0 делится на 4. Основные признаки делимости

💖 Нравится? Поделись с друзьями ссылкой

Приступим к рассмотрению темы «Признак делимости на 4 ». Приведем здесь формулировку признака, проведем его доказательство, рассмотрим основные примеры задач. В конце раздела мы собрали сведения о подходах, которые можно применять в тех случаях, когда нам нужно доказать делимость чисел на 4 , заданных буквенным выражением.

Yandex.RTB R-A-339285-1

Признак делимости на 4 , примеры

Мы можем пойти простым путем и поделить однозначное натуральное число на 4 для того, чтобы проверить, делится ли это число на 4 без остатка. Так же можно поступить с двузначными, трехзначными и проч. числами. Однако, чем больше становятся числа, тем сложнее проводить с ними действия с целью проверки делимости их на 4 .

Гораздо проще становится использовать признак делимости на 4 . Он предполагает проведение проверки делимости одной или двух последних цифр целого числа на 4 . Что это значит? Это значит, что некоторое число a делится на 4 в том случае, если одна или две крайние правые цифры в записи числа a делятся на 4 . Если число, составленное из двух крайних правых цифр в записи числа a не делятся на 4 без остатка, то и число a не делится на 4 без остатка.

Пример 1

Какие из чисел 98 028 , 7 612 и 999 888 777 делятся на 4 ?

Решение

Крайние правые цифры чисел 98 028 , 7 612 составляют числа 28 и 12 , которые делятся на 4 без остатка. Это значит, что и целые числа 98 028 , 7 612 ​​​​​​ ​делятся на 4 без остатка.

Последние две цифры в записи числа 999 888 777 образуют число 77 , которое не делится на 4 без остатка. Это значит, что и исходное число на 4 без остатка не делится.

Ответ: − 98 028 и 7 612 .

Если предпоследней цифрой в записи числа является 0 , то нам необходимо этот ноль отбросить и смотреть на оставшуюся крайнюю правую цифру в записи. Получается, что две цифры 01 мы заменяем 1 . И уже по одной оставшейся цифре мы делаем вывод о том, делится ли исходное число на 4 .

Пример 2

Делится ли числа 75 003 и − 88 108 на 4 ?

Решение

Две последние цифры числа 75 003 - видим 03 . Если отбросить ноль, то у нас остается цифра 3 , которая на 4 без остатка не делится. Это значит, что исходное число 75 003 на 4 без остатка не делится.

Теперь возьмем две последние цифры числа − 88 108 . Это 08 , из которых мы должны оставить лишь последнюю цифру 8 . 8 делится на 4 без остатка.

Это значит, что и исходное число − 88 108 мы можем поделить на 4 без остатка.

Ответ: 75 003 не делится на 4 , а − 88 108 – делится.

Числа, у которых в конце записи идет сразу два нуля, также делятся на 4 без остатка. Например, 100 делится на 4 , получается 25 . Доказать правдивость этого утверждения нам позволяет правило умножения числа на 100 .

Представим произвольно выбранное многозначное число a , запись которого справа заканчивается двумя нулями, как произведение a 1 · 100 , где число a 1 получается из числа a , если в его записи справа отбросить два нуля. Например, 486700 = 4867 · 100 .

Произведение a 1 · 100 содержит множитель 100 , который делится на 4 . Это значит, что все приведенное произведение делится на 4 .

Доказательство признака делимости на 4

Представим любое натуральное число a в виде равенства a = a 1 · 100 + a 0 , в котором число a 1 – это число a , из записи которого убрали две последние цифры, а число a 0 – это две крайние правые цифры из записи числа a . Если использовать конкретные натуральные числа, то равенство будет иметь вид undefined. Для одно- и двузначных чисел a = a 0 .

Определение 1

Теперь обратимся к свойствам делимости:

  • деление модуля числа a на модуль числа b необходимо и достаточно для того, чтобы целое число a делилось на целое число b ;
  • если в равенстве a = s + t все члены, кроме одного делятся на некоторое целое число b , то и этот оставшийся член делится на число b .

