие вещества. При этом метгемоглобин, связываясь с цианом, образует цианметгемоглобин и тем самым предохраняет от инактивации ядом железосодержащие тканевые ферменты.

Функциональный анатагонизм

Наряду с антидотами в терапии острых отравлений часто используют функциональные антагонисты ядов, т. е. вещества, влияющие на те же функции организма, что и яд, но прямо противоположным образом. Так, при отравлениях аналептиками и другими веществами, стимулирующими ЦНС, в качестве антагонистов используют средства для наркоза. При отравлениях ядами, вызывающими угнетение холинэстеразы (многие фосфорорганические соединения и др.), широко используются холинолитические препараты, которые являются функциональными антагонистами ацетилхолина, например атропин, тропацин, пептафен.

В отношении некоторых лекарственных веществ имеются специфические антагонисты. Например, налорфин является специфическим антагонистом морфина и других наркотических анальгетиков, а кальция хлорид - антагонистом магния сульфата.

Список использованной литературы


  1. Куценко С.А. - Военная токсикология, радиобиология и медицинская защита "Фолиант" 2004 266стр.

  2. Нечаев Э.А. - Инструкция по неотложной помощи при острых заболеваниях, травмах 82стр.

  3. Кирюшин В.А, Моталова Т.В. - Токсикология химически-опасных веществ и мероприятия в очагах химического поражения "РГМУ" 2000 165стр

  4. Электронный источник

СТРОНЦИЙ (Strontium, Sr ) - химический элемент периодической системы Д. И. Менделеева, подгруппы щелочноземельных металлов. В организме человека С. конкурирует с кальцием (см.) за включение в кристаллическую решетку оксиапатита кости (см.). 90 Sr, один из наиболее долгоживупих радиоактивных продуктов расщепления урана (см.), накапливаясь в атмосфере и биосфере при испытаниях ядерного оружия (см.), представляет огромную опасность для человечества. Радиоактивные изотопы С. применяют в медицине для лучевой терапии (см.), в качестве радиоактивной метки в диагностических радиофар-мацевтических препаратах (см.) в медико-биол. исследованиях, а также в атомных электрических батареях. Соединения С. используют в дефектоскопах, в чувствительных приборах, в устройствах для борьбы со статическим электричеством, кроме того, С. применяют в радиоэлектронике, пиротехнике, в металлургической, химической промышленности и при изготовлении керамических изделий. Соединения С. неядовиты. При работе с металлическим С. следует руководствоваться правилами обращения со щелочными металлами (см.) и щелочноземельными металлами (см.).

С. был открыт в составе минерала, позднее названного стронцианитом SrC03, в 1787 г. вблизи шотландского города Стронциана.

Порядковый номер стронция 38, атомный вес (масса) 87,62. Содержание С. в земной коре составляет в среднем 4-10 2 вес. %, в морской воде - 0,013% (13 мг/л). Промышленное значение имеют минералы стронцианит и целестин SrSO 4 .

В организме человека содержится ок. 0,32 г стронция, в основном в костной ткани, в крови концентрация С. в норме составляет 0,035 мг/л, в моче - 0,039 мг/л.

С. представляет собой мягкий серебристо-белый металл, t°пл 770°, t°кип 1383°.

По хим. свойствам С. сходен с кальцием и барием (см.), в соединениях валентность стронция 4-2, химически активен, окисляется при обычных условиях водой с образованием Sr(OH) 2 , а также кислородом и другими окислителями.

В организм человека С. поступает гл. обр. с растительной пищей, а также с молоком. Он всасывается в тонкой кишке и быстро обменивается со С., содержащимся в костях. Выведение С. из организма усиливают комп-лексоны, аминокислоты, полифосфаты. Повышенное содержание кальция и фтора (см.) в воде препятствует кумуляции С. в костях. При увеличении концентрации кальция в рационе в 5 раз накопление С. в организме снижается вдвое. Избыточное поступление С. с пищей и водой вследствие его повышенного содержания в почве нек-рых геохим. провинций (напр., в отдельных р-нах Восточной Сибири) вызывает эндемическое заболевание - уровскую болезнь (см. Кашина - Бека болезнь).

В костях, крови и других биол. субстратах С. определяют гл. обр. спектральными методами (см. Спектроскопия).

Радиоактивный стронций

Природный С. состоит из четырех стабильных изотопов с массовыми числами 84, 86, 87 и 88, из к-рых наиболее распространен последний (82,56%). Известны 18 радиоактивных изотопов С. (с массовыми числами 78-83, 85, 89-99) и 4 изомера у изотопов с массовыми числами 79, 83, 85 и 87 (см. Изомерия).