Теперь, освежив в памяти необходимые свойства делимости, переформулируем доказательство признака делимости на 4 в виде необходимого и достаточного условия делимости на 4 .

Теорема 1

Деление двух последних цифр в записи числа a на 4 – это необходимое и достаточное условие для делимости целого числа a на 4 .

Доказательство 1

Если предположить, что a = 0 , то теорема в доказательстве не нуждается. Для всех остальных целых чисел a мы будем использовать модуль числа a , который является числом положительным: a = a 1 · 100 + a 0

С учетом того, что произведение a 1 · 100 всегда делится на 4 , а также с учетом свойств делимости, которые мы привели выше, мы можем сделать следующее утверждение: если число a делится на 4 , то и модуль числа a делится на 4 , тогда из равенства a = a 1 · 100 + a 0 следует, что a 0 делится на 4 . Так мы доказали необходимость.

Из равенства a = a 1 · 100 + a 0 следует, что модуль a делится на 4 . Это значит, что и само число a делится на 4 . Так мы доказали достаточность.

Другие случаи делимости на 4

Рассмотрим случаи, когда нам нужно установить делимость на 4 целого числа, заданного некоторым выражением, значение которого надо вычислить. Для этого мы можем пойти следующим путем:

  • представить исходное выражение в виде произведения нескольких множителей, один из которых будет делиться на 4 ;
  • сделать вывод на основании свойства делимости о том, что все исходное выражение делится на
    4 .

Помочь в решении задачи часто помогает формула бинома Ньютона.

Пример 3

Делится ли на 4 значение выражения 9 n - 12 n + 7 при некотором натуральном n ?

Решение

Мы можем представить 9 в виде суммы 8 + 1 . Это дает нам возможность применить формулу бинома Ньютона:

9 n - 12 n + 7 = 8 + 1 n - 12 n + 7 = = C n 0 · 8 n + C n 1 · 8 n - 1 · 1 + . . . + C n n - 2 · 8 2 · 1 n - 2 + C n n - 1 · 8 · 1 n - 1 + C n n · 1 n - - 12 n + 7 = = 8 n + C n 1 · 8 n - 1 · 1 + . . . + C n n - 2 · 8 2 + n · 8 + 1 - - 12 n + 7 = = 8 n + C n 1 · 8 n - 1 · 1 + . . . + C n n - 2 · 8 2 - 4 n + 8 = = 4 · 2 · 8 n - 1 + 2 · C n 1 · 8 n - 2 + . . . + 2 · C n n - 2 · 8 1 - n + 2

Произведение, которое мы получили в ходе преобразований, содержит множитель 4 , а выражение в скобках представляет собой натуральное число. Это значит, что это произведение можно разделить на 4 без остатка.

Мы можем утверждать, что исходное выражение 9 n - 12 n + 7 делится на 4 при любом натуральном n .

Ответ: Да.

Также мы можем применить к решению задачи метод математической индукции. Чтобы не отвлекать ваше внимание на второстепенные детали разбора решения, возьмем прежний пример.

Пример 4

Докажите, что 9 n - 12 n + 7 делится на 4 при любом натуральном n .

Решение

Начнем с установления того, что при значении n = 1 значение выражения 9 n - 12 n + 7
можно будет разделить на 4 без остатка.

Получаем: 9 1 - 12 · 1 + 7 = 4 . 4 делится на 4 без остатка.

Теперь мы можем предположить, что при значении n = k значение выражения
9 n - 12 n + 7 будет делиться на 4 . Фактически, мы будем работать с выражением 9 k - 12 k + 7 , которое должно делиться на 4 .

Нам необходимо доказать, что 9 n - 12 n + 7 при n = k + 1 будет делиться на 4 с учетом того, что 9 k - 12 k + 7 ​​​​​ делится на 4:

9 k + 1 - 12 (k + 1) + 7 = 9 · 9 k - 12 k - 5 = 9 · 9 k - 12 k + 7 + 96 k - 68 = = 9 · 9 k - 12 k + 7 + 4 · 24 k - 17

Мы получили сумму, в которой первое слагаемое 9 · 9 k - 12 k + 7 делится на 4 в связи с нашим предположением о том, что 9 k - 12 k + 7 делится на 4 , а второе слагаемое 4 · 24 k - 17 содержит множитель 4 , в связи с чем также делится на 4 . Это значит, что вся сумма делится на 4 .

Ответ: мы доказали, что 9 n - 12 n + 7 делится на 4 при любом натуральном значении n методом математической индукции.

Мы можем использовать еще один подход для того, чтобы доказать делимость некоторого выражения на 4 . Этот подход предполагает:

  • доказательство факта того, что значение данного выражения с переменной n делится на 4 при n = 4 · m , n = 4 · m + 1 , n = 4 · m + 2 и n = 4 · m + 3 , где m – целое число;
  • вывод о доказанности делимости данного выражения на 4 для любого целого числа n .
Пример 5

Докажите, что значение выражения n · n 2 + 1 · n + 3 · n 2 + 4 при любом целом n делится на 4 .

Решение

Если предположить, что n = 4 · m , получаем:

4 m · 4 m 2 + 1 · 4 m + 3 · 4 m 2 + 4 = 4 m · 16 m 2 + 1 · 4 m + 3 · 4 · 4 m 2 + 1

Полученное произведение содержит множитель 4 , все остальные множители представлены целыми числами. Это дает нам основание предполагать, что все произведение делится на 4 .

Если предположить, что n = 4 · m + 1 , получаем:

4 m + 1 · 4 m + 1 2 + 1 · 4 m + 1 + 3 · 4 m + 1 2 + 4 = = (4 m · 1) + 4 m + 1 2 + 1 · 4 m + 1 · 4 m + 1 2 + 4

И опять в произведении, которое мы получили в ходе преобразований,
содержится множитель 4 .

Это значит, что выражение делится на 4 .

Если предположить, что n = 4 · m + 2 , то:

4 m + 2 · 4 m + 2 2 + 1 · 4 m + 2 + 3 · 4 m + 2 2 + 4 = = 2 · 2 m + 1 · 16 m 2 + 16 m + 5 · (4 m + 5) · 8 · (2 m 2 + 2 m + 1)

Здесь в произведении мы получили множитель 8 , который можно без остатка поделить на 4 . Это значит, что все произведение делится на 4 .

Если предположить, что n = 4 · m + 3 , получаем:

4 m + 3 · 4 m + 3 2 + 1 · 4 m + 3 + 3 · 4 m + 3 2 + 4 = = 4 m + 3 · 2 · 8 m 2 + 12 m + 5 · 2 · 2 m + 3 · 16 m 2 + 24 m + 13 = = 4 · 4 m + 3 · 8 m 2 + 12 m + 5 · 16 m 2 + 24 m + 13

Произведение содержит множитель 4 , значит делится на 4 без остатка.

Ответ: мы доказали, что исходное выражение делится на 4 при любом n .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

ТЕОРИЯ ЧИСЕЛ. ПРИЗНАК ДЕЛИМОСТИ НА 4. Выполнил ученик 6 класса МБОУ Помринская ОШ Калинин Павел

2 слайд

Описание слайда:

ВВЕДЕНИЕ Имея дело с натуральными числами, иногда возникает вопрос о выполнимости действия деления нацело этих чисел, т.е. о делимости этих чисел. В данной работе я остановлюсь на признаке деления на четыре. Для выяснения того, делится ли одно число на другое,существует несколько способов. Один из них состоит в непосредственном делении этих чисел. Другим способом выяснения делимости является применение признаков делимости. Мне стало интересно, а существуют ли еще признаки делимости, кроме тех, что мы изучали в 6 классе (на 2,3,5,9,10), и как их вывести. Для своей работы я выбрал признак делимости на 4 и решил узнать, можно ли определить только по виду числа, делится оно на 4 или нет

3 слайд

Описание слайда:

ФОРМУЛИРОВКА ЗАДАЧИ И ПОСТАНОВКА ПРОБЛЕМЫ. Задача Как по виду числа, не выполняя деления, узнать, делится число на 4 или нет. Постановка проблемы: Сформулировать признак делимости на 4 для любого натурального числа.