В медицине 90Sr применяют для лучевой терапии в офтальмологии и дерматологии, а также в радиобиологических экспериментах в качестве источника р-изл учения. 85Sr получают либо облучением в ядерном реакторе нейтронами стронциевой мишени, обогащенной по изотопу 84Sr, по реакции 84Sr (11,7) 85Sr, либо производят на циклотроне, облучая протонами или дейтронами мишени из природного рубидия, напр, по реакции 85Rb (p, n) 85Sr. Радионуклид 85Sr распадается с электронным захватом, испуская гамма-излучение с энергией Е гамма, равной 0,513 Мэв (99,28%) и 0,868 Мэв (< 0,1%).

87m Sr также можно получить облучением стронциевой мишени в реакторе по реакции 86Sr (n, гамма) 87mSr, но выход искомого изотопа мал, кроме того, одновременно с 87mSr образуются изотопы 85Sr и 89Sr. Поэтому обычно 87niSr получают с помощью изотопного генератора (см. Генераторы радиоактивных изотопов) на основе материнского изотопа иттрия-87 - 87Y (Т1/2 = 3,3 сут.). 87mSr распадается с изомерным переходом, испуская гамма-излучение с энергией Егамма, равной 0,388 Мэв, и частично с электронным захватом (0,6%).

89Sr содержится в продуктах деления вместе с 90Sr, поэтому 89Sr получают облучением природного С. в реакторе. При этом неизбежно образуется и примесь 85Sr. Изотоп 89Sr распадается с испусканием P-излучения с энергией 1,463 Мэв (ок. 100%). В спектре имеется также очень слабая линия гамма-излучения с энергией Е гамма, равной 0,95 Мэв (0,01%).

90Sr получают выделением из смеси продуктов деления урана (см.). Этот изотоп распадается с испусканием бета-излучения с энергией Е бета, равной 0,546 Мэе (100%), без сопровождающего гамма-излучения. Распад 90Sr приводит к образованию дочернего радионуклида 90Y, к-рый распадается (Т1/2 = 64 часа) с испусканием р-из-лучения, состоящего из двух компонент с Ер, равной 2,27 Мэв (99%) и 0,513 Мэв (0,02%). При распаде 90Y испускается также весьма слабое гамма-излучение с энергией 1,75 Мэв (0,02%).

Радиоактивные изотопы 89Sr и 90Sr, присутствующие в отходах атомной промышленности и образующиеся при испытаниях ядерного оружия, при загрязнении окружающей среды могут попадать в организм человека с пищей, водой, воздухом. Количественная оценка миграции С. в биосфере обычно проводится в сравнении с кальцием. В большинстве случаев при движении 90Sr от предшествующего звена цепи к последующему происходит уменьшение концентрации 90Sr в расчете на 1 г кальция (так наз. коэффициент дискриминации), у взрослых людей в звене организм - рацион этот коэффициент равен 0,25.

Подобно растворимым соединениям других щелочноземельных элементов растворимые соединения С. хорошо всасываются из жел.-киш. тракта (10-60%), всасывание плохорастворимых соединений С. (напр., SrTi03) составляет менее 1%. Степень всасывания радионуклидов С. в кишечнике зависит от возраста. С увеличением содержания кальция в рационе накопление С. в организме уменьшается. Молоко способствует увеличению всасывания С. и кальция в кишечнике. Полагают, что это связано с присутствием в молоке лактозы и лизина.

При вдыхании растворимые соединения С. быстро элиминируются из легких, в то время как плохорастворимый SrTi03 обменивается в легких крайне медленно. Проникновение радионуклида С. через неповрежденную кожу составляет ок. 1%. Через поврежденную кожу (резаная рана, ожоги и др.)? так же как из подкожной клетчатки и мышечной ткани, С. всасывается почти полностью.

С. является остеотропным элементом. Независимо от пути и ритма поступления в организм растворимые соединения 90Sr избирательно накапливаются в костях. В мягких тканях задерживается менее 1% 90Sr.