4 слайд

Описание слайда:

РАЗБОР ЧАСТНЫХ СЛУЧАЕВ 3.Рассмотрим частные случаи, выполняя деление столбиком, записывая только ответ. 100/4=25 5000/4=1250 70000/4=17500 60/4=15 6328/4=1582 7777/4=1944,75 598/4=149,5 9184/4=2286 8592/4=2148 913/4=228,25 654/4=163,5 3647/4=911,75 927/4=231,75 3583/4=895,75 6547/4=1636,75 132/4=33 554/4=138,5 952/4=238 1384/4=346 51/4=12,75 7234/4=1808,5 30/4=7,5

5 слайд

Описание слайда:

ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЯ Число Делимость на 4 (+/-) Число Делимость на 4 (+/-) 100 + 913 - 5000 + 3583 - 70000 + 6547 - 60 + 132 + 6328 + 232 + 7777 - 554 - 9184 + 952 + 598 - 1384 + 8592 + 51 - 654 - 7234 - 3647 - 30 -

6 слайд

Описание слайда:

ГИПОТЕЗА Возникает гипотеза, что на 4 делятся те и только те числа, которые заканчиваются на два нуля или две последние цифры которого образуют число, делящееся на четыре.

7 слайд

Описание слайда:

ДОКАЗАТЕЛЬСТВО ГИПОТЕЗЫ Теорема 1 (теорема о делимости суммы). Если каждое слагаемое делится на некоторое число, то и сумма делится на это число. Теорема 2 (теорема о делимости произведения). Если в произведении хотя бы один из множителей делится на некоторое число, то и произведение делится на это число.

8 слайд

Описание слайда:

1СЛУЧАЙ 1.Рассмотрим число а=100∙n, где n – натуральное число. Тогда по теореме 2 число а делится на 4.

9 слайд

Описание слайда:

2 СЛУЧАЙ 2. Рассмотрим число вида а=100∙n + 10∙k + r= 100∙n + (10∙k + r), k,r – натуральные числа и 0. Здесь n – число сотен, к– число десятков, r– число единиц. Тогда по теореме 1: если первое слагаемое 100∙n делится на 4 и второе слагаемое (10∙k + r) тоже делится на 4, то и всё число делится на 4. Первое слагаемое 100∙n делится на 4, т.к. одним из множителей является число 100, которое делится на 4. Значит, 100∙n тоже делится на 4. Второе слагаемое (10∙k + r) тоже должно делиться на 4. А оно будет делиться на 4 в том случае, если будет представлять собой число, которое делится на 4. В то же время второе слагаемое (10k + r) является двумя последними цифрами числа. Отсюда получаем, что, если две последние цифры числа представляют собой число, делящееся на 4, то и всё число делится на 4. Таким образом, гипотеза доказана.

10 слайд

Описание слайда:

ЗАКЛЮЧЕНИЕ Результаты данного исследования позволяют сравнительно быстро определить делится число на 4 или нет без необходимости выполнять фактическое деление. Признаки делимости используются при сокращении дробей. Также эти знания понадобятся при нахождении наибольшего общего делителя чисел и при нахождении общего знаменателя. Признак делимости на 4 может понадобится и при решении задач такого вида: Можно ли разместить 718 человек в четырехместные каюты так, чтобы в каютах не оставалось свободных мест? В записи 4791*31* замените звездочки цифрами так, чтобы полученное число делилось на 4. И, конечно, мы используем признаки делимости при устном счете в быту, в магазине и т.д.

Признак делимости на 2
Число делится на 2 тогда и только тогда, когда его последняя цифра делится на 2, то есть является чётной.

Признак делимости на 3
Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.

Признак делимости на 4
Число делится на 4 тогда и только тогда, когда число из двух последних его цифр нули или делится на 4.

Признак делимости на 5
Число делится на 5 тогда и только тогда, когда последняя цифра делится на 5 (то есть равна 0 или 5).

Признак делимости на 6
Число делится на 6 тогда и только тогда, когда оно делится на 2 и на 3.

Признак делимости на 7
Число делится на 7 тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7 (например, 259 делится на 7, так как 25 - (2 · 9) = 7 делится на 7).

Признак делимости на 8
Число делится на 8 тогда и только тогда, когда три его последние цифры - нули или образуют число, которое делится на 8.

Признак делимости на 9
Число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9.

Признак делимости на 10
Число делится на 10 тогда и только тогда, когда оно оканчивается на ноль.

Признак делимости на 11
Число делится на 11 тогда и только тогда, когда сумма цифр с чередующимися знаками делится на 11 (то есть 182919 делится на 11, так как 1 - 8 + 2 - 9 + 1 - 9 = -22 делится на 11) - следствие факта, что все числа вида 10 n при делении на 11 дают в остатке (-1) n .

Признак делимости на 12
Число делится на 12 тогда и только тогда, когда оно делится на 3 и на 4.

Признак делимости на 13
Число делится на 13 тогда и только тогда, когда число его десятков, сложенное с учетверённым числом единиц, кратно 13 (например, 845 делится на 13, так как 84 + (4 · 5) = 104 делится на 13).

Признак делимости на 14
Число делится на 14 тогда и только тогда, когда оно делится на 2 и на 7.

Признак делимости на 15
Число делится на 15 тогда и только тогда, когда оно делится на 3 и на 5.

Признак делимости на 17
Число делится на 17 тогда и только тогда, когда число его десятков, сложенное с увеличенным в 12 раз числом единиц, кратно 17 (например, 29053→2905+36=2941→294+12=306→30+72=102→10+24=34. Поскольку 34 делится на 17, то и 29053 делится на 17). Признак не всегда удобен, но имеет определенное значение в математике. Есть способ немного попроще – Число делится на 17 тогда и только тогда, когда разность между числом его десятков и упятеренным числом единиц, кратно 17(например, 32952→3295-10=3285→328-25=303→30-15=15. поскольку 15 не делится на 17, то и 32952 не делится на 17)

Признак делимости на 19
Число делится на 19 тогда и только тогда, когда число его десятков, сложенное с удвоенным числом единиц, кратно 19 (например, 646 делится на 19, так как 64 + (6 · 2) = 76 делится на 19).

Признак делимости на 23
Число делится на 23 тогда и только тогда, когда число его сотен, сложенное с утроенным числом десятков, кратно 23 (например, 28842 делится на 23, так как 288 + (3 * 42) = 414 продолжаем 4 + (3 * 14) = 46 очевидно делится на 23).

Признак делимости на 25
Число делится на 25 тогда и только тогда, когда две его последние цифры делятся на 25 (то есть образуют 00, 25, 50 или 75)или число кратно 5.

Признак делимости на 99
Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп, считая их двузначными числами. Эта сумма делится на 99 тогда и только тогда, когда само число делится на 99.

Признак делимости на 101
Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп с переменными знаками, считая их двузначными числами. Эта сумма делится на 101 тогда и только тогда, когда само число делится на 101. Например, 590547 делится на 101, так как 59-05+47=101 делится на 101).


Продолжаем изучать признаки делимости . В этой статье разобран признак делимости на 4 . Сначала дана его формулировка и приведены примеры использования. Дальше показано доказательство признака делимости на 4 . В заключение рассмотрены подходы, позволяющие доказывать делимость на 4 чисел, заданных в виде значения буквенного выражения.