При внутривенном введении С. очень быстро элиминируется из кровяного русла. Вскоре после введения концентрация С. в костях становится в 100 раз и более выше, чем в мягких тканях. Отмечены нек-рые отличия в накоплении 90Sr в отдельных органах и тканях. Относительно более высокая концентрация 90Sr у экспериментальных животных обнаруживается в почках, слюнной и щитовидной железах, а самая низкая - в коже, костном мозге и надпочечниках. Концентрация 90Sr в корковом веществе почек всегда выше, чем в мозговом веществе. С. первоначально задерживается на костных поверхностях (надкостнице, эндосте), а затем распределяется сравнительно равномерно по всему объему кости. Тем не менее распределение 90Sr в различных частях одной и той же кости и в разных костях оказывается неравномерным. В первое время после введения концентрация 90Sr в эпифизе и метафизе кости экспериментальных животных примерно в 2 раза выше, чем в диафизе. Из эпифиза и метафиза 90Sr выделяется быстрее, чем из диафиза: за 2 мес. концентрация 90Sr в эпифизе и метафизе кости снижается в 4 раза, а в диафизе почти не изменяется. Первоначально 90Sr концентрируется в тех участках, в к-рых происходит активное образование кости. Обильное крово- и лимфообращение в эпиметафизарных участках кости способствует более интенсивному отложению в них 90Sr по сравнению с диафизом трубчатой кости. Величина отложения 90Sr в костях у животных непостоянна. Резкое понижение фиксации 90Sr в костях с возрастом обнаружено у всех видов животных. Отложение 90Sr в скелете существенным образом зависит от пола, беременности, лактации, состояния нейроэндокринной системы. Более высокое отложение 90Sr в скелете отмечено у самцов крыс. В скелете беременных самок 90Sr накапливается меньше (до 25%), чем у контрольных животных. Существенное влияние на накопление 90Sr в скелете самок оказывает лактация. При введении 90Sr через 24 часа после родов в скелете крыс 90Sr задерживается в 1,5-2 раза меньше, чем у нелактирующих самок.

Проникновение 90Sr в ткани эмбриона и плода зависит от стадии их развития, состояния плаценты и длительности циркуляции изотопа в крови матери. Проникновение 90Sr в плод тем больше, чем больше срок беременности в момент введения радионуклида.

Для уменьшения повреждающего действия радионуклидов стронция необходимо ограничить накопление их в организме. С этой целью при загрязнении кожи следует произвести быструю дезактивацию ее открытых участков (препаратом «Защита-7», моющими порошками «Эра» или «Астра», пастой НЭДЭ). При пероральном поступлении радионуклидов стронция следует применять антидоты, позволяющие связать или сорбировать радионуклид. К таким антидотам относят активированный сульфат бария (адсо-бар), полисурьмин, препараты альгиновой к-ты и др. Напр., препарат адсобар при немедленном приеме после попадания радионуклидов в желудок снижает их всасывание в 10-30 раз. Адсорбенты и антидоты следует назначать сразу после обнаружения поражения радионуклидами стронция, т. к. промедление в этом случае приводит к резкому снижению их положительного действия. Одновременно рекомендуют назначать рвотные средства (апоморфин) или производить обильное промывание желудка, применять солевые слабительные, очистительные клизмы. При поражении пылевидными препаратами необходимо обильное промывание носа и полости рта, отхаркивающие средства (термопсис с содой), хлорид аммония, инъекции препаратов кальция, мочегонные. В более поздние сроки после поражения для уменьшения отложения радионуклидов С. в костях рекомендуют применять так наз. стабильный стронций (лактат С. или глюконат С.). Большие дозы кальция перорально или внутривенно MofyT заменить препараты стабильного стронция, если они недоступны. В связи с хорошей реабсорбцией радионуклидов стронция в почечных канальцах показано также применение мочегонных средств.

Нек-рое уменьшение накопления радионуклидов С. в организме может быть достигнуто путем создания конкурентных отношений между ними и стабильным изотопом С. или кальция, а также созданием дефицита этих элементов в тех случаях, когда радионуклид С. уже зафиксировался в скелете. Однако эффективных средств декорпорации радиоактивного стронция из организма пока не найдено.

Минимально значимая активность, не требующая регистрации или получения разрешения органов Государственного санитарного надзора, для 85mSr, 85Sr, 89Sr и 90Sr составляет соответственно 3,5*10 -8 , 10 -10 , 2,8*10 -11 и 1,2*10 -12 кюри/л.

Библиография: Борисов В. П. и д р. Неотложная помощь при острых радиационных воздействиях, М., 1976; Булдаков Л. А. и М о с к а л е в Ю. И. Проблемы распределения и экспериментальной оценки допустимых уровней Cs137, Sr90 и Ru106, М., 1968, библиогр.; Войнар А. И. Биологическая роль микроэлементов в организме животных и человека, с. 46, М., 1960; Ильин JI. А. и Иванников А. Т. Радиоактивные вещества и раны, М., 1979; К а с а в fi-на Б. С. и Т о р б е н к о В. П. Жизнь костной ткани, М., 1979; JI е в и н В. И. Получение радиоактивных препаратов, М., 1972; Метаболизм стронция, под ред. Дж. М. А. Ленихена и др., пер. с англ., М., 1971; Полуэктов Н. С. и д р. Аналитическая химия стронция, М., 1978; P е м и Г. Курс неорганической химии, пер. с нем., т. 1, М., 1972; Protection of the patient in radionuclide investigations, Oxford, 1969, bibliogr.; Table of isotopes, ed. by С. M. Lederer a. V. S. Shirley, N. Y. a. o., 1978.

А. В. Бабков, Ю. И. Москалев (рад.).



Рассказать друзьям