Навигация по странице.

Признак делимости на 4, примеры

Чтобы проверить, делится ли на 4 данное , проще всего выполнить деление непосредственно, из однозначных чисел на 4 делятся только 4 и 8 . Разделить двузначное натуральное число на 4 также не составит труда (даже при устном делении). Например, 24 делится на 4 без остатка, так как 24:4=6 , а 83 не делится нацело на 4 , так как 83:4=20 (ост. 3) (при необходимости смотрите статьи и ). Но чем больше цифр содержится в записи числа, тем «неприятнее» проводить деление.

Для более простой проверки делимости данного многозначного числа существует признак делимости на 4 , который сводит исследование данного числа a на его способность делиться на 4 к проверке на делимость однозначного или двузначного числа. Приведем формулировку этого признака. Целое число a делится на 4 , если число, составленное из двух последних цифр в записи числа a (в порядке их следования) делится на 4 ; если же составленное число не делится на 4 , то и число a не делится на 4 .

Рассмотрим примеры применения признака делимости на 4 .

Пример.

Какие из чисел −98 028 , 7 612 и 999 888 777 делятся на 4 ?

Решение.

Воспользуемся признаком делимости на 4 .

Две последние цифры −98 028 дают число 28 , так как 28 делится на 4 (28:4=7 ), то и число −98 028 делится на 4 .

Две последние цифры числа 7 612 составляют число 12 , а 12 делится на 4 (12:4=3 ), следовательно, 7 612 делится на 4 .

Наконец, две последние цифры числа 999 888 777 дают число 77 , так как 77 не делится нацело на 4 (77:4=19 (ост.1) ), то и исходное число не делится на 4 .

Ответ:

−98 028 и 7 612 .

А как применять признак делимости на 4 , если две последние цифры в записи числа представляют собой, например, 01 , 02 , 03 , …, 09 ? В этих случаях цифру 0 , стоящую слева, нужно отбросить, после чего останется однозначное число 1 , 2 , 3 , …, 9 .

Пример.

Делится ли числа 75 003 и −88 108 на 4 ?

Решение.

Посмотрим на две последние цифры в записи числа 75 003 - видим 03 , отбрасываем нуль слева и имеем число 3 . Так как 3 не делится на 4 , то по признаку делимости на 4 можно сделать вывод о том, что 75 003 не делится на 4 .

Аналогично две последние цифры в записи числа −88 108 составляют число 8 , а так как 8 делится на 4 , то и число −88 108 делится на 4 .

Ответ:

75 003 не делится на 4 , а −88 108 – делится.

Отдельно нужно сказать о числах, в записи которых справа две подряд цифры (или большее их количество) являются нулями. Приведем примеры таких чисел: 100 , 893 900 , 40 000 , 373 002 000 и т.п. Такие числа делятся на 4 . Обоснуем это.

Число 100 делится на 4 . Действительно, 100:4=25 . позволяет представить любое другое целое число a , запись которого оканчивается двумя нулями, в виде произведения a 1 ·100 , где число a 1 получается из числа a , если в его записи справа отбросить два нуля. Например, 588 300=5 883·100 и 30 000=300·100 . А произведение a 1 ·100 делится на 4 , так как содержит множитель 100 , который делится на 4 (смотрите свойства делимости). Так доказано, что любое целое число, в записи которого справа находятся два нуля, делится на 4 .

Доказательство признака делимости на 4

Для доказательства признака делимости на 4 нам понадобится следующее представление натурального числа a . Любое натуральное число a можно представить в виде a=a 1 ·100+a 0 , где число a 1 получается из числа a , если в его записи убрать две последние цифры, а число a 0 отвечает двум последним цифрам в записи числа a . Например, 5 431=54·100+31 . Если же число a однозначное или двузначное, то a=a 0 .

Также нам пригодятся два свойства делимости:

  • чтобы целое число a делилось на целое число b необходимо и достаточно, чтобы модуль числа a делился на модуль числа b ;
  • если в равенстве a=s+t все члены, кроме какого-то одного, делятся на некоторое целое число b , то и этот один член делится на b .

Теперь можно привести доказательство признака делимости на 4 , который мы предварительно переформулируем в виде необходимого и достаточного условия делимости на 4 .

Теорема.

Для делимости целого числа a на 4 необходимо и достаточно, чтобы число, отвечающее двум последним цифрам в записи числа a , делилось на 4 .

Доказательство.

Для a=0 теорема очевидна.

Для остальных целых a a есть число положительное, и его можно представить как , о чем мы сказали перед теоремой.

В конце первого пункта данной статьи мы показали, что произведение a 1 ·100 всегда делится на 4 . Если еще учесть приведенные перед теоремой свойства делимости, то приходим к следующим выводам.

Если число a делится на 4 , то и модуль числа a делится на 4 , тогда из равенства следует делимость на 4 числа a 0 . Этим доказана необходимость.

С другой стороны из делимости a 0 на 4 и равенства следует делимость на 4 модуля a , откуда следует делимость на 4 и самого числа a . Этим доказана достаточность.

Другие случаи делимости на 4

Иногда требуется проверить делимость на 4 целого числа, которое задано в виде значения некоторого выражения. В таких случаях провести непосредственное деление не представляется возможным. Также использование признака делимости на 4 возможно далеко не всегда. Как же быть в этих случаях?

Основная идея состоит в приведении исходного выражения к произведению нескольких множителей, один из которых делится на 4 . В этом случае на основании соответствующего свойства делимости можно будет сделать вывод о делимости исходного выражения на 4 .

Иногда получить такое представление помогает . Приведем пример для пояснения.

Пример.

Делится ли на 4 значение выражения при некотором натуральном n ?

Решение.

Представим 9 как 8+1 , после чего воспользуемся формулой бинома Ньютона:

Полученное произведение делится на 4 , так как содержит множитель 4 , а выражение в скобках представляет собой натуральное число. Следовательно,

Ответ:

Да.

Достаточно часто доказать делимость на 4 некоторого выражения позволяет . Покажем, как это делается, воспользовавшись условием предыдущего примера.

Пример.

Докажите, что делится на 4 при любом натуральном n .

Решение.

Покажем, что при n=1 значение выражения делится на 4 . Имеем , а 4 делится на 4 .

Предположим, что делится на 4 при n=k , то есть, будем считать, что делится на 4 .

m и n имеется такое целое число k и nk = m , то число m делится на n

Применение навыков делимости упрощает вычисления, и соразмерно повышает скорость их исполнения. Разберем детально основные характерные особенности делимости .

Наиболее незамысловатый признак делимости для единицы : на единицу делится все числа . Так же элементарно и с признаками делимости на два , пять , десять . На два можно поделить четные число либо то у которого итоговая цифра 0, на пять - число у которого конечная цифры 5 или 0. На десять поделятся только те числа, у которых заключительная цифра 0, на 100 — только те числа, у которых две заключительных цифры нули, на 1000 — только те, у которых три заключительных нуля.

Например:

Цифру 79516 можно разделить на 2, так как она заканчивается на 6— четное число ; 9651 не поделится на 2, так как 1 - цифра нечетная; 1790 поделится на 2, так как конечная цифра нуль. 3470 поделится на 5 (заключительная цифра 0); 1054 не поделится на 5 (конечная цифра 4). 7800 поделится на 10 и на 100; 542000 поделится на 10, 100, 1000.

Менее широко известны, но весьма удобны в использовании характерные особенности делимости на 3 и 9 , 4 , 6 и 8, 25 . Имеются так же характерные особенности делимости на 7, 11, 13, 17, 19 и так далее, но ими пользуются на практике значительно реже.

Характерная особенность деления на 3 и на 9 .

На три и/или на девять без остатка разделятся те числа, у которых результат сложения цифр кратен трем и/или девяти.

Например :

Число 156321, результат сложения 1 + 5 + 6 + 3 + 2 + 1 = 18 поделится на 3 и поделится на 9, соответственно и само число можно поделить на 3 и 9. Число 79123 не поделится ни на 3, ни на 9, так как сумма его цифр (22) не поделится на эти числа.

Характерная особенность деления на 4, 8, 16 и так далее .

Цифру можно без остатка разделить на четыре , если у нее две последние цифры нули или являются числом , которое можно поделить на 4. Во всех остальных вариантах деление без остатка не возможно.

Например :

Число 75300 поделится на 4, так как последние две цифры нули; 48834 не делится на 4, так как последние две цифры дают число 34, не делящееся на 4; 35908 делится на 4, так как две последние цифры 08 дают число 8, делящееся на 4.

Схожий принцип пригоден и для признака делимости на восемь . Число делится на восемь, если три последние его цифры нули или образуют число, делящееся на 8. В прочих случаях частное, полученное от деления, не будет целым числом.

Такие же свойства для деления на 16, 32, 64 и т. д., но в повседневных вычислениях они не используются.

Характерная особенность делимости на 6.

Число делится на шесть , если оно делится и на два и на три, при всех прочих вариантах, деление без остатка невозможно.

Например:

126 поделится на 6, так как оно делится и на 2 (заключительное четное число 6), и на 3 (сумма цифр 1 + 2 + 6 = 9 делится на три)

Характерная особенность делимости на 7.

Число делится на семь если разность его удвоенного последнего числа и "числа, оставшегося без последней цифры"делится на семь, то и само число делится на семь.

Например :

Число 296492. Возьмем последнюю цифру "2", удваиваем, выходит 4. Вычитаем 29649 - 4 = 29645. Проблематично выяснить делится ли оно на 7, следовательно анализируемом снова. Далее удваиваем последнюю цифру "5", выходит 10. Вычитаем 2964 - 10 = 2954. Результат тот же, нет ясности, делится ли оно на 7, следовательно продолжаем разбор. Анализируем с последней цифрой "4", удваиваем, выходит 8. Вычитаем 295 - 8 = 287. Сверяем двести восемьдесят семь - не делится на 7, в связи с этим продолжаем поиск. По аналогии последнюю цифру "7", удваиваем, выходит 14. Вычитаем 28 - 14 = 14. Число 14 делится на 7, итак исходное число делится на 7.

Характерная особенность делимости на 11 .

На одиннадцать делятся только те числа, у которых результат сложения цифр, размещающихся на нечетных местах, либо равен сумме цифр, размещающихся на четных местах, либо отличен на число, делящееся на одиннадцать.

Например:

Число 103 785 делится на 11, так как сумма цифр, размещающихся на нечетных местах, 1 + 3 + 8 = 12 равна сумме цифр, размещающихся на четных местах 0 + 7 + 5 = 12. Число 9 163 627 делится на 11, так как сумма цифр, размещающихся на нечетных местах, есть 9 + 6 + 6 + 7 = 28, а сумма цифр, размещающихся на четных местах, есть 1 + 3 + 2 = 6; разность между числами 28 и 6 есть 22, а это число делится на 11. Число 461 025 не делится на 11, так как числа 4 + 1 + 2 = 7 и 6 + 0 + 5 = 11 не равны друг другу, а их разность 11 - 7 = 4 не делится на 11.

Характерная особенность делимости на 25 .

На двадцать пять поделятся числа , две заключительные цифры которых нули или составляют число, которое можно разделить на двадцать пять (т. е. числа, оканчивающиеся на 00, 25, 50 или 75). При прочих вариантах - число невозможно поделить целиком на 25.

Например:

9450 поделится на 25 (оканчивается на 50); 5085 не делится на 25.



Рассказать друзьям